OS 2009-10




OS has to choose a page to evict from memory

If the page has been modified, the OS has to schedule
a disk write of the page

The page just read overwrites a page in memory (e.g.
4Kbytes)

Clearly, it’s better not to pick a page at random
Same problem applies to memory caches



Tests are done by generating page references (either
from real code or random)

Sequences of page numbers (no real address, no
offset)

Example:




Optimal page replacement

OS 2009-10




S
equencf 71ol1l2]0l3|olal2]3]0ol|3l2]1]2]0]1|7]0]1
& 71717 1olololol4]a]alololol2l2lolololo]o
<
O ololt |t l2l2l21212121210210l0o |1 |1 ]1]1 1
Q\Q
k 122030333333 l3|1l1l2l2]7]7]|7
PF " " " " " "

6 page faults




Belady’s anomaly

©

tf2fsf4frf2fsft2]sfs]s

OS 2009-10




Use Referenced and Modified bits

R&M are in hardware, potentially changed at each
reference to memory
R&M are zero when process Is started

On clock interrupt the R bit is cleared

On page fault, to decide which page to evict:

Classify:
Class O — R=0,M=0
Class 1 — R=0,M=1
Class 2 — R=1,M=0
Class 3 — R=1,M=1
Replace a page at random from the lowest class



FIFO, first in first out for pages
Clearly not particularly optimal

It might end up removing a page that is still
referenced since it only looks at the page’s age

Rarely used in pure form...

~—— Latest load

1 1813172

Next removal



Sequence |7 |0 |1 (2 (0 (3 (0 (4 |2 (3|0 |3 |2 |1 |2 |0 |1 (7 (0|1
& (1717 |7 lolof1 |23 lolal2]2]2|3lololo]|1|2]|7
Q
ofo { oo (1 (1213041213133 10111 (1 (2|7 |0
Y2

R ; X -
1 (2 (213104 (23|00 (0of1 (212217 02
PF k [k [ % | % % | % k| % w | % | %

12 page faults




“Second chance” algorithm

OS 2009-10




Clock page algorithm

OS 2009-10




Why: pages recently used tend to be used again
soon (on average)

_ist of all pages in memory (most recently in the
nead, least recently used in the tail)

_Ist update at each memory reference!
_Ist operations are expensive (e.g. find a page)

So, difficult...



Idea! Get a counter, maybe a 64bit counter

The counter Is incremented after each instruction
and stored into the page entry at each reference

Store the value of the counter in each entry of the
page table (last access time to the page)

When Is time to remove a page, find the lowest
counter value (this is the LRU page)

Nice & good but expensive: it requires dedicated
hardware



Example LRU

1

1

7 (0

2|0

1

i

2|0

1

210

1

212|304 (2 (2|03 |3

1

210 (3 |0 (4 (2 (3 |03 |2

1

2103|042 (3|03 |2

1

v~
=
-
v~
=
e~
v~
-~
g
=
!
~
-+
=
g
=
e~
~
=
-

77T |7 |0

OS 2009-10



Since LRU Is expensive
NFU: “Not Frequently Used” algorithm

At each clock interrupt add the R bit to a counter for
each page: I1.e. count how often a page is referenced

Remove page with lowest counter value

Unfortunately, this version tends not to forget
anything



Take NFU but...

At each clock interrupt:

Right shift the counters (divide by 2)
Add the R bit to the left (MSB)

As for NFU remove pages with lowest counter

Note: this iIs different from LRU since the time

granularity is a clock tick and not every memory
reference!



NFU+ageing

| | | |

R bits for I R bits for I R bits for I R bits for I R bits for

pages 0-5, ! pages 0-5, ! pages 0-5, ! pages 0-5, ! pages 0-5,

clock tick 0 i clock tick 1 i clock tick 2 i clock tick 3 i clock tick 4

11]1[:-11!11{1010!11[}101!1unu1u!u11uuu

| | | |
| | | |
Page I I l l
| | | |

0| 10000000 || 11000000 ||| 11100000 | || 11110000 ||| 01111000
| | | |
| | | |

1| 00000D0OD i 10000000 i 11000000 i 01100000 i 10110000
| | | |
| | | |

2| 10000000 i 01000000 i 00100000 i 00100000 i 10001000
| | | |
| | | |

3 00000000 i 00000000 i 10000000 i 01000000 i 00100000
| | | |
| | | |

4| 10000000 ! 11000000 ! 01100000 ! 10110000 ! 01011000
| | | |
| | | |
| | | |

5| 10000000 : 01000000 : 10100000 : 01010000 : 00101000
| | | |

(a) (b) (c) (d) (e)

0OS 2009-10



Locality of reference: most of the time the last k
references are within a finite set of pages < a large
address space

The set of pages a process is currently using is called
the working set (WS) of the process

Knowing the working set of processes we can do very
sophisticate things (e.g. pre-paging)

Pre-paging: load pages before letting the process to
run so that the page-fault rate is low, also, If | know
the WS when | swap the process then | can expect it
to be the same In the future time when | reload the
Process in memory



Working set

OS 2009-10




» Store execution time information in the table
entries (storing reference is too expensive!)

» At clock Iinterrupt handle R bits as usual (clear
them)
» At page fault, scan entries:

If R=1 just store current time in the entry

If R=0 compute “current-last time page was
referenced” and if > threshold the page can be removed
since It's no longer in the working set (not used for

threshold time)
» Note: we’re using time rather than actual
memory references



e.g.. WS based algorithm

2204 | Current virtual time

Information about - R (Referenced) bit
one page { /

A

Time of last use — ——— Scan all pages examining R bit:

if (R==1)

Page referenced n set time of last use to current virtual time
=

during this tick

if (R == 0 and age > 1)
remove this page

if (R==0and age < 1)
Pag_e nnt_ rei_’erenced " remember the smallest time
during this tick

OS 2009-10




Use the circular structure (as seen earlier)
At page fault examine the page pointed by the handle
R=1, page in the WS — don’t remove it (set R to zero)

R=0, M=0 no problem (as before, check age, page clean
and decide depending on age)

If M=1, schedule disk write appropriately to procrastinate
as long as possible a process switch

If return to starting point, then one page will eventually be clean
(maybe after a context switch)

Scheduling multiple disk write can be efficient in efficient systems
(with disk scheduling and multiple disks)

No write is schedulable (R=1 always), just choose a clean page
No clean page, use the current page under the handle



WSClock

OS 2009-10

Current virtual time

162010

\

201
AN

of

(@)

162010

[2084]1]



Algorithm Comment
Optimal Not implementable, useful for
benchmarking
NRU (Not recently used) Very crude
FIFO Might throw out important pages

Second chance

Big improvement over FIFO

Clock

Realistic (better implementation)

LRU (Least Recently Used)

Excellent but difficult to
implement

NFU

Crude approx to LRU

Aging

Efficient in approximating LRU

Working set

Expensive to implement

WSClock

Good and efficient




Design issues

OS 2009-10



Design issues

OS 2009-10




Page fault behavior

OS 2009-10




If the WS of all processes > memory, there’s
thrashing

E.g. the PFF says a process requires more memaory
but none require less

Solution: swapping — swap a process out of memory
and re-assign Its pages to others



Page size p, n pages of memory
Average process size s, in pages s/p

Each entry in the page table requires e bytes

On average p/2 is lost (fragmentation)

Internal fragmentation: how much memory is not
used within pages

Wasted memory: p/2 + se/p

Minimizing it yields the optimal page size (under
simplifying assumptions)



Separate data and program address spaces
Two Independent spaces, two paging systems
The linker must know about the two address spaces



Other i1ssues

OS 2009-10




Page fault, the HW traps to the kernel
Perhaps registers are saved (e.g. stack)
Save general purpose microprocessor information (registers, PC, PSW, etc.)

The OS looks for which page caused the fault (sometimes this information is
already somewhere within the MMU)

The system checks whether the process has access to the page (otherwise a
protection fault is generated, and the process Killed)

The OS looks for a free page frame, if none is found then the replacement
algorithm is run

If the selected page is dirty (M=1) a disk write is scheduled (suspending the
calling process)

When the page frame is clean, the OS schedules another transfer to read in the
required page from disk

When the load is completed, the page table is updated consequently

The faulting instruction is backed up, the situation before the fault is restored,
the process resumes execution



Segmentation

OS 2009-10



Many separate address spaces (segments) (e.g. data, stack,
code, and many others if needed)

Each segment is separate (e.g. addresses from O to some
MAX)

Segments might have different lengths
Segment number + address within segment

Linking is simplified (libraries within different segments
can assume addresses starting from O) — e.g. if a part of the
libraries is recompiled the remainder of the code is
unaffected

Shared library (DLL’s) implementation is simpler (the
sharing is simpler)



Consideration Paging Segmentation
Need the programmer be aware that | No Yes
this technique is being used?
How many linear address spaces are | 1 Many
there?
Can the total address space exceed Yes Yes
the size of physical memory
Can procedures and data be No Yes
distinguished and separately
protected?
Can tables whose size fluctuate be No Yes
accommodated easily?
Is sharing of procedures between No Yes

users facilitated?

Why was this technique invented?

To get a large linear address space
without having to buy more physical
memory

To allow programs and data to be
broken up into logically independent
address spaces and to aid sharing
and protection




Pure segmentations

()

C C
B B B
A A A D

Operating system

Operating system

Operating system

Operating system

0OS 2009-10




Fragmentation

OS 2009-10




16K segments
1G 32bit words (DoubleWords)

Two tables: LDT, GDT — Local (to the process) and
global (to the processor) descriptor table

To work with a segment the machine loads the
segment number into a special register (CS, DS,
etc.) — CS, DS are 16 bit registers

The descriptor of the segment (see next slide)



This Is used by the microcode within the Pentium
to work with segments

Limit in pages/bytes

AN

16/32 bit segment

/

Privilege level

,/‘// protection

Segment type

Base 24-31

G|D|O

Limit 16-19

P | DPL

S

Type

Base 16-23

Base 0-15

/

AN

'\Limit 0-15

8 bytes

Page size 1s 4K

CS/DS

\ System/application

Segment present in memory

Limit (20 bits)

v

Index

G/L | Privilege

Selector



Getting the address

Selector Offset

Base address
Limit
Other fields

\ 4

Descriptor

32-bit inear address

OS 2009-10



Paging on the Pentium

» 2-level page table in memory

Dir

10 bits 10 bits 12 bits
Dir Page Offset
Address to the page
1023 |
1023 |
: 1023 |/
sl 1 1023
5__/_5"; 1023
S
— L+ Offset
Page [ i E
0 1__2 3
o_l—1 2
i
— 1 0

Each points to 4Mbytes of pages

OS 2009-10




TLB, to avoid repeated accesses to memory

The whole thing can be used with just a single
segment to obtain a linear 32bit address space

Set base and limit appropriately
Protection (a few bits)



