Simulator of MMU + paging

Implement in C++:

e Memory manager: a class that manages 32K of RAM in a virtual address space of 64K (16 bits).

The missing 32K are to be stored in a swap file (sized for a maximum of 10 processes): 32K*10

on the file.

e Onrequest the memory manager will:

(0]

Allocate a new page in RAM, returns a virtual address in the 64K address space (to the
caller). This is a unsigned char * to the VA in 64K;

Deallocate a page (identified by the VA pointer);

Maintain the page table into the MMU (to start with, simulate the MMU with enough
memory to maintain the entire page table in its internal memory);

Implement a virtual to physical address space conversion (the physical is 32K);
Implement a deref() method that returns a real address in the real Linux address space
(this is for practical reasons so that the memory can be accessed for real); so, convert
from VA to PA (simulation) then deref() converts from PA to Linux address (valid
pointer);

Uses the NRU algorithm to evict pages from memory (and store them to the swap file):
i.e. use R & M bit to classify pages and evict consequently.

e Process manager: a class that simulates the existence of a process that uses the MMU.

e The process manager will:

(0]

Manage the requests from a test (only one for now) process that requires addresses in
more than 32K of memory (so that an eviction algorithm is required); the test process is
a Thread (beware of critical sections if any) that does (on average) 1000 memory
references every 5ms (make a thread with a period of 5ms and do 1000 memory
requests per cycle); pages must be properly managed, read, written as needed (don’t
lose datal);

To make sure the system is consistent: “Store a run of random addresses (>32K) big
enough to be sure more than 32K are used (e.g. generate a sequence of addresses in the
range of 36K and store them to a file; the requests can be either a read or write)”;
Replay the sequence and compare if the memory is consistent with the same “array” (of
64K) generated without the use of the simulated MMU; to do the comparison, use a
Thread to read both the paged memory and the 64K array (for testing) and compare
that the two representations in memory are consistent; run this test every N second (for
N some small integer);



