
Page replacement algorithms
1

Page replacement algorithms

OS 2009-10

When a page fault occurs
2

 OS has to choose a page to evict from memory
 If the page has been modified, the OS has to schedule

a disk write of the page
Th j t d it i (The page just read overwrites a page in memory (e.g.
4Kbytes)

 Clearly it’s better not to pick a page at randomClearly, it s better not to pick a page at random
 Same problem applies to memory caches

OS 2009-10

Benchmarking
3

 Tests are done by generating page references (either y g g p g (
from real code or random)

 Sequences of page numbers (no real address, no
offset)

 Example:

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

OS 2009-10

Optimal page replacement
4

 At the moment of page fault:
 Label each page in memory is labeled with the number of

instructions that will be executed before that page is first
referenced

 Replace the page with the highest number: i.e. postpone as
much as possible the next page fault

 Nice optimal but unrealizableNice, optimal, but unrealizable
 The OS can’t look into the future to know how long it’ll take to

reference every page again

OS 2009-10

Example: optimal
5

Sequence

PFPF

6 page faults

OS 2009-10

Belady’s anomaly
6

Try this sequence

With 3 page frames

With 4 page framesWith 4 page frames

With FIFO, with the optimal algorithm, (later) with the LRU

OS 2009-10

“Not recently used” algorithm
7

 Use Referenced and Modified bits
 R&M are in hardware, potentially changed at each

reference to memory
 R&M are zero when process is started R&M are zero when process is started

 On clock interrupt the R bit is cleared
 On page fault, to decide which page to evict:
 Classify:

 Class 0 – R=0,M=0
 Class 1 – R=0,M=1
 Class 2 – R=1,M=0
 Class 3 – R=1,M=1

 Replace a page at random from the lowest class

OS 2009-10

FIFO replacement
8

 FIFO, first in first out for pages, p g
 Clearly not particularly optimal
 It might end up removing a page that is still g p g p g

referenced since it only looks at the page’s age
 Rarely used in pure form…

1 8 3 7 2
Latest load

OS 2009-10

Next removal

Example (FIFO)
9

Sequence

PF

12 page faults

OS 2009-10

“Second chance” algorithm
10

 Like FIFO but…
 Before throwing out a page checks the R bit:
 If 0 remove it
 If 1 clear it and move the page to the end of the list (as it were

just been loaded)
 If all pages have R=1 eventually the algorithm degenerates to If all pages have R 1, eventually the algorithm degenerates to

FIFO (why?)

1 8 3 7 2

OS 2009-10

Latest load

Clock page algorithm
11

 Like “second chance” but…Like second chance but…
 …implemented differently:
 Check starting from theg

latest visited page
 More efficient:

doesn’t have to move ch

ba

doesn t have to move
list’s entries all the
time

c

d

h

g

ef

OS 2009-10

Least recently used (LRU)
12

 Why: pages recently used tend to be used again
soon (on average)

i f ll i (l i h List of all pages in memory (most recently in the
head, least recently used in the tail)

 List update at each memory reference! List update at each memory reference!
 List operations are expensive (e.g. find a page)

 So, difficult…

OS 2009-10

Least recently used (LRU)
13

 Idea! Get a counter, maybe a 64bit counter
 The counter is incremented after each instruction

and stored into the page entry at each reference
h l f h i h f h Store the value of the counter in each entry of the

page table (last access time to the page)
 When is time to remove a page find the lowest When is time to remove a page, find the lowest

counter value (this is the LRU page)

 Nice & good but expensive: it requires dedicated
hardware

OS 2009-10

Example LRU
14

Sequence

PF

9 page faults

OS 2009-10

NFU algorithm
15

 Since LRU is expensivep
 NFU: “Not Frequently Used” algorithm
 At each clock interrupt add the R bit to a counter for p

each page: i.e. count how often a page is referenced
 Remove page with lowest counter value
 Unfortunately, this version tends not to forget

anything

OS 2009-10

Aging (NFU + forgetting)
16

 Take NFU but…
 At each clock interrupt:
 Right shift the counters (divide by 2)g y
 Add the R bit to the left (MSB)

 As for NFU remove pages with lowest counter

 Note: this is different from LRU since the time
granularity is a clock tick and not every memory
reference!

OS 2009-10

NFU+ageing
17

OS 2009-10

Process’ behavior
18

 Locality of reference: most of the time the last k
references are within a finite set of pages < a large
address space

 The set of pages a process is currently using is called The set of pages a process is currently using is called
the working set (WS) of the process

 Knowing the working set of processes we can do very g g p y
sophisticate things (e.g. pre-paging)

 Pre-paging: load pages before letting the process to
 th t th f lt t i l l if I k run so that the page-fault rate is low, also, if I know

the WS when I swap the process then I can expect it
to be the same in the future time when I reload the

OS 2009-10

process in memory

Working set
19

se
t

W
or

ki
ng

k-most-recent memory references

OS 2009-10

WS based algorithm
20

 Store execution time information in the table
entries (storing reference is too expensive!)

 At clock interrupt handle R bits as usual (clear
them)them)

 At page fault, scan entries:
 If R=1 just store current time in the entry If R=1 just store current time in the entry
 If R=0 compute “current-last time page was

referenced” and if > threshold the page can be removed
since it’s no longer in the working set (not used for since it s no longer in the working set (not used for
threshold time)

 Note: we’re using time rather than actual

OS 2009-10

g
memory references

e.g.: WS based algorithm
21

OS 2009-10

WSClock algorithm
22

 Use the circular structure (as seen earlier)
 At page fault examine the page pointed by the handle
 R=1, page in the WS – don’t remove it (set R to zero)
 R=0 M=0 no problem (as before check age page clean R=0, M=0 no problem (as before, check age, page clean

and decide depending on age)
 If M=1, schedule disk write appropriately to procrastinate

 l ibl it has long as possible a process switch
 If return to starting point, then one page will eventually be clean

(maybe after a context switch)
S h d li l i l di k i b ffi i i ffi i Scheduling multiple disk write can be efficient in efficient systems
(with disk scheduling and multiple disks)

 No write is schedulable (R=1 always), just choose a clean page
 N l s th t d th h dl

OS 2009-10

 No clean page, use the current page under the handle

WSClock
23

R=1

R=0

OS 2009-10

SummarySummary
24

Algorithm Comment

Optimal Not implementable, useful for
benchmarking

NRU (Not recently used) Very crude

FIFO Might throw out important pages

Second chance Big improvement over FIFO

Clock Realistic (better implementation)Clock Realistic (better implementation)

LRU (Least Recently Used) Excellent but difficult to
implement

NFU Crude approx to LRUNFU Crude approx to LRU

Aging Efficient in approximating LRU

Working set Expensive to implement

OS 2009-10

WSClock Good and efficient

25

Design issues

OS 2009-10

Design issues
26

 Local vs. global allocation policyg p y
 When a page fault occurs, whose page should the OS evict?

 Which process should get more or less pages?
 Monitor the number of page faults for every process (PFF –

page fault frequency)
 For many page replacement algorithms the more pages the For many page replacement algorithms, the more pages the

less page faults

OS 2009-10

Page fault behavior
27

c
e

fa
ul

ts
/s

ec

Thrashing

Pa
ge

Optimal (fair to others)

Too many pages

Number of page frames assigned

OS 2009-10

Load control
28

 If the WS of all processes > memory, there’s p y,
thrashing

 E.g. the PFF says a process requires more memory
but none require less

 Solution: swapping – swap a process out of memory
d i it t thand re-assign its pages to others

OS 2009-10

Page size
29

 Page size p, n pages of memoryg p, p g y
 Average process size s, in pages s/p
 Each entry in the page table requires e bytesEach entry in the page table requires e bytes
 On average p/2 is lost (fragmentation)
 Internal fragmentation: how much memory is not Internal fragmentation: how much memory is not

used within pages
 Wasted memory: p/2 + se/pWasted memory: p/2 + se/p
 Minimizing it yields the optimal page size (under

simplifying assumptions)

OS 2009-10

p y g p)

Two memories
30

 Separate data and program address spacesp p g p
 Two independent spaces, two paging systems
 The linker must know about the two address spacesp

OS 2009-10

Other issues
31

 Shared pages, handle shared pages (e.g. program p g , p g (g p g
code)
 Sharing data (e.g. shared memory)

 Cleaning policy
 Paging algorithms work better if there are a lot of free

 il blpages available
 Pages need to be swapped out to disk
 Paging daemon (write pages to disk during spare time Paging daemon (write pages to disk during spare time

and evict pages if there are to few)

OS 2009-10

Page fault handling
32

1. Page fault, the HW traps to the kernel
1 Perhaps registers are saved (e g stack)1. Perhaps registers are saved (e.g. stack)

2. Save general purpose microprocessor information (registers, PC, PSW, etc.)
3. The OS looks for which page caused the fault (sometimes this information is

already somewhere within the MMU)
4 The system checks whether the process has access to the page (otherwise a 4. The system checks whether the process has access to the page (otherwise a

protection fault is generated, and the process killed)
5. The OS looks for a free page frame, if none is found then the replacement

algorithm is run
6 If the selected page is dirty (M 1) a disk write is scheduled (suspending the 6. If the selected page is dirty (M=1) a disk write is scheduled (suspending the

calling process)
7. When the page frame is clean, the OS schedules another transfer to read in the

required page from disk
8 When the load is completed the page table is updated consequently8. When the load is completed, the page table is updated consequently
9. The faulting instruction is backed up, the situation before the fault is restored,

the process resumes execution

OS 2009-10

33

Segmentation

OS 2009-10

Why?
34

 Many separate address spaces (segments) (e.g. data, stack,
d d h if d d)code, and many others if needed)

 Each segment is separate (e.g. addresses from 0 to some
MAX))

 Segments might have different lengths
 Segment number + address within segment

Li ki i i lifi d (lib i ithi diff t t Linking is simplified (libraries within different segments
can assume addresses starting from 0) – e.g. if a part of the
libraries is recompiled the remainder of the code is

ff t dunaffected
 Shared library (DLL’s) implementation is simpler (the

sharing is simpler)

OS 2009-10

g p

Comparing paging and segmentation
35

Consideration Paging SegmentationConsideration Paging Segmentation
Need the programmer be aware that
this technique is being used?

No Yes

How many linear address spaces are 1 Many
there?

Can the total address space exceed
the size of physical memory

Yes Yes

Can procedures and data be No Yes
distinguished and separately
protected?

Can tables whose size fluctuate be
accommodated easily?

No Yes

I h i f d b t N YIs sharing of procedures between
users facilitated?

No Yes

Why was this technique invented? To get a large linear address space
without having to buy more physical
memory

To allow programs and data to be
broken up into logically independent
address spaces and to aid sharing

OS 2009-10

y p g
and protection

Pure segmentations
36

C C

B

C

B

C

B

A A A D

Operating system Operating system Operating system Operating system

OS 2009-10

Fragmentation
37

 External fragmentation:
 Memory fragments not used (we’ve already seen this)
 Memory wasted in unused holes

OS 2009-10

Segmentation + paging (Pentium)
38

 16K segmentsg
 1G 32bit words (DoubleWords)
 Two tables: LDT, GDT – Local (to the process) and Two tables: LDT, GDT Local (to the process) and

global (to the processor) descriptor table
 To work with a segment the machine loads the g

segment number into a special register (CS, DS,
etc.) – CS, DS are 16 bit registers

 The descriptor of the segment (see next slide)

OS 2009-10

The segment descriptor
39

 This is used by the microcode within the Pentium
to work with segments

Limit in pages/bytes

Base 24-31 G D 0 Limit 16-19 P DPL S Type Base 16-23

16/32 bit segment

8 bytes

Privilege level Segment type
protection

Base 0-15 Limit 0-15
8 bytes

Segment present in memory
Page size is 4K System/application

Limit (20 bits)

I d G/L P i ilCS/DS

OS 2009-10

Index G/L Privilege
Selector

CS/DS

Getting the address
40

Selector Offset

Base address
Limit

Oth fi ld
+

Other fields

Descriptor

32 bit linear address32-bit linear address

OS 2009-10

Paging on the Pentium
41

 2-level page table in memoryp g y

Dir Page Offset

10 bits 10 bits 12 bits
Dir Page Offset

1023
1023

…
1023

1023

Address to the page

…
5
4
3

Dir 5

4

3

2

…

5

4

3

2

…

5

4

3

1023

…

5

4

3

1023

…

5

4Page Offset
3
2
1
0

1

0
1

0

2

1

0

3

2

1

0

3

2

1

0

Page

OS 2009-10

Each points to 4Mbytes of pages

More on the Pentiums
42

 TLB, to avoid repeated accesses to memory, p y
 The whole thing can be used with just a single

segment to obtain a linear 32bit address space
 Set base and limit appropriately
 Protection (a few bits)

OS 2009-10

