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Toclag’s Menu

* Objectives (Overview)

* Actions (Local View)

* 'Reasoning’ about 'Actions’ (Global View)

* Fabric of Reason's and Action's
(Objective/ Subjective View)

* Atomic Cognitive Agents (Future View)



Toclag’s Menu

Download: Neurolab Webpage/movies

* Conclusions 'Reverse Engineered’
® The Arena of Action
* Actions (Internal Models)
> Computing With the 'Body’
> Computing in the "World'
® Reasoning about Actions

> Computing in the ‘Mind’

* Atomic Cognitive Agents

Life of

GNOSYS Abstraction: Atoms everywhere

Speaking Atoms: A WITS Enabled world



Tomorrow’s Menu

Ferception and Sgnthesis of ‘5hape’







Reaching 'Goals': From Affordance to Action
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Reaching 'Goals': From Affordance to Action

Well Connected
system of
body
and

. environment
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Affordances are the seeds of Action -
& bac

Goals
Actions

Objects

. Relationships
port (Tool 2)  Choices

-; -“ Extentior Experiences
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What is Possible (Environment and Body) Exploit
What is Useful (in the Context of an Active Goal)| Structure




Moving in the Mental Space for Acting in the Physical Space

2 O

EJ\% Novel tool making in
/M = Caledonian crows

Using ‘Thoughts’ at the service of "Action’

What '‘Additonal affordances’ can I create in the world ?
How will the world change as a result of my actions?

Will that be useful in the context of my internal goals?

Decouple behaviour from the direct control of the environment and react to

situations that donot exist but could exist as a result of ones actions in the world



Developing a Computational framework ‘G which could drive an Artificial
agent / Robot to exhibit a preliminary level of cognitive control over its
perception, action and imagination ....

Localization, other
sensory information
aquisition

Reasoning and
> Action Generation

Visual Hardware
Perception ‘
P User Interface,
Executive Comunication, Graphics
@ Body Position, orientation, D Motivation Variable
E
Place map O
Protocol for communication
Object class, Location of salient 9@
points User Goals, Motor Commands
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Playful Physical Interaction is Critical

Prediction

Judgment

Modeling/Causality

Experimentation / Diagnosis
Describing, Negotiating, Team Work
Artistry

Planning

Playing is the most natural
thing we do and there is
much more to it than just
having fun.



GNOSYS Playground: The Arena of Action
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magnetized

8 .‘ i Trap stick
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Non magnetized stick
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The playground designed for

» ()
GNOSYS robot implicitly hosts h
experimental scenarios of tasks
/ || =

related to physical cognition known Enclosure

to be solved by different species
of primates, corvids and children
below 3 years.

Tool Making
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Reach (Reaching Goals)
Grasp, Fetch

Push

Stack, Collect

Use Sticks as Tools

Use Magnetized sticks as tools
Imagine using objects as tools
Imagine creating new tools

User Goals
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Real / Mental Action Generation in
Cognitive robots (Internal Models, spatial 8
mental map, pushing model )

Oh my god!
Mo};ogr . I see the blue
redundancy, stick, It
Infinite | LM | carries a
solutions, reward of 50
Internal, \ if I grasp it.
external,
temporal

Constraints

Robot
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Real / Mental Action Generation in Exploiting Structure and
Cognitive robots (Internal Models, spatial 8 Thinking about 'Exploiting he B ok
ental map, pushing model ) Structure’ The Blue stic
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May be using
Oh'm od! it I can pUSh
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stick, Tt ) . corner of the
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Real / Mental Action Generation in
Cognitive robots (Internal Models, spatial 8
mental map, pushing model )

Oh my god!
Moz;ogr . I see the blue
redundancy, stick, It
Infinite H | carries a
solutions, reward of 50
Internal, \ if I grasp it.
external,
temporal
Constraints
G
Robot

Using past experiences to shape behviour

(mental/physical) Oh the small
red sticks! T
remember

I should try Trap making longer
pushing / sticks using
intelligently. them. Will it
That black E.E now help me in
object seems getting the
troublesome ball?
for some \ /
reason.

G

E —

Exploiting Structure and
Thinking about ‘Exploiting
Structure’

goal directed
action
sequences?
Push-move
reach-grasp?

=

/

Y

The Blue stick
seems useful.
May be using
it I can push

the ball to the
corner of the

table and then
try to grasp it




Real / Mental Action Generation in
Cognitive robots (Internal Models, spatial
mental map, pushing model )

0

Oh my god!
Moz;ogr . I see the blue
i || | 2o
nfinite
solutions, reward of 50
Internal, \ if I grasp it.
external,
temporal

Constraints

Using past experiences to shape behviour
(mental/physical)

Exploiting Structure and
Thinking about ‘Exploiting
Structure’

Simulating
goal directed
action
sequences?
Push-move
reach-grasp?

(He |

/

=

Generalization of past experiences, l

foresight, Quitting, Having reasons to

Quit

" Helm

Its a waste of

Oh the small
red sticks! T
remember
I should try Trap making longer
pushing / sticks using
intelligently. them. Will it
That black E.E now help me in
object seems getting the
troublesome ball?
for some \ /
reason.

G

E —

\/

G

time and
energy trying
anything here

~

Y

The Blue stick
seems useful.
May be using
it I can push

the ball to the
corner of the

table and then
try to grasp it

I can make a
tool using the
small red
sticks.

But wait, the
ball is bound to
get trapped! |

Restricted

Zone in
environment



Developing a Computational framework which could drive an Artificial
agent / Robot to exhibit similar levels of cognitive control over its
perception, action and imagination ?

D@ >0 > Sub-objectives

» Internal Models: Forward/Inverse functions of sensorimotor
dependencies

» Representation: Goal directed planning, Virtual experiments, Value Fields

» Learning . State representations (sensory/motor), Dynamic Changes

» Redundancy : Heterogenous optimality cireteria in a task specific way

» Temporal synchrony: maintenance of continuity in perception, action and
Time

» Integration: Top Down, Bottom Up , Goal

» Coherence : To switch between explorative and normal dynamics to
maintain psycho-logical consistency in the sensorimotor world

Demonstrate: the effectiveness of the architecture in a physical
instantiation, acting in ecologically realistic environments, and goals



Reasoning and
Action Generation




Reasoning and
Action Generation

Helpers (Interrupts,
Updating the Local Place
Map, Display, Information
management )

> Search

Internal
Spatial Map




Helpers (Interrupts,
Updating the Local Place
Map, Display, Information
management )

Reach PMP

> Search

Spatial




Passive Motion Paradigm (PMP): Real/Mental Action Generation
Goal

Internal
Constraints

i
N

External

\

\

)

\

| Redundancy
wiu i I8 Interaction Force

'‘Multireferential’ Non Linear Attractor dynamics © Local to Global computing

Compositionality Forward inverse models



Passive Motion Paradigm: Forward Inverse Model pair

Real Sensory Information

Goal, Target of Movement, Task specific
constraints

Control
—2 TInverse Model
—> Controller 3 (

Higher Cognitive Layers

Control

PMP >

Lower Control Layers

Mentally Simulated Sensory Information



Waist is
Grounded

Grounding

Different Motor space'’s

Will focus on
Compositionality
in PMP
(iCub Centric)

End effetor
space

Right Arm PMP
network

Left Arm PMP
network

Arm/Joint
space

Waist
space

Waist
PMP

network



End effetor Arm/Joint Waist
space space space

Right Arm PMP

network
dxjoin'r

Waist is ‘

Grounded Generalized

Grounding :‘) ;.j(:alacement\ ‘

Different Motor space’s

. Left Arm PMP ‘
Wor'k Units network dF jgint

Generalized — ‘ ‘

Force node



End effetor Arm/Joint Waist

space space space
Virtual
admittance +
matrix in the
Joint space dXgint

Grounding

Different Motor space's

in end effector

Elastic spice ®©
Transformation dF i

Work Units Virtual Stiffness T



Grounding

Different Motor space's
Work Units

Elastic Transformation

Geometric
Transformation

End effetor
space

— &

«—1/s€¢— 4 «J;
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>JR'
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Arm/Joint
space

¢

¢

Waist
space

dxjoin'r

dFjoinf



End effetor Arm/Joint Waist
space space space

T<—1/s<— 5 €—Jr

‘ >J5'
Different Motor space's

Work Units ‘<_1/ Se— x <L

Assignment
Node

Grounding

Elastic Transformation

-

Geometric Transformation dF it

Branching Nodes




End effetor Arm/Joint Waist

space space space
Goal ‘(—1/5(— «—7J
Right Arm R
K _ Assignment
e Node
+ force SR T T
field 1 R *
Goal Ar
@y <—? T
+
Ke dF...
l T Node oint
force T
A set of Force T fied 2z oL ¢

fields (Strings)






Timing

End effetor Arm/Joint Waist

space space space
Goal ‘(—1/5(— «—Jp «—
Right Arm
K Assignment
£ Node
+ force SR T T
field 1 R *
Goal Ar
@ s <—? T
. +
K. I'(t dF..
( ) Node Joint
l Time Base Generator T
force T
field 2 9L >+



Bimanual Coordination Task
Right Arm- Waist-Left Arm Network

(j If the trunk is very stiff, only the DoFs of the arms contribute to the final

solution reached by the system: this is equivalent to “ground” both
= shoulders.




When External objects are coupled to the body




Goal --- > External object ---> End Effector(s) ---> Joints ----> Muscles

Tool End effetor Arm/Joint Waist
space space space space

Assignment

Node
force SR T T
field 1 R *
A
«—1/s€- 4 «J, <—$ T
. +
I'(t) A; dF jgint

Time Base Generator T

force
field 2

>JT—> 4



iCub Bimanual Coordination III: Bimanual Transportation Task




Compositionality: Inside the PMP for a single
arm

Extrinsic Intrinsic
Space
Goal Space
-y Y 1 1 1
o " TR — 1/5 |« X J, —
ot Goal Wrist A q
Grounding T, Xy Xys
1/5 4—-—@47 J, —
Different Motor space's

Work Units v
Elastic Transformation Ko o () A
‘ . 2) For¢e field applied
Geometric Transformatio at thelwrist Internd
F, o | Constraints
Branching Nodes —b@ » J,T
External Force
Force field to Target Constraints F field 3:
’é 1) Force field applied : o J.7 Joint
Terminar attractor dynat at the end effector : Limits

Task Specific constraints



A * Target 4 (outside arm workspace)

B Joint Constraints "

= Ini‘rigl Ar'm. . i
R0, i Configuration Solution as a result of Thq
2 DR '\ . I ey [
LR iz ! Target 1 superposition of two for'ce=
LN | S A fields :
“\i ')\\ . " % g }\‘ ". " ,/" ;’:}' n !
S S T N N N .
'_:_\_,\_;...'_’¢" - ,\. ;&,"’? .!I ‘.r\ :
e i S 4 / \ i
Target 3 gt ey 4 qt.‘"“:::"‘“ ’ 1\. I
--------- % | W s \ !
! el
i [ | u 1
Initial % Vol - In :
Position TSN '
ﬁ\\— R — ] o
", R '.J
Target \ %‘\.\\ g ll ",F' n
S.i -‘. ~. I“.ll
n ) :\ NG Target 2 l "r“’
"-._‘_ L & .'-‘!.r"
C Worist orientation
\ Tool orientation pi/4
1
'1.1."' l?q‘ Turga'f( 1’2 }
- r®! |I "y Inftial Conflguration N
LTI L1 *t" ,
i I" '.."l"l.p l \_ﬂ i et h
fj:. ot ""':./ >
/ r,»-' : y
':'i Luly " G " Jr= = -
Ll rl L) I L] ‘ . I [ . i
"" -"lI ‘*‘ ' ® . E b 4
.éf.‘ q,=45° "\, Eq,,tﬂﬂ'“ A D . File
iy Th Ll L]

Solution as a result
of superposition of
three force fields

Reaching the same target with four
different tool orientations



Fine Tuning the Motor
System of GNOSYS




Input/output interfaces to the forward inverse model pair
in the 6NOSYS robot

Tool Tool orientation Body/Arm initial
Length wrt body position
J/ l Trajectoryin
distal space
Forward/Inverse model pair (End Effector)
URigthumH Goal X Goal
VRighfcum% 3D Reconstruction | Goal Y l
U]effmm —_— SYSTEHI Goal Z Lo *’7’
VJE.'F‘rcum —> I ”{‘;aﬁ-ég |
Externa Interna
Goal X——> Consfmm‘rs‘ i! L :g ; h Constraints
Goal Y —— ’ \i S
Goal £ 1 Redundancy ]

Effort ) )
: Trajectoryin
: - S Interaction Force
Time proximal space

T T T (Joint angles)

Wrist Joint Orientationwith
constraints constraints which a tool was
grasped in the

previous action




ACTION GENERATION SYSTEM in "action” on GNOSYS




Goal

External Internal
Constraints ( Constraints
’ . ’ Redundancy

Effort
Interaction Force

'‘Body’
Computing in the ‘World'
Reasoning about Actions (Global View)
> Computing in the ‘Mind’
Fabric of Reason's and Action's
(Objective/ Subjective View)
Atomic Cognitive Agents (Future View)



Localization, other
sensory information

aquisition Reasoning and

Action Generation

Visual

Perception Hardware,

User Interface,

Executive Comunication, Graphics

Helpers (Interrupts,
Updating the Local Place
Map, Display, Information
management )

> Search




Central Principles (Invariants)

Goal: Gr'asﬁﬁéd*bﬁauﬁ
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1) Sensorimotor Exploration

2) Self organization 1) A set of sensorimotor variables (State space)

3) Field Computing

4) Value Dependent learning
5) Abstraction
6) Recursivity

2) A set of connectivity structures (Interactions)
3) A set of value fields (Goal-directedness)
4) A set of trajectories (output)

T.Kohonen (Self organization), M. Toussaint(Sensorimotor Maps),
Hopfield (AM), Barto, Sutton and Watkins (RL), Amari (Neural Fields)



1) A set of sensory-motor variables

> Forward/Inverse model for Reaching
Motor: Array of Joint angles (DoF)
Sensory: End Effector Positions

> Internal Spatial Map

AS
Motor : Input array (Of Translation,
Rotation vectors) i l
Sensory : Global location in the playground SMS

> Pushing C (R
. Action space
Motor : Direction of Pushing, @
Location of tool wrt object Sensorimotor space

Sensory : Position of object after push
> Abstract Reasoning

Motor : Array of Actions {Reaching, Pushing, S.navigation, Visual Exploration, Grasp, H}

Sensory : Composite Agent State Body : (F/I models, Gripper, Vision, Motivation,
Activity flag) Environment: (object descriptors: Goal and tool if any)



Computational Substrate (A two neuron zoomed view)

L1. Sensory

Motor Activations: M
L2. Sensor-y_ Motor otor Activations

Motor weight vector: m;

Neuron 'j’
Multiplicative modulation

\ M ;=< mng >
T —___[ Motor Modulated Lateral
\ connections

Sensor weight vector: S;

. . . . Sensor Activations: S

Perceptive Layer

[ Lateral Connections ]
Inputs from other neurons




Connectivity in the Sensorimotor space (SMS)

Motor Motor Activations: M

Layer

Neuron ‘i Q ‘ Neuron 'j [SMS with 2 neurons]

. . . . Sensor Activations: S

Perceptive Layer



Connectivity in the Sensorimotor space (SMS)

Motor Motor Activations: M

Layer

Neuron i Q ‘ Neuron 'j SMS with 2 neurons

____________
- ~~
- SN

Sensor weight vector: S;

. . . . Sensor Activations: S

Perceptive Layer



Connectivity in the Sensorimotor space (SMS)

Motor Motor Activations: M
Layer

Neuron i Neuron 'j SMS with 2 neurons

____________
- ~~
- SN

Lateral Connections \

Inputs from other neurons Sensor weight vector: S.
j

. . . . Sensor Activations: S

Perceptive Layer



Connectivity in the Sensorimotor space (SMS)

Motor Activations: M

Motor weight vector: m;;

Neuron 'j’
Multiplicative modulation

ST ) Motor Modulated Lateral
[ W N N N S o connections
Lateral Connections \

Inputs from other neurons Sensor weight vector: S.
j

. . . . Sensor Activations: S

Perceptive Layer



Free variables that need to be learnt in this phase of self organization.

Neuron |

Sensﬂpy WE|gh1‘ Sf Lateral WElghT
ervor

Representational error

N: No. of neurons in the sensorimotor space (N);

S: Sensory weights for each neuron (N X Dq, ), These are randomly initialized;
error;: local estimate of representational error (useful information for growing) (N)
W;;: Lateral weights (N X N)

Age;; : Age of lateral connection (N X N).

M;;: Motor Modulated lateral connections (N XN X Do)



1) Start with one neuron with randomly initialized sensory weights

2) Generate a random motor activation Mt and observe the incoming sensory
information ST

3) Find the neuron'i' that shows maximum activity for the observed sensory stimulus St
at time t. (Winner)

4) Grow based on local representational error

5) Adapt the sensory weights of the Winner and its topological neighbors

s, «——s,+¢e,(S—s,)
s, <5, +€,(S—s,),Vn e Neighbours (i) ?és |

6) Adapt the motor weights and lateral weights for all the neurons

1 T
T t t
m; =— - tZ:l: a;M w;;=1 (if motor action M from 'j'
Z a; resulted in ‘i’

t'=1

7) Make the age of the 'i-j' lateral connection zero, increase the age of all other lateral
connections. Eliminate lateral connections who's Age > Age,.,.. Eliminate deal neurons.

8) Move to next step of random motor action generation, observation and self
organization



growing.avi



1) A set of sensory-motor variables

2) Learning the Sensorimotor space (through self organization of
sequences of randomly generated sensory motor data)
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1) A set of sensory-motor variables

2) Learning the Sensorimotor space (through self organization of
sequences of randomly generated sensory motor data)
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Obstacles are implicity represented in the SMS
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What is learnt through exploration is the free space where motion is possible
and whatever remains independent of its geometfry is an obstacle in the

playground.




1) A set of sensory-motor variables

2) Learning the Sensorimotor space (through self organization of
sequences of randomly generated sensory motor data)

3) Dynamics of the SMS
. ~ N _ _
T, Xi ==X +5; + By Z(Mijwij)xj a= (Z X mkii)'l'é/(r )
)

Normal Computation
of incremental
motor action based

Exponential relaxation

to the dynamics
Feed Forward
Input v

Bifurcation v on values v
Lateral and Tob D Shift to random
-areral and fop Down exploration
interaction

How activity moves Bidirectionally between sensory and motor units



Dynamics: On moving in the sensorimotor space

Motor Activations: M

Ty )Zi ==X +3; + Sy Z(Mijwij)xj
i ]

Inputs from

other neurons )
Sensor weight

vector: SJ-

Sensor Activations: S



Dynamics: On moving in the sensorimotor space

Motor Activations: M

Ty )Zi ==X +3; + Sy Z(Mijwij)xj

I, ]

Exponential relaxation to the
dynamics

Inputs from

other neurons )
Sensor weight

vector: SJ-

Sensor Activations: S



Dynamics: On moving in the sensorimotor space

Motor Activations: M

Inputs from

other neurons )
Sensor weight

vector: Sj

Sensor Activations: S

Ty )Zi ==X +3; + Sy Z(Mijwij)xj

I, ]

Feed Forward Input (bottom up)

~(8i-8)?

S- —_— 20,

2

The Gaussian kernel compares the
sensory weight s; of neuron i with

current sensor activations S'.



Dynamics: On moving in the sensorimotor space

Motor Activations: M

Ty )Zi ==X +3; + Sy Z(M W)X

|

Lateral and Top Down Input

M =<m;,M >
The instantaneous value M;; i.e. the scalar
product of motor weight vector m;; with the
ongoing motor activations M keeps changing
with the activity in the action space.

Due to this multiplicative coupling, a lateral

Inputs from connection contributes to lateral interaction
other neurons Sensor weight between two neurons only when the current
vector: S; motor activity correlates with the motor

weight vector of this connection.

Sensor Activations: S

Situation-Action-Consequence loop



Dynamics: On moving in the sensorimotor space

Motor Activations: M

_ Neuron |
p/ "

Inputs from

other neurons )
Sensor weight

vector: Sj

Sensor Activations: S

The sensory
weights of the
neuron k that
shows maximum
activation the
under effect of
top down
modulation.

Ty )Zi ==X +3; + Sy Z(M Wi )X

?

Bifurcation Parameter

—(SAnticip—S)z

j

How closely the top down prediction
correlates with the real sensory
information

By —0

Implies that the internal model is
locally inaccurate or there is a
dynamic change in the real world i.e.
‘the world is working differently in
comparison to the way the robot
thinks the world should be working'.



Dynamics: On moving in the sensorimotor space

Motor Activations: M

Ty )Zi ==X +3; + Sy Z(Mijwij)xj
i ]

Motor Layer Dynamics

a=p (inm_kii)w(F )

l

Small random motor
signal

By —0

Inputs from Dynamics is a function of only real
other neurons sensory information (feed forward)
Contribution of first term in motor
dynamics is zero

BN E {—>1

e System dynamics switches to
Sensor Activations: S random exploration (like learning

the SMS)

Sensor weight
vector: S;



Dynamics: On moving in the sensorimotor space

Motor Activations: M

Ty )Zi ==X +3; + Sy Z(Mijwij)xj
i ]

Motor Layer Dynamics

a=fy Qxmg)+¢(r)

l

Activation average of all motor
weight vectors coded in the MMLC
Where K. is the most valuable
neighbor to the it neuron

IHPUTS from Foo J 950
other neurons Sensor weight -10 M, M;
vector: S,
i
T A
Xi

Activations:
Sensor Activations: S ki=argmax;(w;;V;)




1) A set of sensory-motor variables

2) Learning the Sensorimotor space (through self organization of
sequences of randomly generated sensory motor data)

3) Dynamics of the SMS

How activity moves Bidirectionally between sensory and motor units

4) Value Field Dynamics (in a goal directed fashion)



1) A set of sensory-motor variables

2) Learning the Sensorimotor space (through self organization of
sequences of randomly generated sensory motor data)

3) Dynamics of the SMS

How activity moves Bidirectionally between sensory and motor units

4) Value Field Dynamics (in a goal directed fashion)
. e ol TN T dR e el
TV, =-Vi+ R +y (WijV i ) max T S :—"-. ;:,. 'QRi?P:REpﬂII
‘ "**_’I: ¥ * \ - | oy 4 1%‘! 2:
Instantaneous l - X
reward <
Future Y p
Reward W . B
Future reward o Xy AY
Value fields are Quaistationary and 't predsn, 1 Sdiaiened
change with goal G PAS K |
T ol P
@ g D
Cause Goal directed shifts in ‘*‘ &5

activity in the sensorimotor space



1) A set of sensory-motor variables

2) Learning the Sensorimotor space (through self organization of
sequences of randomly generated sensory motor data)

3) Dynamics of the SMS

How activity moves Bidirectionally between sensory and motor units

4) Value Field Dynamics (in a goal directed fashion)

Tv.Vi ==V, + R + y(WV; )
Default Plan (if any) + ‘weighted

Ri =DP +Q Superposition’ of new learnt reward
| fields in SMS
Q=0¢,+q, +....+(,
How much value a good/bad
-(6-6)?>  experience encountered in the
B 1 2032 past while performing a goal 6,
g =@, U;. \/27 € holds in relation to the
0 G currently active goal 6.



Dynamics: On moving in the sensorimotor space in a goal directed way

Motor Activations: M Sensorimotor space dynamics
Ty )Zi ==X +5; + f; Z(M Wi )X,
Motor space dynamicshJ
_ N N _
a=py (leximkii)+§(r )
i

Value Field dynamics

TV, =-V; + R, +7/(Wijvj

l

) max

Inputs from o Ri = DP
other neurons

Sensor weight
vector: S;

Sensor Activations: S



Dynamics: On moving in the sensorimotor space in a goal directed way

Motor Activations: M

Inputs from

other neurons )
Sensor weight

vector: Sj

Sensor Activations: S

Sensorimotor space dynamics

T, X ==X +S; + [y Z(M Wi )X,
i]
Motor space dynamics

5-:,Bif (lem_lq)+§(F )

Value Field dynamics

TV, =-V; + R, +7/(Wijvj

) max

Simply, if we want to reach a goal = 5, neuron
representing a state ‘4" will fetch greater
reward than neuron represneting a state '-1'



Coupling between the value field and the dynamics of the SMS

Goal 107
T = T G 1 2
L _ OGI _ 2
e - Ri =—e "
".'.‘.".} Z
200} _ z-vVi — _Vi + Ri + y(\NijVj)max
=5
Ll
"
" s w0 w1 a0 2 e X vp P %
&0 —
o _ | If wrt neuron i, neuron p
5 holds maximum value, .
" 7Hl  next incremental motor 'W‘ nV,
=, 5 1 action that needs to be Xi
| Wi 044 1 generatedis M, .
R - — -
i . o W a=py (Z X My )+4(r )
w - % Goal =L
cal
_ ki=argmax;(w;V;)
] = ] = an ] X b Lt

Value field influences the motor activity by determining
the neighboring neuron that holds maximum value with
respect to the currently active goal.



Goal Value = Action

Goal

l

Value Field on SMS (Quasistationary)

TV, =-V;+ R + 7/(Wijvj

max

> Value to action

ki=argmax;(w;;V,)

a=p, (inm—kii)wé )

Motor Activity modulates
lateral connections in SMS

Mij =<m., M >

"

Activity shift in SMS
T, X ==X +S; + [y Z(M Wi )X,

|




Goal
Goal Value > Action

o R

€—perception Value FI.e|d on SMS (Quasistationary)
TV =-Vi+ Ri +7/(\Nijvj)max

> Value to action

k.= ar'gmax iwiV;)

a=p, (inm_kii)w(F )

Motor Activity modulates
lateral connections in SMS

M =<m., M >

"

Activity shift in SMS
T, X ==X +S; + [y Z(M Wi )X,
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Constraints: Learning 'when’ to optimize ‘what’

400 rr——
Value Field dynamics

360 | e 1€
: Vi=-Vi + Ri + 7/(Wijvj)max

CLaii) A
300 (457, 02
L

260 ¢ R =DP+0Q

Default Plan
200 fety

150 b

A minimum | Z
distance or

energy
minimizing -
solution

10037 ¢ %L e

e = B i
50 pe s L L Wiy
(el X
.,
.

0 50 100 150 200 250 300 350 400



Constraints: Learning ‘'when' to optimize ‘what’

400 -

300 H5
2501,
200 |1+
150 b

1004

350 b

50 ot

P G [y )
gy .

&
o
b

A minimum

§

energy
minimizing
solution

distance or |

50

100 150 200 250 300 350

Maze navigation problem

400

Value Field dynamics

Z-vVi

=V + I:Qi +7/(\Nijvj)max

l

R, =DP +Q
Default Planl




Constraints: Learning ‘'when' to optimize ‘what’

400"’ - = T F oy T . A G 8 e, o
200 8. VO B B e W5 PR VTR S Value Field dynamics

A kS € §5:9%g-f T,V =V + R+ (Wi V)

- R, =DP +Q
Default Planl

300 |

l\
250 Sl 5~

I A better strategy in
such situations, . Ve
However more energy Thpcit™ e

. will be spent Bl oS B (s-G)2

\_:- O .hihfil ﬂ{:";f}ﬁy{?aﬁf: )

1008 &\e & \ distance or

e o -P 5 O B energy
50 (e, ~ _-_. 59 "% W - = ol 5 ._ . mir\imiZing
PO [ = —{} Start o solution

50 100 150 200 250 300 350 400

<1,
200 7
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A minimum [
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Maze navigation problem




Constraints: Learning ‘'when' to optimize ‘what’

400"' = ey T Y - T S o . T o I
ot M, | " R O Zd QL ¥ Value Field dynamics

: -'J.- ¥ g .—""_"' f— ~ RS
¥ Can the system learn this? %5 ¥ s9% & &% TV ==V + R+ 7/(\Nijvj)max

.|:
300 v : Can the system Generalize I: Wy .; l

This?
250 Sl 5~

“ [0 A better strategy in
such situations, Y
However more energy Tt w38
will be spent E“»’!‘w‘“ SO, ~(5i-G)2
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r S R PR L g 1

100 1 -;"' o

: _ Ri _ DpP _|_Q

51 Default Planl
200 [v5'4
\

; A minimum | i 7
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50 e, > P8 W - 5 ._ mir\imiZing
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Maze navigation problem




Constraints: Learning ‘when' to optimize ‘what’

400 -

Value Field dynamics

300, TVVi = _Vi + Ri +7/(Wijvj)max
250 | l
200 g
| R = DP +Q
150 |
100 l
50
0 ‘: 20RO S | O ,". g @ ‘.i:'- & "':—’l-*" . 1 Q o ql + q 2 + e + q n
0 50 100 150 200 250 300 350 400

Q is a superposition of a set of learnt 'Experience ' fields q1, q2... gn

Every individual component 'g; has a scalar value on every neuron in the SMS.



Constraints: Learning ‘when’ to optimize ‘what’

0 o T Value Field dynamics

350 ' @0t
lOR Py °

TV, =-V, +R "‘7/(WijVj)max

l

R, = DP + Q

l

Q=0¢,+0,+....+Q,

300€€ ‘ii
250 é;zt;:;
200 :.‘-f ‘
150;5
100

50 e . ol

0 O e @ SUERREy SR Yy O gllare 1 1
0 50 100 150 200 250 300 350 400
—(G-Gi)?
2
ZO'G

q =@ U L e
i n~i- /_272'(7(;

l

U, is the i™h interactive or self penalization/reward given to the system.

For example, a penalty of -5 is given to a bad solution (during i*h trial)



Constraints: Learning ‘when’ to optimize ‘what’

400 DR 3, 4R, SAK

350 - i,,i_--- o gode
i _ *
200 :.‘-f .
1500
100

50 e . ol

Value Field dynamics

TV, =-V, +R "‘7/(WijVj)max

l

R, = DP + Q

l

Q=0¢,+0,+....+Q,

B g~ OPOgey Ty P gUeER . .
50 100 150 200 250 300 350 400

—(G-Gi)?

2
ZO'G

q =@ U L e
i n~i- /_272'(7(;

l

Scaling term for the nt" neuron

(Penalty U, is given only at the end, and we need to distribute the punishments
and rewards to other neurons in some way)



Constraints: Learning ‘when’ to optimize ‘what’

400 - ——

350 b

300 A, 2

150 f VS

0

250 £ 50

200 iy

100 % &F 0

50 -8

Value Field dynamics

TV, =-V;+ R + 7/(WijVj)max

l

R, = DP + Q

l

Q=0+, +....+ 0,

400

—(G-Gi)?

2

[ n~i- /_272'(7(;

ZO'G

€

The final term encodes the dependency of the goal, the solution for which the
agent was rewarded/penalized.
This term allows the system to generalize the presence/absence of value field g;

for other goals.



Constraints: Learning ‘when’ to optimize ‘what’

A0 T T T T Y Y A -

Value Field dynamics

TV, =-V, +R "‘7/(WijVj)max

l

R, = DP + Q

300 :'
200 :

150 {4\

10088 G820 @ O oy

02 35 2e0lae a l
%% .I ::_,_:-. e ;I;C - - sfdﬂl"‘l’ . . | . Q — ql + q 2 + - + q n
% 50 100 150 200 250 300 350 400

~(G6-Gi)? .
This term evaluates how much relevance a

g = U. 1 e 20 good/bad experience encountered in the
| n*==i’ /27[0 past while performing a goal G; (for which
G the additional field g; was learnt) holds in

relation to the currently active goal G.

2

The final term encodes the dependency of the goal, the solution for which the
agent was rewarded/penalized.
This term allows the system to generalize the presence/absence of value field g;

for other goals.



The first solution

400

350

8

3

150

100

-

400

(using just the DP component of the reward)

High dimentional State
space

Need to find simple way
to distribute rewards
and penalties

It is always possible to
keep track of the
temporal sequence of
neruons that fired in the
SMS during the
performance of
behaviour.

We can also track their
approximate
heighbourhood

(if a lateral connection is
present)



How to distribute rewards/penalties

. AL | 1) Incaseof a penalization, the
=i | ) : most proximal neuron z; receives
o | ’ the maximum penalty U;, and dll
204 : other neurons (z2-zn) receive
200} e scaled versions @ , .U ; of the
< ' | penalty.
100 1 2)

sl 1

0

400



How to distribute rewards/penalties

400

30

10

100

A

1)

2)

In case of a penalization, the
most proximal neuron z; receives
the maximum penalty U;, and all
other neurons (z2-zn) receive
scaled versions @ .U ; of the
penalty.

In case of a reward, the most
distal neuron zn recives
maximum reward and all others

receive scaled versions



How to distribute rewards/penalties

400

10

SOp

A

1) In case of a penalization, the
most proximal neuron z; receives
the maximum penalty U;, and all
other neurons (z2-zn) receive

o scaled versions @ , .U ; of the
penalty.

2) In case of a reward, the most

distal neuron zn recives

maximum reward and all others

150 200 20 0 ¥ 40 receive scaled versions

Simple logic: In case of a problem or bad performance, the root is attacked

Incase of success all the contributing elements get the rewards in
ways such that elements higher up in the hierarchy earn more
benefits than those at the bottom.



How to distribute rewards/penalties

400
00 ~ v - - v v -

A 1) In case of a penalization, the

%0} : ,
most proximal neuron z; receives

- the maximum penalty U,, and all
other neurons (z2-zn) receive
scaled versions @ , .U ; of the
penalty.

2) In case of a reward, the most

distal neuron zn recives

maximum reward and all others

0 &0 100 150 200 0 30 30 404 rlecelve Scaled Verslons

This simple heuristic of distribution of rewards underlies basic human nature of
attribution of credits to any collective goal directed behavior. In case of problems,
elements at the bottom of the hierarchy face maximum damage and in case of

success elements at the top of the hierarchy reap maximum profits!



How to distribute rewards/penalties

400

30

10

100

A

400

1)

2)

3)

In case of a penalization, the
most proximal neuron z; receives
the maximum penalty U;, and all
other neurons (z2-zn) receive
scaled versions @ .U ; of the
penalty.

In case of a reward, the most
distal neuron zn recives
maximum reward and all others
receive scaled versions
Neighbours get scaled versions
of rewards/penalty that the

master got



How to distribute rewards/penalties

400

AL e SN ' > 1) In case of a penalization, the

™ | @ g most proximal neuron z, receives

| s q. ] ‘ the maximum penalty U;, and all

250} other neurons (z2-zn) receive

200} scaled versions @ .U ; of the

190} penalty.

- 2) Incase of areward, the most

- distal neuron zn recives
maximum reward and all others

0

0 receive scaled versions
3) Neighbours get scaled versions
of rewards/penalty that the
master got

4) Penalize circular solutions
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Second solution (after first penalization)
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Solutions in newer field structures
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G—> Emitting Goal directed motor sequences
A set of 'weighted' Value fields: Learnt, Adapted

| r". ' Alternative
“v.Solution
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Explorative
Dynamics

Normal
Dynamics

How relevant a past experience is in the context of
current goal



New Experiences:Learning to Avoid Traps

/]
R W

Visual markers
for Traps




PUSHING : Learning new value fields by exploration
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Self organizing the Pushing SMS




Pushing Sensorimotor space
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Movement of the Goal due to Pushing can induce reward exitations on

the internal spatial map

400 T T T T
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Pushing in ways that are rewarding: Learning the Pushing reward

structure
R.=DP +Q
There is no need to have a default plan

DP can be learnt by repeated trials of random explorative pushing of the goal
in different directions along the groove, followed by an attempt to grasp the
goal (by moving and pushing).
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Energy related constraints can also be embedded in the reward

structure
Spatial Value field
' R, =R, if Dist, <&
Pushing value field in the Pushing (Disty. 1125) if
I sensorimotor space Rr =R & ™ it Dist;, <6
=y ',' Goal - Initpos
’ o= .
a.-,-....g“"llll i
L+ R, is the actual reward
o MOF‘B received in the end of the
::. b Tth trial in case of success

\ Energy

e+ 1S The net reward

Virtual ball movements in the trapping promised (= 50)
groove due to Pushing SMS dynamics

- 1.-.- o

Dist,,. is an approximate
calculation of the distance
Prohibited navigated by the robot to
Zone get the goal
Body movementin® -
“theinternal
‘spatial map



Goal

Goal =2 Value=—> Action l
T l, Value Field on SMS (Quasistationary)
<_'Per'cepTion z-vVi — _Vi + Ri + 7/(\Nijvj)max
A > Value to action
400 —

ki=argmax;(w;;V,)

350} _ N - _
300 a:ﬂif(zximkii)+§(r )
* |=1
250} 2 “ -
| Motor Activity modulates
_ lateral connections in SMS
150} Mij =< mij,l\/l >
0o AR B 1
so TS SDL - Activity shift in SMS
e Y ToX =X+ S+ Sy 0 (MyWy)x,
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New Experiences: Learning to Avoid Traps

Visual markers

for Traps
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In every tfrial the robot has

an experience of contradiction because of the trap,



B

‘5 Existing Value field before

y, PR l:"" "

W
s "q. 1 introduction of traps .. :‘!.,, AV
f* 2 | fMrre vo oo I'*:.:.:q-*‘ :Bﬁ >0
* % T b S, & W
* g ailin * L &
‘i"' <, "= = 4 Iu-"'*:” é’_)l
i i L

4 &= E -

}“L? 1": :: __1:
0 350 70 150 220 260 400

In every trial the robot has
an experience of contradiction because of the trap,

an experience of exploration which characterizes its attempt to nullify
the effect of the trap so as to realize the goal
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In every trial the robot has

an experience of contradiction because of the trap,

an experience of exploration which characterizes its attempt to nullify the
effect of the trap so as to realize the goal

an experience of being rewarded by the user/self in case of success.
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In every trial the robot has

an experience of contradiction because of the trap,

an experience of exploration which characterizes its attempt to nullify the
effect of the trap so as to realize the goal

an experience of being rewarded by the user in case of success

Rewards are distributed using the simple 3 point heuristics



Mew reward fields that are learnt
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In every trial the robot has
an experience of contradiction because of the trap,
an experience of exploration which characterizes its attempt to nullify the

effect of the trap so as to realize the goal

an experience of being rewarded by the user in case of success
Rewards are distributed using the simple 3 point heuristics

Each experience is represented in the form of a reward field in the

pushing sensorimotor space.
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Mew reward fields that are learnt

g T
. j..‘ 1' EHISTI:EdUﬂILIE.‘FIEJd before i:' % "i‘ :’- F after each experience
introduction of traps o o—

-I-"' l-
t-‘ 4

“ ||l|||l |||||lll|:;_:'q}"l::‘u':":::"':."lh TT"ﬁTTTTTT
125 3> Ad B

e *

1_!.,“‘; 1 2z

= - - Expected behaviour under
_ﬂ — m 70 130 220 260 e 400 the influence of new field

“ 2 | T

ey & e ebb, #

v |||||||II I||| L1 R,

P eh I TTTT

| Behavi el T l
. .

—01 00—

rrtin
1]

AR FARN i “U’ - Initial Ball position

o —

70 150 220 260 400



a0 =¢,U

E 3
g PP Sl

P AT 3

.|..

=]

q:-r DP I.:-f :\ ) ‘_' q|
#{lll NI |:+;':‘:*‘ ]]T]]TT
; S SEN| ([VRyY
& e o W -
o ' I Initial Ball position
T LS k. -
“I'l? -b""l"l I-'ln-" I .
o d 4 ’
50 70 150 220 260 400

Generalizing the learnt new fields

Vi =—-V.+ R +7/(\NIJ J)max

F1 7 l
Goal
e A R, = DP +<lg
Fn 7 Q=0,+Q, +....+Q,

—(G-Gi)? ~(Trapy ~Trapg )2




Experience

Trap Dependent fleld change
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A virtual sequence of 'Push-Move-Reach’
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> Pushing Internal Model

A virtual trajectory of the
goal object

> Internal Spatial Map

A virtual trajectory of the

body
> Arm F/I model (PMP)

(Which now recieves two crucial
pieces of information to trigger PMP
X+ adnd X;.)

A virtual trajectory of the

end effector

“... slnee there Ls a trap there, it s advantageous to push tn that divection; if |
push in that dirvection, the ball may eventually go to that side of the table; in
case [ move my body closer to that edge, | may be tn a position to grasp the ball

and get some rewards ... 7.



Abstract Reasoning: From Force-Flows' to 'Situation-Action’

Transform

High level 'user goal’ Concrete goals for the various
+ World/Body state ‘ internal action models and

+ Existing Knowledge support processes in the system

Reach Green Push Green ball Navigate

i ds the
Reach Blue ball (with bl (with blue towar 1
stick 6Grasp Blue s(:;::k) He stick) Green ball T ME

stick

L kR

) ¢ ) & @& &
¢ 3 O

_ . _ o _ A trajectory of
A trajectory of joint _ A trajectory of joint A trajectory of the body, and
angles, a trajectory of APPrOPriate angles a trajectory of the ball, as a Corﬂr‘gspc;ning
the end effector gripper the stick as end result of PUShiHQ; trajectory of
(Passive Motion control effector trajectory of translations and
Paradigm) message (Passive Motion joint angles rotations

Paradigm) needed to push



From '‘Force-Flows' to 'Situation-Action’

Value Fields
. Simulation at the detailed level of
A’ron;‘:‘c clin;rer'nal TF D Action: Forces, Positions, Effort, Bodily
Qe v Constraints, Task Geometry, Edges,

Shapes, Texture, Salient Points, Internal
Processes

Simulation at a more
General/ abstract level:

Abstract Goals, Object -Action
Sensorimotor Situation- Plan
space

Re

al
Observation Experience ) Active
P Intervention Intervention

World




Action Primitives

Forward/Inversemodel for Arm Spatial Explorationand /or
(Passive Motion Paradigm) User Guidance, Forced

Termination of reasoning

Gripper Control

Reasoning
for Grasp

Reflections on use of
environmental objects

_ - =4 Internal
5 Gmmesedl - Spatial Map
e AT
Internal model for Pushing (

Motor Sequence for
related reasoning)

Adhesion



Dynamic memory structures for efficient information organization to

manage a continuously changing world

1) Action Primitives

2) Sensory Datagram

| Eac | E2sG | E3 |E4 |eE5 |E6 |E7 |es |F/1 |[co|oD|m |A |D |- [- |
I~ 7
" "
Environmental state Body state

3) Monitor

Object Spatial / Image Transfer useful

Gripper - Class coordinates (4) information into
PP \ / goal scope

Goal Status .
Number ~—~<, Reasoning | wm1__ /Place cive ond -

Process Map Orientation

Monitor l -
Utilit
o T b ,, fiz%rLiz‘:::zaﬁzg

Detect in the Environment

Gno GoalClass Object Object Object U1 V1 U2 V2 Xof Yof Zof Or Wist LT Otool Acn
Colour Shape Attribute Spatial Location Grip Fields

4) Pl ace Map USER GOAL SPECIFICATION
b
5) Goal space t l ' All actions take information

from goal scope and send

ACTIONS information to goal scope




Connectivity Structures

1) Sensory weights
(Perceptive layer o Sensorimotor map)
2) Lateral weights
(Activty spread, Value computation)
3) Motor Modulated lateral conections
(Action -perception)
4) Intermap Connections
(Perception- action, Generally w/o linked value)
5) Conceptual Lateral connections
(Peception-Perception, w/o motor influence )
6) Er'owing reward matrices (Whats useful)

Atomic Action Models

/ \ Action Internal models @cﬁw) @ﬁmp
@:fion )
% g Motar Weight
(MMLC)
Inter map Connections Action Identifier % (Action-Consequence)

o
g

i Intermp ——_y
| /- Value field MOTOP“IQTTS (ol’;‘?::: :Icu;\':nj-ﬁ‘“"--; ': .; ;.e--r“"-— - — Mulljflrllcaﬁve.
| i H \ LA ™
| .'I / / Qlxaspe. D Q(xasms,3)eoal . . | o 1 ‘I_____E'__—’_—-./// modulation
o Multiplicative ; i : Sensorimatar 2

\ 1A mod UIOW space # *
XAsMs \ Q(Xasms.2)s50al - Cclb_niep'rt;al - m D
atera
Lateral Connections connections \
3

hﬁh“‘—‘ Sensory
k /\ . . Weights / \\
Sensory Weights

(Real Sensory - Internal representation)

Situation-Goal-Value-Action loop in ASMS Situation- Action-Consequence loop in ASMS



Continuosuly Learning System (Reasoning and Exploration are
always loosely coupled, no seperate phases of learning etc)

Accidental User Goal 1 .
Trial and Error Driven In’rerlacd’rlve
Reaching other objects ﬁ[l:g\:fgre
using sticks, cylinders 6radual Increments
: : in Environmental L1 Sensory
Pushing, Pushing+Traps complexity (Self organization, GNG)

Coupling two sticks,

observing consequence b :
\l, Bidirectional

Activity Transfer

L2 Sensory-Motor
(Heteroassociative Memory)

L3 Value Dependent

Intermap MMLC, LatCon (Influence of Goals)
Conceptual Lateral Reward Matrix
Conectivity L4 Accidental/ TE

(Curiosity+ Motivation)

What's

P 0S Slbl e L5 Interactive

(Help seeking/Giving)



User Goal User Goal Goal from Motivation
No Knowledge Initialize with existing Knowledge system

Initialization of the Reasoning system ()

l Goal that has to be tfransformed into a strategy

Reasoning system

l Xasms Currently Active state in ASMS (Initial Condition)

Motor Dynamics to compute next incremental action (Situation-Goal-Action)
Heteroassociation, Value field computation, extraction of action identifier

\ Random motor exploration (with user consent)
1.Random selection of any action whose
Action|  Action Unknown necessary arguments for execution are available
l from the goal space
—_—
v

Execution of the requested action (on the concerned object in the world) using the appropriate Action model
(Place Map - Goal Space - Internal model loop) [Primitives, Executives, Real models]

l

Sensorimotor space dynamics (Situation-Action-Consequence Loop)

Tracking (Arriving at an updated situation in ASMS)

l

Monitor Process (Terminate Goal, Control Transfer, Update knowledge, return back to next
incremental action computation)



Visualizing
GNOSYS

Arm dynamics in
real and mental
space

’c”“lllll T
[ More
Energy

Localization in

| space Variousinternal Mental

Simulations
Quasistationary Spatial
Value fields

Pushing related fields in
the trapping groove

3D Playground
Simulation
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Some Test Scenarios
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'‘Quitting’ and having a REASON to QUIT
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Abstraction and Modularity

20 vies - Microsoft Visual Studio

File Edit View Project Buwld Debug Tools Wi
HA-Ed-Edd B 9-0-8-

Error List | Output AReasSys.h ' vtes.cpp
(Global 5cope)

_EI finclude "reas‘\ReasSys.h"

2
Mor'e E // Test script to run IIT Reason
AbS"'r'aC'r ~ ff Last Modification: 4 oct Vish
65 void main ()
f EeasSys R, 5;
} 5.Runi);
10} 5=R;
12]




Circularity and Recursivity

Value Fields

' i Atomic
@:@ @:@ Internal Root Goal

Models l
Reason
Simulated Reason
Experience Abstract {
Sensorimotor
o Re{ason
Real )

Observation Experience Intervention

World




Portablility and Scalability

SCORBOT GNOSYS FESTOS

Pushing objects with tool in
~ gripper %




When Goals Compete for the Body.....

Force - Flows

Situations - Actions

Goals - Plans

Time
Motivation- Reasoning-
Executive loop



When bodies Compete for the World.....

Why dont you use
the small red sticks,
somehow they
become bigger if you
bring them close by

Ifatall I could
Grasp the Red

ball, it fetches
a reward of 50

I better hide the
small red sticks in
the future, theyare
so rewarding!

Did he say 50 ?,

and make sure

That means I get you push the

25if T help

ball towards
my side, or
else some how
it disappears,,
I dont know

World

w (WITS Enabled)

Agents Compete

G D

Goals Compete

D A

Actions Compete

A §

Fields Compete



www.ics.forth.gr/gnosys neurolab webpage (DIST, Univ.Genoa) for Publications,Deliverables, Movies

| ING'S
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Unversitir 1
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John Taylor  Pietro Morasso  Giulio Sandini Giorgio Metta EAERIARD Kakis

ISTITUTO ITALIANO
DI TECNOLOGIA

BYE|
CogSys

Cognitive Systems

Harris Baltzakis Christo Panchev = Wolfgang Heubner
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In the real world

Bimanual Reaching

DLT Based
Caliberation

Stacking Coffee Cups
Bimanual stacking
Using Sticks,

Pushing Internal
Model

Addition of Internal
Spatial Map

(Mobile iCub ?)

Reasoning Tasks

Parametrized PMP for
Verb Grounding

Lingusitic goals



When bodies Compete for the World.....

Why dont you use
the small red sticks,
somehow they
become bigger if you
bring them close by

Ifatall I could
Grasp the Red

ball, it fetches
a reward of 50

I better hide the
small red sticks in
the future, theyare
so rewarding!

Did he say 50 ?,

and make sure

That means I get you push the

25if T help

ball towards
my side, or
else some how
it disappears,,
I dont know

World

w (WITS Enabled)

Agents Compete

G D

Goals Compete

D A

Actions Compete

A §

Fields Compete



