

Mechanical transmission

- Gears
- Belts
- Lead screws
- Cables
- Cams
- etc.

• No loss of energy

$$\tau_1 \mathcal{G}_1 = \tau_2 \mathcal{G}_2$$

Equivalent J

$$\ddot{\mathcal{G}}_{1}J_{1} \Leftarrow \tau_{1} = \tau_{2}\frac{N_{1}}{N_{2}} = \ddot{\mathcal{G}}_{2}J_{2}\frac{N_{1}}{N_{2}}$$

$$J_{1} = \frac{\ddot{\mathcal{G}}_{2}}{\ddot{\mathcal{G}}_{1}}J_{2}\frac{N_{1}}{N_{2}} \Longrightarrow \left(\frac{N_{1}}{N_{2}}\right)^{2}J_{2}$$

$$J_{1} = TR^{2}J_{2}$$

- Where η is the efficiency of the mechanism (from 0 to 1)
- η is related to power, speed ratio doesn't change
- *η* is also the ratio of input power vs. power at the output

Example

Specifications									
					output torque				
reduction ratio	weight	length	length with motor				intermittent	direction	efficiency
(nominal)	without	without				operation	operation	of rotation	
	motor	motor	1319 T	1331 T	1336 U			(reversible)	
		L2	L1	L1	L1	M max.	M max.		
	g	mm	mm	mm	mm	mNm	mNm		%
3,71:1	17	20,9	34,1	45,9	50,9	200	300	=	90
14 :1	20	25,0	38,2	50,0	55,0	300	450	=	80
43 :1	24	29,2	42,4	54,2	59,2	300	450	=	70
66 :1	24	29,2	42,4	54,2	59,2	300	450	=	70
134 :1	27	33,3	46,5	58,3	63,3	300	450	=	60
159 :1	27	33,3	46,5	58,3	63,3	300	450	=	60
246 :1	27	33,3	46,5	58,3	63,3	300	450	=	60
415 :1	30	37,4	50,6	62,4	67,4	300	450	=	55
592 :1	30	37,4	50,6	62,4	67,4	300	450	=	55
989 :1	30	37,4	50,6	62,4	67,4	300	450	=	55
1 526 :1	30	37,4	50,6	62,4	67,4	300	450	=	55

Harmonic drives

From the harmonic drive website <u>http://www.harmonicdrive.de</u>

Example

Designing the single joint
 Given:

$$\ddot{\mathcal{G}}_{\max} \Rightarrow \tau = J_{eq} \ddot{\mathcal{G}} \Rightarrow \tau_{\max} = J_{eq} \ddot{\mathcal{G}}_{\max} = J_{load} T R^2 \ddot{\mathcal{G}}_{\max}$$

• Then taking into account some more realistic components:

$$\tau_{\max} = J_{load} \frac{TR^2}{\eta} \ddot{\mathcal{Y}}_{\max}$$

This guarantees that the motor can still deliver maximum torque at maximum speed

More on real world components

- Efficiency
- Eccentricity
- Backlash
- Vibrations
- To get better results during design mechanical systems can be simulated

Components

Digital microprocessor:
 Microcontroller, processor + special interfaces

Amplifier (drives the motor) Turns control signals into power signals

- Actuator
 - E.g. electric motor
- Mechanics/load
 - The robot!

Sensors

• For intelligence

Actuators

- Various types:
 - AC, DC, stepper, etc.
 - o DC
 - × Brushless
 - × With brushes
- We'll have a look at the DC with brushes, simple to control, widely used in robotics

Real numbers!

http://www.minimotor.ch

Series 1331 SR						
	1331 T		006 SR	012 SR	024 SR	
1 Nominal voltage	UN		6	12	24	Volt
2 Terminal resistance	R		2,83	13,7	52,9	Ω
3 Output power	P2 max.		3,11	2,57	2,66	W
4 Efficiency	η _{max} .		81	80	80	%
	-					
5 No-load speed	n.		10 600	9 900	10 400	rpm
6 No-load current (with shaft ø 1,5 mm)	0		0,0220	0,0105	0,0055	A
7 Stall torque	Мн		11,20	9,90	9,76	mNm
8 Friction torque	Mr		0,12	0,12	0,12	mNm
0. Smootherest	L.		1 700	0.05	420	
9 Speed constant	k,		1 790	835	439	rpm/V
10 Back-EMF constant	ke		0,56	1,20	2,28	mV/rpm
11 Torque constant 12 Current constant	kм kı		5,35	11,4	21,8	mNm/A A/mNm
12 Current constant	KI		0,187	0,087	0,046	A/minm
13 Slope of n-M curve	Δn/ΔM		946	1 000	1 070	rpm/mNm
14 Rotor inductance	L		70	310	1 100	μH
15 Mechanical time constant	τm		7	7	7	ms
16 Rotor inertia	J		0,71	0,67	0,63	qcm ²
17 Angular acceleration	α max.		160	150	160	·10 ³ rad/s ²
-						
18 Thermal resistance	Rth 1 / Rth 2	6 / 25				K/W
19 Thermal time constant	τω1/τω2	5 / 190				5
20 Operating temperature range:						
– motor		– 30 + 85 (optional – 55 + 125	5)			°C
– rotor, max. permissible		+ 125				°C

Meaning of components

 R_a

 V_{arm}

 R_{1}

 E_{g}

 L_a

• Armature resistance (including brushes)

Armature voltage

- Losses due to magnetic field
- Back EMF produced by the rotation of the armature in the field
- Coil inductance

We can write...

$$V_{arm} = R_a I_a + L_a \dot{I}_a + \omega(t) K_E$$
for $R_l << R_a$

which is the case at the frequency of interest, and we also have...

$$\tau = K_T I_a$$

Back to motor modeling...

 $\tau = (J_M + J_L)\dot{\omega}(t) + B\omega(t) + \tau_f + \tau_{gr}$

- Torque generated
 - Inertia of the motor
 - Inertia of the load
 - Friction
 - Gravity

 \mathcal{T}

 J_{M}

 J_L

 ${oldsymbol{ au}}_{f} \ {oldsymbol{ au}}_{gr}$

- A linear system of two equations (differential)
- Q: can you write a transfer function from these equations?
- Q: can you transform the equations into a block diagram?

By Laplace-transforming

$$V_{arm}(s) = R_a I_a(s) + L_a I_a(s)s + \omega(s)K_E \Rightarrow I_a(s) = \frac{V_{arm}(s) - \omega(s)K_E}{R_a + L_a s}$$

$$\tau = K_T I_a$$

$$K_T \frac{V_{arm}(s) - \omega(s)K_E}{R_a + L_a s} = (J_M + J_L)\omega(s)s + B\omega(s) + \tau_f + \tau_{gr}$$

Considering gravity and friction as additional inputs

 \bullet Control: determine $V_{\rm a}$ so to move the motor as desired

- Root locus
- Pole placement
- Frequency response
- Etc.

• For zero error *K* must be 1 or the control structure must be different

• Final value due to friction and gravity

$$\left| \frac{\tau_{gr} R_a}{A K_T K_p} \right| \le \mathcal{P}_{\max} \Longrightarrow K_p \ge \frac{\tau_{gr} R_a}{A K_T \mathcal{P}_{\max}}$$
$$K_{p\min} = \frac{\tau_{gr} R_a}{A K_T \mathcal{P}_{\max}}$$

PID controller

- We now know why we need the proportional
- We also know why we need the derivative
- Finally, we add the integral
 - Integrates the error, in practice needs to be limited

Interpreting the PID

- Proportional: to go where required, linked to the steady-state error
- Derivative: damping
- Integral: to reduce the steady-state error

About the amplifiers

• Linear amplifiers

- o H type
- o T type
- PWM (switching) amplifiers

H-type

- The motor doesn't have a reference to ground (floating)
- It's difficult to get feedback signals (e.g. to measure the current flowing through the motor)

On the T-type

- Bipolar DC supply
- Dead band (around zero)
- Need to avoid simultaneous conduction (short circuit)

Things not shown

- Transistor protection (currents flowing back from the motor)
- Power dissipation and heat sink
 Cooling
- Sudden stop due to obstacles
 - \circ High currents \rightarrow current limits and timeouts

 $P = V_{ce}I_c$

• Transistors either "on" or "off"

- When off, current is very low, little power too
- When on, *V* is low, working point close to (or in) saturation, power dissipation is low

Comparison

- 12W for a 6A current using a switching amplifier
- 72W for a corresponding linear amplifier

$$\frac{\omega(s)}{V_{arm}(s)} = \frac{K_T / L_a J_T}{\frac{K_T / L_a J_T}{s^2 + [(R_a J_T + L_a B) / L_a J_T]s + (K_T K_E + R_a B) / L_a J_T}}$$

• In practice the motor transfer function is a lowpass filter

$$T_s$$
 with $f_s >> f_e$ $(f_s > 100 f_e)$

• Switching frequency must be high enough (s=switching, e=electric pole)

Sensors

- Potentiometers
- Encoders
- Tachometers
- Inertial sensors
- Strain gauges
- Hall-effect sensors
- and many more...

- Simple but noisy
- Requires A/D conversion
- Absolute position (good!)

Incremental encoder

- Disk single track instead of multiple
- No absolute position
- Usually an index marks the beginning of a turn

- Sensitive to the amount of light collected
- The direction of motion is not measured

Two-channel encoder

• 2 channels 90 degrees apart (quadrature signals) allow measuring the direction of motion

Moreover

There are "differential" encoders

 Taking the difference of two sensors 180 degrees apart

Typically
A, B, Index channel
A, B, Index (differential)

• A "counter" is used to compute the position from an incremental encoder

Counting UP and DOWN edges

• X2 or X4 circuits

Absolute position

• A potentiometer and incremental encoder can be used simultaneously: the pot for the "absolute" reference, and the encoder because of good resolution and robustness to noise

Analog locking

Use digital encoder as much as possible
 Get to zero error or so using the digital signal

• When close to zeroing the error:

- Switch to analog: use the analog signal coming from the photodetector (roughly sinusoidal/triangular)
- Much higher resolution, precise positioning

Tachometer

- Use a DC motor
 - The moving coils in the magnetic field will get an induced EMF
- In practice is better to design a special purpose "DC motor" for measuring velocity
- Ripple: typ. 3%

Measuring speed with digital encoders

- Frequency to voltage converters
 Costly (additional electronics)
- Much better: in software

• Take the derivative (for free!)

$$v(kT) = \frac{p(kT) - p((k-1)T)}{T}$$

Strain gauges

• Principle: deformation $\rightarrow \Delta R$ (resistance)

- Example: conductive paint (Al, Cu)
- The paint covers a deformable non-conducting substrate

$$R = \frac{L}{\sigma A} \Longrightarrow \Delta L, A = const \Longrightarrow \Delta R$$

Microprocessors

Special DSPs for motion control

- Some are barely programmable (the control law is fixed)
- Others are general purpose and they are mixed mode (analog and digital in a single chip)

Example

- DSP 16 bit ALU and instruction set
- PWM generator (simply attach this to either T or H amplifier)
- A/D conversion
- CAN bus, Serial ports, digital I/O
- Encoder counters
- Flash memory and RAM on-board
- Enough of all these to control two motors (either brush- or brushless)