
Memory management
1

Memory management

OS 2009-10

Memory (ideally)
2

 Ideally…
 Extremely fast (faster than the CPU in executing an y (g

instruction)
 Abundantly large

Di t h Dirt cheap

OS 2009-10

Memory (for real)
3

Registers < 1K

Size
1 nsec

Typical access time

Registers
Cache

Main memory

~ 1M

~ 1-4G

2 nsec

10 nsec
10 Magnetic disk

Magnetic tape
~ 5-100G
> 20G

10 msec
100 sec

OS 2009-10

Memory cntd.
4

 Registers: typical 32 in a 32 bit CPUg yp 3 3
 Cache: divided into cache lines (64 bytes each)
 Cache hit – no main memory access, no bus involvementy
 Cache miss – costly

 Main memory
 Disk (multiple plates, heads, arms)
 Logical structure: sectors, tracks, cylinders

 Magnetic tape: backup, cheap, removable

OS 2009-10

OS management of memory
5

 The part of the OS that handles the management of p g
the memory is called:
 Surprise, surprise: memory manager!

 Various levels of complicacy
 Depending on the type of OS

E i lti i d  E.g. mono-programming, multiprogramming, and so
forth

OS 2009-10

Specifics of memory management
6

 Basic memory management strategiesy g g
 Monoprogramming without swapping or paging
 Multiprogramming with fixed partitions

M l i i i h i bl i i Multiprogramming with variable partitions
 Swapping
 Virtual memory: paging Virtual memory: paging
 Virtual memory: segmentation

OS 2009-10

Mono-programming
7

 No swapping, a couple of options…pp g, p p
0xFFFF… Device drivers

(BIOS)
0xFFFF… Operating system

(ROM)

User program and data

User program and data

0x00000000

Operating system
(e.g. DOS)

0x00000000

OS 2009-10

Some embedded systems (e.g. PALM)

Multiprogramming with fixed partitions
Curiosity: used by the IBM OS/360 (1960 or so) in version called MFT
(l i i i h fi d b f k)

8

Partition 4 Partition 4

(multiprogramming with fixed number of tasks)

Partition 3 Partition 3

Partition 2 Partition 2

Partition 1 Partition 1

Operating system Operating system

OS 2009-10

Multiple queues Single queue

Modeling multiprogramming
9

 Each process spends a fraction p of its time waiting p p p g
for I/O to complete

 If we have n processes, the probability that all of
them are simultaneously waiting for I/O is:

 CPU utilization is thus:

np
1 np

OS 2009-10

CPU utilization
10

til
iz

at
io

n

100 20% I/O wait

C
PU

 u
t

80% I/O wait

50% I/O wait

Number of processes (n)

OS 2009-10

Example
11

 A system has 32Mbyte of RAM, OS takes 16Mbytes
 Each process occupies on average 4Mbytes (4

processes simultaneously in memory) and has 20%
utilization time (80% blocked on I/O)utilization time (80% blocked on I/O)

 CPU utilization approx 60%
 Buying 16M additional RAM will allow to increase

lti i t 8 CPU tili ti ill t t multiprogramming to 8, CPU utilization will get to
about 83%

 Another 16M will get from 83 to 93%, depending Another 16M will get from 83 to 93%, depending
on memory price we can make an informed choice

OS 2009-10

Relocation and protection
12

 Relocation when loading the code. The linker stores g
some additional information which is used at load
time to relocate (rewrite) every single instruction

f i referencing memory.
 HW support through the use of base and limit

registersregisters
 Partial support, only base but no limit

OS 2009-10

Swapping and virtual memory
13

 Swapping: whole process data/code in memory
when runningwhen running

 Virtual memory: only part of the data/code in
memorymemory

OS 2009-10

Swapping
14

C C

B B B

A

Operating system

A

Operating system

A

Operating system

D

Operating system

OS 2009-10

Operating system Operating system Operating system Operating system

Swapping cntd.
15

 Memory compaction (remove holes)
 If processes could grow (by allocating memory on a

heap like in many programming languages), how
does the OS take care of it?does the OS take care of it?

 Many different solutions: e.g. reserve room for
growth or swap the process out and relocate it to a g p p
bigger memory partition, etc.

OS 2009-10

How is it implemented?
16

 Bitmaps
 Memory is divided into allocation units
 Each bit of the bitmap represents a unit

(1 = used, 0 = free)(,)
 The size of allocation unit is an important design issue (less

unused memory, bigger bitmap)
 Search bitmaps when loading in a new process for k Search bitmaps when loading in a new process for k

consecutive free allocation units

OS 2009-10

How is it implemented?
17

 Linked lists
 A linked list may store:

 Information about a process or a hole
 Address where it starts
 Length
 Pointer to the next element

 Merging operation (e g two consecutive holes) Merging operation (e.g. two consecutive holes)
 Process’ table entry will contain a pointer to the element in the

list relative to it

OS 2009-10

Different algorithms
18

 First fit: the first hole that fits the process is used
(hole is broken down into two pieces)

 Next fit: it doesn’t start from the beginning, simply
restart from here it left the pre io s searchrestart from where it left the previous search

 Best fit: search the whole list for the smallest hole
that fitsthat fits

 Performance: best fit creates a lot of fragmentation
in practice, first fit tends to leave larger holes (less p g
fragmentation)

OS 2009-10

Fragmentation
19

 Internal: partition or page not fully used by a given
process

 External: entire partitions or free space (holes) not
used because no process fits in the si e of an of used because no process fits in the size of any of
the holes

OS 2009-10

Fragmentation
20

D External: processes are all too
big to run on empty partitions

C

BB

DD

Operating system

Internal: using the partition
but leaving some memory unused

OS 2009-10

MVT
21

 Curiosity: used by the IBM OS/360 (1960 or so) in a y y /3 (9)
version called MVT (multiprogramming with
variable number of tasks):

l d h f Dynamical partitions: sized as the size of processes
 Swapping: as described earlier

OS 2009-10

Virtual memory
22

 Once upon a time there was the “overlay”
 In practice programmer divided the program (by

hand) into many parts that could be swapped in and
out from disk (overlaid onto unused parts)out from disk (overlaid onto unused parts)

 Why don’t we delegate this function to the machine
itself?

 Virtual memory was born!

OS 2009-10

Demand paging
23

 Pages are loaded from disk only when needed g y
(demanded)

 Process that causes the page fault can be
considered blocked for I/O (and another process
could run)

 Swapping (of pages), lazy backing store (e.g. “lazy”
means that pages are only loaded when needed

th i th t d thi it d ’t otherwise the system does nothing, it doesn’t swap
entire processes)

OS 2009-10

Paging
24

CPU package MMU

CPU

CPU package MMU

Memory Disk
controllerCPU sends

virtual addresses
to the MMU

BusMMU sends physicalMMU sends physical
addresses to memory

OS 2009-10

Paging can be
25

 Pure: for every logical page there exists a physical y g p g p y
page, always everything available in memory

 On demand: at any given instant only a subset of the
virtual address space is in memory (but everything is
till i t t)still consistent)

OS 2009-10

MMU’s internals
26

60-64K X
56 60K X

Virtual address space
Virtual page

56-60K X
52-56K X
48-52K X
44-48K 7

28-32K

Physical address space

8 7
40-44K X
36-40K 5
32-36K X

24-28K
20-24K
16-20K
12 16K

28-32K X
24-28K X
20-24K 3

12-16K
8-12K
4-8K
0-4K

16-20K 4
12-16K 0
8-12K 6
4 8K 1

0-4K

Page frame

OS 2009-10

4-8K 1
0-4K 2

Example
27

 MOV REG,0
 CPU sends request for address 0
 MMU looks for 0 and sees that the page containing virtual  MMU looks for 0 and sees that the page containing virtual

address 0 is at frame 2
 It thus adds 8192 (frame 2 start address)
 MMU finally sends 8192 on the bus

OS 2009-10

Since memory is finite
28

 Present/absent bit in the virtual page table (the X’s
in the picture)

 Same as before:
MOV REG 8 h h ? MOV REG,32780 what happens?

 Page fault, the page is not in physical memory but
rather on the diskrather on the disk

 The OS needs to evict a page from main memory
and to replace it with the missing page, to update p g p g , p
the MMU’s tables, and to restart the instruction
that caused the fault

OS 2009-10

Operation of the MMUOperation of the MMU
29

To bus

110 000000000100 24580

Virtual page table Present/absentVirtual page table Present/absent
bit for each entry

0010 000000000100
Virtual page index

8196

OS 2009-10

Is it a simple task?
30

 The page table can be extremely largep g y g
 32bits systems with a 4K-page size has more than a million

pages
64bit 2^52 ? G h! 64bits 2^52 pages? Gosh!

 The mapping must be fast (VERY fast)
 Every memory reference requires a virtual to physical  Every memory reference requires a virtual to physical

conversion, a single instruction might have >1 reference

OS 2009-10

Where’s the page table?
31

 Within the MMU
 Every context switch requires loading the whole page table into

the MMU registers, good because it doesn’t require more
memory reference afterwards

 Memory
 A single pointer to the table needs to be reloaded in a context

switch more memory references (to the page table) are switch, more memory references (to the page table) are
required for mapping each memory reference

OS 2009-10

Multi-level page tables
32

 Example: 32 bits could be partitioned as a 10-bit p 3 p
pointer to level 1 table, 10-bit to level 2 and 12-bit
offset fields

PT1 PT2 Offset

1023
1023

1023

Address to the page

…
5
4

PT1
…

5

4

3

2

…

5

4

3

1023

…

5

4

1023

…

5

4

1023

…

5 Offset
3
2
1

2

1

0

2

1

0

3

2

1

0

4

3

2

1

0

4

3

2

1

PT2 Offset

OS 2009-10

0 0

Each points to 4Mbytes of pages

About the page table
33

 Present/absent: in memory?
 Protection bits: e.g. read/write/execute
 Modified: whether any address has been changed, rewrite

t di k i i d b f i ti th to disk is required before evicting the page
 Referenced: used by the OS to decide which page to evict
 Caching: may be used to avoid caching pages required for  Caching: may be used to avoid caching pages required for

I/O

Caching
disabled

Referenced Modified Protection Present/Absent Page frame #

OS 2009-10

TLBs
34

 Translation Lookaside Buffers
 Page tables in memory require additional memory accesses,

unpractical
 Most programs tend to make a large number of references to a  Most programs tend to make a large number of references to a

small number of pages
 Use something called a TLB or Associative Memory

OS 2009-10

What does the TLB do?
35

 Small number of entries, within the MMU, fast
 Association (direct) of virtual page to page frame
 Parallel compare over the whole table, if virtual page is

not there do the normal lookup (over memory) and then not there, do the normal lookup (over memory) and then
evict an entry and replace with the new one

Valid Virtual page Modified Protection Page frame

1 140 1 RW 31

1 20 0 RX 38

OS 2009-10

1 860 1 RW 14

Additional issues
36

 Software TLB management
 Some microprocessors don’t have the TLB completely in

HW, the handling of the TLB fault is done in SW (i.e. the
OS does it)OS does it)

 Inverted Page Tables
 Imagine a 64 bit computer: page tables would be too big
 Inverted table, one per page frame rather than per page
 It requires a search (potentially slow), needs a good

implementation (fast) and a possibly large TLBimplementation (fast) and a possibly large TLB

OS 2009-10

