
Yet Another Robot PlatformYet Another Robot Platform

• YARP is an open-source YARP is an open source
middleware for humanoid robotics

• History

– An MIT / Univ. of Genoa collaboration

– Born on Kismet, grew on COG

Wi h j h l d b – With a major overhaul, now used by
RobotCub consortium

– Exists as an independent open source p p
project

– C++ source code

IDE/OS Portability

C/C++

LINUX:
Makefiles,
KdevelopC/C++

library

Project
description

p
files, ...

WINDOWS:
MSVC files,
Borland filesC/C++

libraryC/C++
library

p
(.txt) Borland files,

...

OSX:
Makefiles,

C/C++
library

,
Xcode files,

...OS portability
C++ OS functionality wrapper
e.g. threads, semaphores, socketsg p

Language Portability (SWIG)Language Portability (SWIG)

Java Matlab

PERL

C/C++
library

Python

C#

TCL

Chi kChicken

What is YARP for?What is YARP for?
• Factor out details of data flow between programsFactor out details of data flow between programs

from program source code

D t fl i ifi t b t l tf i t l – Data flow is very specific to robot platform, experimental
setup, network layout, communication protocol, etc.

– Useful to keep “algorithm” and “plumbing” separate

• Factor out details of devices used by programs
from program source codefrom program source code

– The devices can then be replaced over time by comparable
alternatives; code can be used in other systemsalternatives; code can be used in other systems

What is YARP for?What is YARP for?
• Factor out details of data flow between programsFactor out details of data flow between programs

from program source code

D t fl i ifi t b t l tf i t l – Data flow is very specific to robot platform, experimental
setup, network layout, communication protocol, etc.

– Useful to keep “algorithm” and “plumbing” separate

• Factor out details of devices used by programs
from program source codefrom program source code

– The devices can then be replaced over time by comparable
alternatives; code can be used in other systemsalternatives; code can be used in other systems

the Observer patternthe Observer pattern
• Data source knows nothing about identity of Data source knows nothing about identity of

modules that monitor it
Observer 1

data source, or
stream of events Observer 2stream of events Observer 2

Observer N

YARP PortsYARP Ports
• We follow the Observer design pattern We follow the Observer design pattern.

• Special “Port” objects deliver data to:

– Any number of observers (other “Port”s) ...

– ... in any number of processes ...y p

– ... distributed across any number of computers/OSes ...

– using any of several underlying communication protocols – using any of several underlying communication protocols
with different technical advantages, streaming or RPC

This is c ll d th YARP N t rk• This is called the YARP Network

machine 2: linux

Typical YARP Network

machine 1: linux
machine 2: linux

/motor/position

motor_control
tracker

h

/tracker/position

/motor/position

tcp

machine 3: windows

/ / k / / 2

yarpviewyarpdev

/camera /tracker/image /viewer2

yarpview

mcast udp

• Connections can use different protocols
P t b l t

/viewer1

y p
mcast

• Ports belong to processes
• Processes can be on different machines/OS

Physical Network y
Example: RobotCub

Gigabit Ethernet (with tcp, udp, multicast traffic)

pc104pc104
(Linux/
Windows)

shuttle PCs
(Linux/Windows)

blade cluster
(Linux)

Why is all this useful?Why is all this useful?
• We've separated out most of the plumbingWe ve separated out most of the plumbing
• We get to change it dynamically (handy)

M i t tl h b tt d l it• More importantly, we have better modularity
– Programs can be moved around as load and

OS/d i /lib d d i di t tOS/device/library dependencies dictate
– Fundamental protocol for communication can be

changed without affecting programschanged without affecting programs
– Better chance that your code can be used by

others (even just within your group)others (even just within your group)

