
‘Cognitive Robots’ : From Affordance to Action
& back

Vishwanathan MohanVishwanathan Mohan 

R b B d C S DRobotics, Brain and Cognitive Sciences Dept
Italian Institute of Technology,

Genova, Italy



Today’s Menu

b  ( )• Objectives (Overview)

• Actions  (Local View)

• ‘Reasoning’ about ‘Actions’ (Global View)• Reasoning  about Actions  (Global View)

• Fabric of Reason’s and Action’s    

(Objective/ Subjective View)(Objective/ Subjective View)

• Atomic Cognitive Agents (Future View)



Download: Neurolab Webpage/movies

Today’s Menu
• Conclusions ‘Reverse Engineered’ 

• The Arena of Action 

D w N u W p g /m

The Arena of Action 

• Actions  (Internal Models)

> Computing With the  ‘Body’ Computing With the  Body

> Computing in the ‘World’     

• Reasoning about Actionsg

> Computing in the ‘Mind’

• Atomic Cognitive AgentsLife of 
Abstraction: Atoms everywhere

Speaking Atoms: A WITS Enabled world 

GNOSYS



Tomorrow's Menu

Perception and Synthesis of ‘Shape’

A B C D

1 + 1= 3





Reaching ‘Goals’: From Affordance to Action

GoalWhole Body 
Reaching (All DOF)

Support (Tool 2)

Extention of 
Reach (Tool 1)

Support (Tool 2)

Reach (Tool 1)



Reaching ‘Goals’: From Affordance to Action

GoalWhole Body 
Reaching (All DOF)

Well Connected 

system of y f

body

and 

Support (Tool 2)

and 

environment

i  d  

Extention of 
Reach (Tool 1)

Support (Tool 2) in order to

realize a 
Reach (Tool 1) goal



Affordances are the seeds of Action 
& back

Goals
i

GoalWhole Body 
Reaching (All DOF)

Objects
Actions

Choices
Relationships

Support (Tool 2) Choices
ExperiencesExtention of 

Reach (Tool 1)

Support (Tool 2)

What is Possible (Environment and Body)

Reach (Tool 1)

Exploit What is Possible (Environment and Body)

What is Useful (in the Context of an Active Goal)

Exploit 

Structure



Moving in the Mental Space for Acting in the Physical Space

Novel tool making in 
Caledonian crows 

Using ‘Thoughts’ at the service of ‘Action’

What ‘Additonal affordances’ can I create in the world ?

How will the world change as a result of my actions?

Will that be useful in the context of my internal goals? 

Decouple behaviour from the direct control of the environment and react to

situations that donot exist but could exist as a result of ones actions in the world



Developing a Computational framework ‘G’ which could drive an Artificial
agent / Robot to exhibit a preliminary level of cognitive control over its

ti ti d i i ti

Localization, other G
perception, action and imagination ….

V
L

Reasoning and 
Action Generation
dVisual 

sensory information 
aquisition

G

E

V

H

Hardware,
User Interface, 
Comunication, GraphicsExecutive

Visual 
Perception

EL
Body Position, orientation, 

Place map 
Motivation VariableR

V
HObject class, Location of salient 

points

p
Protocol for communication

User Goals, Motor Commands



Playful Physical Interaction is Critical 

Prediction 
Judgment
Modeling/Causality 

Playing is the most natural 
thing we do and there is Modeling/Causality 

Experimentation / Diagnosis    
Describing, Negotiating, Team Work  

thing we do and there is 
much more to it than just 
having fun.

Artistry  
Planning



GNOSYS Playground: The Arena of Action 



The playground designed for
GNOSYS robot implicitly hosts

Stk2
Enclosure

mp y
experimental scenarios of tasks
related to physical cognition known
to be solved by different species

Stk1
Tool Making

Tool use

to be solved by different species
of primates, corvids and children
below 3 years.



Reach  (Reaching Goals)
Grasp, Fetch User Goals

Stk2
Enclosure

Push
Stack,  Collect 
Use Sticks as Tools

User Goals

Stk1
Tool Making

Tool use

Use Magnetized sticks as tools
Imagine using objects as tools
Imagine creating new tools



Real / Mental  Action Generation in 
Cognitive robots (Internal Models, spatial 
mental map, pushing model )

I see the blue 
stick,  It 
carries a 
reward of 50 
if I  it

Oh my god!
Motor 

redundancy,
Infinite 

solutions,

G

if I grasp it.Internal, 
external, 
temporal 

Constraints

G
Robot



Real / Mental  Action Generation in 
Cognitive robots (Internal Models, spatial 
mental map, pushing model ) The Blue stick 

seems useful.
May be using 

Exploiting Structure and 
Thinking about ‘Exploiting 
Structure’

I see the blue 
stick,  It 
carries a 
reward of 50 
if I  it

Oh my god!
Motor 

redundancy,
Infinite 

solutions,

May be using 
it I can push 

the ball to the 
corner of the 
table and then 
try to grasp it

Simulating  
goal directed 
action 

G

if I grasp it.Internal, 
external, 
temporal 

Constraints
G

action 
sequences?
Push-move 
reach-grasp?

G
Robot



Real / Mental  Action Generation in 
Cognitive robots (Internal Models, spatial 
mental map, pushing model ) The Blue stick 

seems useful.
May be using 

Exploiting Structure and 
Thinking about ‘Exploiting 
Structure’

I see the blue 
stick,  It 
carries a 
reward of 50 
if I  it

Oh my god!
Motor 

redundancy,
Infinite 

solutions,

May be using 
it I can push 

the ball to the 
corner of the 
table and then 
try to grasp it

Simulating  
goal directed 
action 

G

if I grasp it.Internal, 
external, 
temporal 

Constraints
G

action 
sequences?
Push-move 
reach-grasp?

G
Robot

Oh the small 
Using past experiences to shape behviour
(mental/physical) Oh the small 

red sticks! I 
remember 

making longer 
sticks using 
them. Will it 

now help me in 

I should try 
pushing 
intelligently. 
That black 

Trap

G

now help me in 
getting the 

ball?

That black 
object seems 
troublesome 
for some 
reason.

G



Real / Mental  Action Generation in 
Cognitive robots (Internal Models, spatial 
mental map, pushing model ) The Blue stick 

seems useful.
May be using 

Exploiting Structure and 
Thinking about ‘Exploiting 
Structure’

I see the blue 
stick,  It 
carries a 
reward of 50 
if I  it

Oh my god!
Motor 

redundancy,
Infinite 

solutions,

May be using 
it I can push 

the ball to the 
corner of the 
table and then 
try to grasp it

Simulating  
goal directed 
action 

G

if I grasp it.Internal, 
external, 
temporal 

Constraints
G

action 
sequences?
Push-move 
reach-grasp?

G
Robot

Oh the small 
Using past experiences to shape behviour
(mental/physical)

Generalization of past experiences, 
foresight, Quitting, Having reasons to Oh the small 

red sticks! I 
remember 

making longer 
sticks using 
them. Will it 

now help me in 

I should try 
pushing 
intelligently. 
That black 

Trap

I can make a 
tool using the 

small red 
sticks.

But wait, the 
ball is bound to 

Quit

G

now help me in 
getting the 

ball?

That black 
object seems 
troublesome 
for some 
reason.

G

get trapped!

Its a waste of 
time and 

energy trying 
anything here

G G
y g

Restricted 
Zone in 

environment



Developing a Computational framework which could drive an Artificial
agent / Robot to exhibit similar levels of cognitive control over its
perception, action and imagination ?
R

Sub-objectives

 Internal Models: Forward/Inverse functions of sensorimotor  
dependenciesdependencies

 Representation: Goal directed planning, Virtual experiments, Value Fields
 Learning         : State representations (sensory/motor),  Dynamic Changes
 R d d      H  l      k f    Redundancy    : Heterogenous optimality  cireteria in a task specific way 
 Temporal synchrony: maintenance of continuity in perception, action and  

time 
 Integration: Top Down, Bottom Up , Goal 
 Coherence :  To switch between explorative and normal dynamics to

maintain psycho-logical consistency in the sensorimotor worldp y g y

Demonstrate: the effectiveness of the architecture in a physical 
instantiation, acting in ecologically realistic environments, and goals



G
V

L
Reasoning and 
Action Generation

G

E

V

H



G
V

L
Reasoning and 
Action Generation

G

E

V

H

Helpers (Interrupts  R h PMP R

G R
H

Helpers (Interrupts, 
Updating the Local Place 
Map, Display, Information 
management )

Grasp

Reach PMP

P A
S

H
E Search

Internal 

Grasp

Pushing

Internal 
Spatial Map 



H l  (I  
R

G R

Helpers (Interrupts, 
Updating the Local Place 
Map, Display, Information 
management )

Reach PMP

Search

G
P A

S

H
E

management )
Grasp

Pushing

Spatial 
Navigation



Goal
Passive Motion Paradigm (PMP): Real/Mental Action Generation

Internal 
Constraints

External 
Constraints

Effort
Interaction Force

Redundancy
Interaction Force

• ‘Multireferential’ Non Linear Attractor dynamics

l

• Local to Global computing 

F d i  d l  • Compositionality • Forward inverse models 



Real Sensory Information

Passive Motion Paradigm: Forward Inverse Model pair     

BODY

Real Sensory Informat on

Goal, Target of Movement, Task specific 
constraints

Inverse Model 
Controller

BODY

X
Control

Controller

ControlHigher Cognitive Layers

Forward Model
(Emulator)PMP

ll  l d  f

Lower Control Layers

Mentally Simulated Sensory Information



End effetor 
space

Arm/Joint 
space

Waist 
space

Right Arm PMP 
network

Waist is 
Grounded

G di

Waist
PMP

network

Left Arm PMP 

Grounding

Different Motor space’s
Left Arm PMP 

network
Will focus on

Compositionality 
in PMP

(iCub Centric)



End effetor 
space

Arm/Joint 
space

Waist 
space

+ +

+

dXjoint

Right Arm PMP 
network

+ +Waist is 
Grounded

+

Generalized 
Displacement 

G di + +

+Left Arm PMP 

D sp ac m nt 
nodeGrounding

Different Motor space’s

dFjoint

Left Arm PMP 
network

G l d 

Work Units

+ +Generalized 
Force node



End effetor 
space

Arm/Joint 
space

Waist 
space

+ +

+
Virtual 

+

dXjoint
Ke Aj

admittance 
matrix  in the 
joint space

+ +
Grounding

Different Motor space’s AT

+ +

+

Work Units

Elastic 

Virtual Stiffness 
in end effector
space

dFjointTransformation Ke Aj

+ +



End effetor 
space

Arm/Joint 
space

Waist 
space

+ +1/S X JR

+

dXjoint
Ke Aj

+ +

+
Grounding

Different Motor space’s
AT

JR
T

J+ +

+

Work Units

Elastic Transformation

1/S X JL

dFjointGeometric 
Transformation

Ke Aj

+ +JL
T



End effetor 
space

Arm/Joint 
space

Waist 
space

+ +1/S X JR

+

Ke Aj

=

Assignment 
Node

+ +

+
Grounding

Different Motor space’s
AT

JR
T

J+ +

+

Work Units

Elastic Transformation

1/S X JL

+
dFjoint

Geometric Transformation

Branching Nodes

Ke Aj Sum 
Node

+ +JL
T



End effetor 
space

Arm/Joint 
space

Waist 
space

+ +1/S X JR
Goal 

Right Arm

+

Ke Aj

=

Assignment 
Node

+ +

+
Grounding

Different Motor space’s
AT

JR
T

JGoal 

force 
field 1 

+ +

+

Work Units

Elastic Transformation

1/S X JL

+

Goal 
Left Arm

dFjoint
Geometric Transformation

Branching Nodes

Ke Aj Sum 
Node

force + +A set of Force 
fields (Strings)

JL
Tforce 

field 2 





End effetor 
space

Arm/Joint 
space

Waist 
space

+ +1/S X JR
Goal 

Right Arm

+

Ke Aj

=

Assignment 
Node

+ +

+

AT

JR
T

JGoal 

force 
field 1 

Grounding

Different Motor space’s

+ +

+

1/S X JL

+

Goal 
Left ArmWork Units

Elastic Transformation

dFjoint
Ke Aj Sum 

Node

force 
Time Base Generator

Geometric Transformation

Branching Nodes

+ +JL
Tforce 

field 2 Timing



Bimanual Coordination Task
Right Arm- Waist-Left Arm Network

If the trunk is very stiff, only the DoFs of the arms contribute to the final
solution reached by the system: this is equivalent to “ground” both
shoulders.



When External objects are coupled to the body



End effetor 
space

Arm/Joint 
space

Waist 
space

Tool
space

Goal --- > External object ---> End Effector(s) ---> Joints ----> Muscles 

+ +1/S X JR

+

Ke Aj

=

Assignment 
Node

=JT+

Assignment 
NodeGoalCube

+ +

+

AT

JR
T

J

force 
field 1 

KT

+ +

+

1/S X JL

++JT
T+

dFjoint
Ke Aj Sum 

Node

force 
Time Base Generator

Sum 
Node

+ +JL
Tforce 

field 2 



iCub Bimanual Coordination III: Bimanual Transportation Task



Compositionality:  Inside the PMP for a single 
arm

Grounding

Different Motor space’s

Work Units

El  fElastic Transformation

Geometric Transformation

B h  N dBranching Nodes

Force field to Target 

T i   d i

Force 
field 3: 
Joint 

Terminar attractor dynamics

Task Specific constraints

Limits



Solution as a result of the 
superposition of two force 
fi lds

A B Joint Constraints

fields

C DWrist orientation

Solution as a result Solution as a result 
of superposition of 
three force fields



Fine Tuning the Motor 

System of GNOSYS



Input/output interfaces to the forward inverse model pair 
in the GNOSYS robot

RR



ACTION  GENERATION SYSTEM in “action” on GNOSYS



Outline
• Objectives   (Overview)

• Actions  (Local View)( )

> Arena of Action

> Computing With the ‘Body’

> Computing in the ‘World’     

• Reasoning about Actions (Global View)

> Computing in the ‘Mind’

• Fabric of Reason’s and Action’s    

(Objective/ Subjective View)

• Atomic Cognitive Agents (Future View)



Localization, other 
n  inf m ti n G

V
L

Reasoning and 
Action Generation

HardwareVisual 

sensory information 
aquisition

G

E

V

H

Hardware,
User Interface, 
Comunication, GraphicsExecutive

Perception

Helpers (Interrupts  R h PMP R

G R
H

Helpers (Interrupts, 
Updating the Local Place 
Map, Display, Information 
management )

Grasp

Reach PMP

SearchP A
S

H
E

Spatial Map

Grasp

Pushing

Spatial Map



Goal: Grasp Red ball

Central Principles (Invariants)

Goal: Grasp Red ball
Space

T bl

Trap
Table

Tool

Robot

1) A set of sensorimotor variables (State space)
1) Sensorimotor  Exploration

2) Self organization ) ( p )

2) A set of connectivity structures  (Interactions)

3) A set of value fields (Goal-directedness)

2) Self organization

3) Field Computing

4) Value Dependent learning
4) A set of trajectories (output)5) Abstraction

6) Recursivity T.Kohonen (Self organization), M.Toussaint(Sensorimotor Maps), 
Hopfield (AM), Barto, Sutton and Watkins (RL),  Amari (Neural Fields)



1) A set of sensory-motor variables   

> Forward/Inverse model for Reaching> Forward/Inverse model for Reaching

 I l S i l M

Motor:  Array of Joint angles (DoF)
Sensory: End Effector Positions

> Internal Spatial Map

Motor : Input array (Of Translation, 
Rotation vectors)

SMS

AS

> Pushing

Sensory : Global location in the playground

Action space 

SMS

CL CR

Motor : Direction of Pushing,
Location of tool wrt object Sensorimotor space 

Action space 

> Abstract Reasoning
Sensory : Position of object after push

Motor : Array of Actions {Reaching, Pushing, S.navigation, Visual Exploration, Grasp, H}
Sensory : Composite Agent State  Body : (F/I models, Gripper, Vision, Motivation,   

Activity flag) Environment: (object descriptors: Goal and tool if any)



Computational Substrate (A two neuron zoomed view)

L1  SensoryL1. Sensory

L2. Sensory-Motor



Connectivity in the Sensorimotor space (SMS)

M t  Motor Activations: MMotor 
Layer

Neuron  ‘j’
Neuron ‘i’ SMS with 2 neurons 

Perceptive Layer

Sensor Activations: S



Connectivity in the Sensorimotor space (SMS)

M t  Motor Activations: MMotor 
Layer

Neuron  ‘j’
Neuron ‘i’ SMS with 2 neurons 

Sensor weight vector: Sj

Perceptive Layer

Sensor Activations: S



Connectivity in the Sensorimotor space (SMS)

M t  Motor Activations: MMotor 
Layer

Neuron  ‘j’
Neuron ‘i’ SMS with 2 neurons 

Lateral Connections
Sensor weight vector: Sj

Inputs from other neurons

Perceptive Layer

Sensor Activations: S



Connectivity in the Sensorimotor space (SMS)

M t  M t  Motor Activations: MMotor 
Layer
Motor 
Layer

Motor weight vector: mijMotor w ght ctor  mij

Neuron  ‘j’
Neuron ‘i’Neuron ‘i’

Multiplicative modulation

Lateral Connections

 MmM ijij ,
Motor Modulated Lateral 
connections

Sensor weight vector: Sj
Inputs from other neurons

Perceptive Layer

Sensor Activations: S



Free variables that need to be learnt in this phase of self organization.

N: No. of neurons in the sensorimotor space (N);

S: Sensory weights for each neuron (N X DSensor), these are randomly initialized;

errori: local estimate of representational error (useful information for growing) (N)

Wij: Lateral weights (N X N)

Ageij : Age of lateral connection (N X N)Ageij : Age of lateral connection (N X N).

Mij: Motor Modulated lateral connections (N XN X Dmotor)



1) Start with one neuron with randomly initialized sensory weights

2) Generate a random motor activation Mt and observe the incoming sensory ) g y
information St

3) Find the neuron ‘i’ that shows maximum activity for the observed sensory stimulus St

at time t.  (Winner)

4) Grow based on local representational error 

5) Adapt the sensory weights of the Winner and its topological neighbors

6) Ad t th  t  i ht  d l t l i ht  f  ll th  s

)(),(

)(

iNeighboursnsSess

sSess

nnnn

iwii





6) Adapt the motor weights and lateral weights for all the neurons

wij=1 (if motor action Mt from ‘j’  
l d i  ‘i’)

t
T

t

t
ijT

t

T
ij Mm 

 


1'

1 
 resulted in ‘i’)

7) Make the age of the ‘i-j’ lateral connection zero, increase the age of all other lateral  
connections. Eliminate lateral connections who’s Age > Agemax. Eliminate deal neurons.

t
ij

1'


8)   Move to next step of random motor action generation, observation and self 
organization



growing.avi



1) A set of sensory-motor variables   

2) Learning the Sensorimotor space (through self organization of 
sequences of randomly generated sensory motor data)



1) A set of sensory-motor variables   

2) Learning the Sensorimotor space (through self organization of 
sequences of randomly generated sensory motor data)



Obstacles are implicity represented in the SMS

What is learnt through exploration is the free space where motion is possible
and whatever remains independent of its geometry is an obstacle in theand whatever remains independent of its geometry is an obstacle in the
playground.



1) A set of sensory-motor variables 

2) Learning the Sensorimotor space (through self organization of 
sequences of randomly generated sensory motor data)

3) D i  f th  SMS3) Dynamics of the SMS

j
ji

ijijifiiix xWMSxx )(
,




 )()(
1

rmxa
N

i
ikiif i

  


Exponential relaxation 
to the dynamics

Feed Forward 
Normal Computation 
of incremental Feed Forward 

Input Bifurcation
Lateral and Top Down 
interaction

motor action based 
on values

Shift to random 
explorationinteraction

How activity moves Bidirectionally between sensory and motor unitsHow activity moves Bidirectionally between sensory and motor units



Dynamics: On moving in the sensorimotor space

Motor Activations: M
WMS )(



 j
ji

ijijifiiix xWMSxx )(
,
 

Motor weight 
vector: mij

Wij

Mij

Sensor weight 
vector: Sj

Sensor Activations: S



Dynamics: On moving in the sensorimotor space

Motor Activations: M
WMS )(



 j
ji

ijijifiiix xWMSxx )(
,
 

Motor weight 
vector: mij

Wij

Exponential relaxation to the 
dynamics

Mij

Sensor weight 
vector: Sj

Sensor Activations: S



Dynamics: On moving in the sensorimotor space

Motor Activations: M
WMS )(



 j
ji

ijijifiiix xWMSxx )(
,
 

Motor weight 
vector: mij

Wij

Feed Forward Input (bottom up)

2)( SiS 

Mij

22

2
1

s

i

eS
s

i





The Gaussian kernel compares the

sensory weight si of neuron i with

t ti ti StSensor weight 
vector: Sj

current sensor activations St.

Sensor Activations: S



Dynamics: On moving in the sensorimotor space

Motor Activations: M
WMS )(



 j
ji

ijijifiiix xWMSxx )(
,
 

Motor weight 
vector: mij

Wij

Lateral and Top Down Input

 MmM ijij ,

Mij

jj

The instantaneous value Mij i.e. the scalar 
product of motor weight vector mij with the 
ongoing motor activations M keeps changing 

h h    h   with the activity in the action space.

Due to this multiplicative coupling, a lateral 
connection contributes to lateral interaction 
b    l  h  h   Sensor weight 

vector: Sj

between two neurons only when the current 
motor activity correlates with the motor 
weight vector of this connection.

Si i A i C  l

Sensor Activations: S

Situation-Action-Consequence loop



Dynamics: On moving in the sensorimotor space

Motor Activations: M
WMS )(



 j
ji

ijijifiiix xWMSxx )(
,
 

Motor weight 
vector: mij

Wij 2

2)(

21 
SAnticipS

e


Bifurcation Parameter

Mij

2

2



 eif 

How closely the top down prediction
correlates with the real sensorycorrelates with the real sensory
information

0ifThe sensory 
weights of the 
neuron k that 

Sensor weight 
vector: Sj

Implies that the internal model is
locally inaccurate or there is a
dynamic change in the real world i.e.
‘the world is working differently in

neuron k that 
shows maximum 
activation the 
under effect of 
top down 

Sensor Activations: S

the world is working differently in
comparison to the way the robot
thinks the world should be working’.

top down 
modulation.



Dynamics: On moving in the sensorimotor space

Motor Activations: M
WMS )(



 j
ji

ijijifiiix xWMSxx )(
,
 

Motor Layer Dynamics

Motor weight 
vector: mij

Wij

)()(
1

rmxa
N

i
ikiif i

  


Motor Lay r Dynam cs

Mij
Small random motor
signalsignal

0if
Dynamics is a function of only real

f (f f )Sensor weight 
vector: Sj

sensory information (feed forward)
Contribution of first term in motor
dynamics is zero

1

Sensor Activations: S

1
System dynamics switches to
random exploration (like learning
the SMS)



Dynamics: On moving in the sensorimotor space

Motor Activations: M
WMS )(



 j
ji

ijijifiiix xWMSxx )(
,
 

Motor Layer Dynamics

Motor weight 
vector: mij

Wij

)()(
1

rmxa
N

i
ikiif i

  


Motor Lay r Dynam cs

Mij

Activation average of all motor
weight vectors coded in the MMLC
Where Ki is the most valuable
neighbor to the ith neuron

jP
M

50

Sensor weight 
vector: Sj

i n

Mpi Mji

Mni
Xi

10

-10

Sensor Activations: S ki=argmaxj(wijVj) 

Xi



1) A set of sensory-motor variables 

2) Learning the Sensorimotor space (through self organization of 
sequences of randomly generated sensory motor data)

3) D i  f th  SMS3) Dynamics of the SMS

4) Value Field Dynamics
How activity moves Bidirectionally between sensory and motor units

(in a goal directed fashion)4) Value Field Dynamics (in a goal directed fashion)



1) A set of sensory-motor variables 

2) Learning the Sensorimotor space (through self organization of 
sequences of randomly generated sensory motor data)

3) D i  f th  SMS3) Dynamics of the SMS

4) Value Field Dynamics
How activity moves Bidirectionally between sensory and motor units
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Dynamics: On moving in the sensorimotor space in a goal directed way

Motor Activations: M Sensorimotor space dynamics
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Sensor Activations: S
Simply, if we want to reach a goal = 5, neuron
representing a state ‘4’ will fetch greater
reward than neuron represneting a state ‘-1’



Coupling between the value field and the dynamics of the SMS 

Goal 2
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ki=argmaxj(wijVj) ki=argmaxj(wijVj) 
Value field influences the motor activity by determining
the neighboring neuron that holds maximum value with
respect to the currently active goal.
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Constraints: Learning ‘when’ to optimize ‘what’
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Constraints: Learning ‘when’ to optimize ‘what’
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Value Field dynamics
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Value Field dynamics

Constraints: Learning ‘when’ to optimize ‘what’
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Q is a superposition of a set of learnt ‘Experience ’ fields q1, q2… qn

Every individual component ‘qi’ has a scalar value on every neuron in the SMS.y mp qi y



Value Field dynamics

Constraints: Learning ‘when’ to optimize ‘what’
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Ui is the ith interactive or self  penalization/reward given to the system.

For example, a penalty of -5 is given to a bad solution  (during ith trial)



Value Field dynamics

Constraints: Learning ‘when’ to optimize ‘what’
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Scaling term for the nth neuron

(Penalty Ui is given only at the end, and we need to distribute the punishments 
and rewards to other neurons in some way)



Value Field dynamics

Constraints: Learning ‘when’ to optimize ‘what’
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The final term encodes the dependency of the goal, the solution for which the 

t  d d/ li d  agent was rewarded/penalized. 

This term allows the system to generalize the presence/absence of  value field qi

for other goals. 



Value Field dynamics

Constraints: Learning ‘when’ to optimize ‘what’
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This term evaluates how much relevance a
good/bad experience encountered in the
past while performing a goal Gi (for which
the additional field q was learnt) holds inG

The final term encodes the dependency of the goal, the solution for which the 

t  d d/ li d  

the additional field qi was learnt) holds in
relation to the currently active goal G.

agent was rewarded/penalized. 

This term allows the system to generalize the presence/absence of  value field qi

for other goals. 



The first solution  (using just the DP component of the reward)

High dimentional State
space

Need to find simple way
to distribute rewards
and penalties

It is always possible to
keep track of the
temporal sequence of
neruons that fired in the
SMS during the

Z performance of
behaviour.

We can also track theirZ1
Z2

Z5 Zn

approximate
neighbourhood
(if a lateral connection is
present)



How to distribute rewards/penalties 

1) I   f  li ti  th  1) In case of a penalization, the 

most proximal neuron z1 receives 

the maximum penalty Ui, and all p y i,

other neurons  (z2-zn) receive 

scaled versions               of the in U.

Z1
Z2

Z5 Zn
penalty.
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Z1
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1) I   f  li ti  th  

How to distribute rewards/penalties 

1) In case of a penalization, the 

most proximal neuron z1 receives 

the maximum penalty Ui, and all p y i,

other neurons  (z2-zn) receive 

scaled versions               of the in U.

Z1
Z2

Z5 Zn
penalty.

2) In case of a reward, the most 

distal neuron zn recives Z1 distal neuron zn recives 

maximum reward and all others 

receive scaled versions

Simple logic: In case of a problem or bad performance, the root is attacked 

Incase of success all the contributing elements get the rewards in 

ways such that elements higher up in the hierarchy earn more  

benefits than those at the bottom.



1) I   f  li ti  th  

How to distribute rewards/penalties 

1) In case of a penalization, the 

most proximal neuron z1 receives 

the maximum penalty Ui, and all p y i,

other neurons  (z2-zn) receive 

scaled versions               of the in U.

Z1
Z2

Z5 Zn
penalty.

2) In case of a reward, the most 

distal neuron zn recives Z1 distal neuron zn recives 

maximum reward and all others 

receive scaled versions

This simple heuristic of distribution of rewards underlies basic human nature of

attribution of credits to any collective goal directed behavior. In case of problems,

elements at the bottom of the hierarchy face maximum damage and in case of

success elements at the top of the hierarchy reap maximum profits!
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1) I   f  li ti  th  

How to distribute rewards/penalties 

1) In case of a penalization, the 

most proximal neuron z1 receives 

the maximum penalty Ui, and all p y i,

other neurons  (z2-zn) receive 

scaled versions               of the in U.

Z1
Z2

Z5 Zn
penalty.

2) In case of a reward, the most 

distal neuron zn recives Z1 distal neuron zn recives 

maximum reward and all others 

receive scaled versions

3) Neighbours get scaled versions 

of rewards/penalty that the 

 master got

4) Penalize circular solutions



Second solution (after first penalization)



Solutions in newer field structures



Emitting Goal directed motor sequences

A set of ‘weighted’ Value fields: Learnt  AdaptedA set of weighted  Value fields: Learnt, Adapted

Prohibited Pr hibited

Alternative
Solution

Prohibited
Zone

Prohibited
Zone

How relevant a past experience is in the context of 
current goal



New Experiences:Learning to Avoid Traps



PUSHING : Learning new value fields by exploration

F1 F

F2 +

Goal
More 

Energy

Fn

Experience Trap Dependent field change

Trap



Self organizing the Pushing SMS



Pushing Sensorimotor space



Movement of the Goal due to Pushing can induce reward exitations on 

the internal spatial map



Pushing in ways that are rewarding: Learning the Pushing reward 

structure

QDPRi 

There is no need to have a default planThere is no need to have a default plan

DP can be learnt by repeated trials of random explorative pushing of the goal
in different directions along the groove, followed by an attempt to grasp the

l (b i d hi )goal (by moving and pushing).



Energy related constraints can also be embedded in the reward 

structure


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R is the actual rewardRT is the actual reward
received in the end of the
Tth trial in case of success

R is the net rewardRnet is the net reward
promised (= 50)

Distiter is an approximate
calculation of the distance

Prohibited 
Zone

calculation of the distance
navigated by the robot to
get the goal



Goal

Goal Value Action

Value Field on SMS  (Quasistationary)

max)( jijiiiv vWRvv  


Perception

Value to action

N

ki=argmaxj(wijVj) 

)()(
1

rmxa
N

i
ikiif i

  


 MmM ijij ,

Motor Activity modulates 
lateral connections in SMS

xWMSxx )(



Activity shift in SMS

j
ji

ijijifiiix xWMSxx )(
,
 



New Experiences:  Learning to Avoid Traps



0 0if

1

I   t i l th  b t hIn every trial the robot has

an experience of contradiction because of the trap,



0 0if

1

I   t i l th  b t hIn every trial the robot has

an experience of contradiction because of the trap,

an experience of exploration which characterizes its attempt to nullify p p p y

the effect of the trap so as to realize the goal 



0 0if

1

I   t i l th  b t hIn every trial the robot has

an experience of contradiction because of the trap,

an experience of exploration which characterizes its attempt to nullify the p p p y

effect of the trap so as to realize the goal 

an experience of being rewarded by the user/self in case of success. 
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I   t i l th  b t hIn every trial the robot has

an experience of contradiction because of the trap,

an experience of exploration which characterizes its attempt to nullify the p p p y

effect of the trap so as to realize the goal 

an experience of being rewarded by the user in case of success 

Rewards are distributed using the simple 3 point heuristics

Each experience is represented in the form of a reward field in the 

pushing sensorimotor spacepushing sensorimotor space.







DP qi

Generalizing the learnt new fields
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Experience Trap Dependent field change

Trap





P hi I t l M d l

A virtual sequence of ‘Push-Move-Reach’

> Pushing Internal Model
A virtual trajectory of the
goal objectg j
> Internal Spatial Map
A virtual trajectory of the
b dbody
> Arm F/I model (PMP)
(Which now recieves two crucial
pieces of information to trigger PMP
XT adnd Xini)

A virtual trajectory of thej y
end effector

“… since there is a trap there, it is advantageous to push in that direction; if I 
push in that direction, the ball may eventually go to that side of the table; in 
case I move my body closer to that edge, I may be in a position to grasp the ball 
and get some rewards …”.



Abstract Reasoning: From ‘Force-Flows’ to ‘Situation-Action’

h l l ‘  l’  l  f  h   
Transform

High level ‘user goal’ 
+ World/Body state
+ Existing Knowledge

Concrete goals for the various 
internal action models and 

support processes in the system



From ‘Force-Flows’ to ‘Situation-Action’



Action Primitives (functional and relatively well developed) 



1) Action Primitives (f ti l d l ti l  ll d l d) 

Dynamic memory structures for efficient information organization to 
manage a continuously changing world

1) Action Primitives (functional and relatively well developed) 

2) Sensory Datagram 

3) Monitor)

4) Place Map

5) Goal Space



Connectivity Structures
1) Sensory weights                                             

(Perceptive layer to Sensorimotor map)(Perceptive layer to Sensorimotor map)
2) Lateral weights                                                    

(Activty spread, Value computation)
3) Motor Modulated lateral conections                 

(Action -perception)(Act on percept on)
4) Intermap Connections                             

(Perception- action, Generally w/o linked  value)
5) Conceptual Lateral connections                

(Peception-Perception, w/o motor influence )( c pt on rc pt on, w/o motor nf u nc  )
6) Growing reward matrices (Whats useful)



Continuosuly Learning System (Reasoning and Exploration are 
always loosely coupled, no seperate phases of learning etc)

A id l U  G lAccidental 
Trial and Error

Reaching other objects
using sticks cylinders

Interactive
Knowledge 
Transfer

User Goal
Driven

using sticks, cylinders

Pushing, Pushing+Traps

Coupling two sticks

Gradual Increments 
in Environmental 

complexity
L1 Sensory

(Self organization, GNG)

L2 S M tCoupling two sticks,
observing consequence

Intermap MMLC  LatCon

Bidirectional 
Activity Transfer

L2 Sensory-Motor
(Heteroassociative Memory)

L3  Value Dependent
(I fl  f G l ) Intermap

Conceptual Lateral
Conectivity  

What’s What’s 

MMLC, LatCon
Reward Matrix

(Influence of Goals) 

L4  Accidental/ TE
(Curiosity+ Motivation)

What s 
Possible

What s 
Useful L5   Interactive

(Help seeking/Giving)



User Goal
No Knowledge

User Goal
Initialize with existing Knowledge

Goal from Motivation 
system

Initialization of the Reasoning system ()

Reasoning system 

Goal that has to be transformed into a strategy

Motor Dynamics to compute next incremental action (Situation-Goal-Action)
Heteroassociation, Value field computation, extraction of action identifier

XASMS Currently Active state in ASMS (Initial Condition)

Random motor exploration (with user consent)
1.Random selection of any action whose 

necessary arguments for execution are available 
from the goal space

Action UnknownAction 

Execution of the requested action (on the concerned object in the world)  using the appropriate Action model
(Place Map – Goal Space – Internal model loop)  [Primitives, Executives, Real models]

Sensorimotor space dynamics (Situation-Action-Consequence Loop)
Tracking (Arriving at an updated situation in ASMS)

Monitor Process (Terminate Goal, Control Transfer, Update knowledge, return back to next 
incremental action computation) 



Visualizing
GNOSYS



Some Test Scenarios



‘Grasp Green Ball’--- GNOSYS Demo 



‘Quitting’  and having a REASON to QUIT



Abstraction and Modularity

More 
Abstract



Circularity and Recursivity

Root Goal

Reason 
{

Reason
{

RReason
{

}
}  }  

}



Portablility and Scalability
SCORBOT FESTOSGNOSYS

HOAP3iCub



When Goals Compete for the Body…..

Goal A Goal B Goal CGoal A Goal B

R1
Rk

R

R2
Rm

R

R3
Rn

R
G
P R

S

R
H
E

G
P R

S

R
H
E

G
P R

S

R
H
E

Force – Flows

Situations – Actions

Time
Goals - Plans

Motivation Reasoning

High level Combinatorial Plans

Motivation- Reasoning-
Executive loop



When bodies Compete for the World…..

W GW G

G R

Agents Compete

G R

R A

Goals  Compete

R A

A F

Actions Compete

A F
Fields CompeteW 



GNOSYS : An Abstraction Architecture for Cognitive agents
www.ics.forth.gr/gnosys or neurolab webpage (DIST, Univ.Genoa) for Publications,Deliverables, Movies

John Taylor Pietro Morasso Giorgio MettaGiulio Sandini

Stathis Kasderidis Hans Peter Mallot Panos Trahanias

Wolfgang HeubnerHarris Baltzakis Christo Panchev



Thank You + Questions ?T Y Q



Bimanual Reaching

In the real world
Bimanual Reaching

DLT Based 
Caliberation 

Stacking Coffee Cups

Bimanual stacking

Using Sticks,
Pushing Internal 
Model

Addition of Internal 
Spatial Map
(Mobile iCub ?)

Reasoning Tasks

Parametrized PMP for
Verb GroundingVerb Grounding

Lingusitic goals



When bodies Compete for the World…..

W GW G

G R

Agents Compete

G R

R A

Goals  Compete

R A

A F

Actions Compete

A F
Fields CompeteW 


