
Introduction
1

Introduction

2 0 0 9 - 1 0

S O F T W A R E T E C H N O L O G I E S F O R
B I O E N G I N E E R I N G

OS 2009-10

Useful information
2

 My name: Giorgio Mettay g
 My email: pasa@liralab.it
 Office/Lab: 010 71781 411/ 7 7 4
 Cell: 320 4218836
 Where: LIRA-Lab, Villa Bonino, Ground Floor (su , , (

appuntamento)

 Web site: http://www.liralab.it/os
 Mailing list: os@liralab.it

OS 2009-10

Outline of the course
3

 Processes, threads,
scheduling

 The exam consists of:
 bl scheduling

 IPC
 Memory management

 1 problem set
 C++ programming 1/3

 1 oral exam: Memory management
 I/O
 Filesystem

 Theory and short exercises
2/3

Filesystem
 Embedded systems
 + various other things…g

OS 2009-10

Background
4

 Required
 Programming C++ (simple concepts)

H l f l Helpful
 Linux/Unix, Windows

 Main idea is to learn, so, don’t freak out even if it
might seem hard!

 Please ask questions if you don’t understand,
thi ith th t

OS 2009-10

nothing wrong with that

References
5

 Andrew S. Tanenbaum, Modern operating Andrew S. Tanenbaum, Modern operating
systems, Prentice Hall International 2001. ISBN:
0-13-092641-8

 But, see links on the course website

OS 2009-10

6

This slide is intentionally left blank

OS 2009-10

Operating system
7

 What’s inside the computer?What s inside the computer?
 Layers:

Web browser Banking Airline Web browser Banking
system

Airline
reservation

Compilers Editors Command
interpreter

} application programs

} system programsinterpreter
(shell)

Operating system
M hi l

} system programs

Machine language
Microarchitecture
Physical devices

} hardware

OS 2009-10

Meaning of the layers
8

Ph i l d i lf l i i Physical devices: self explaining
 Microarchitecture: define data path within the

microprocessor (using registers) sometimes using a microprocessor (using registers) sometimes using a
microprogram

 Machine language/Assembly language: instruction Machine language/Assembly language: instruction
set (e.g. 50-300 instructions)

OS 2009-10

Where does the OS start?
9

Kernel mode
Supervisor mode

User mode

H d i (Hardware protection (on
modern microprocessors)

All instructions allowed Certain instructions not All instructions allowed Certain instructions not
allowed

Timer interrupt handler Compiler, editor, web p p
browser

OS 2009-10

Example: microkernel OS
10

Microkernel RTOS. In
QNX Neutrino, only the

most fundamental OS
primitives (e.g. signals,
timers, scheduling) are

handled in the kernel
itself. All other

components drivers file components – drivers, file
systems, protocol stacks,

user applications – run
outside the kernel as

separate, memory-p , y
protected processes.

OS 2009-10

Operating system’s job
11

 Manage the hardware (all the devices) Manage the hardware (all the devices)
 Provide user programs with simpler interface to

the hardware (extended machine)the hardware (extended machine)

OS 2009-10

Example: floppy drive
12

 Specific chip (NEC PD765)
 16 different commands
 Load between 1 and 9 bytes into a device register
 Read/Write require 13 parameters packed into 9

bytes
 Reply from the device consists of 7 bytes (23  Reply from the device consists of 7 bytes (23

parameters)
 Control of the motor (on/off)(/)

OS 2009-10

Abstraction
13

 Better to think in terms of files with names rather
than specific floppy drive commands

 Other unpleasant hardware:
 Interrupts Interrupts
 Timers
 Memory management
 …

 Extended or virtual machine

OS 2009-10

OS as resource manager
14

 Allocation of resources:
 Processors, memory, I/O devices among a set of programs

competing for them

E l ll ti th i t Example: allocating the printer
 Buffering output rather than just print at random

 Multiple users: sharing of resources and avoid  Multiple users: sharing of resources and avoid
conflicts (share vs. security)

OS 2009-10

Sharing
15

 Time and space multiplexing
 Multiplexing in time: e.g. printer, processorMultiplexing in time: e.g. printer, processor
 Print one job at a time

 Multiplexing in space: e.g. memory, disksp g p g y,
 Divide memory among many processes

OS 2009-10

Computer hardware
16

 Processors
 Memory
 I/O devices

…
 Buses CPU Mem Video Floppy Controllers

…

Buses

OS 2009-10

Processors
17

RegistersRegisters
•Program counter (PC): next instruction
•Stack pointer (SP): stack in memory
•Program Status Word (PSW): condition bits (e.g.

} Context switch

kernel vs. user mode)
•Base register: relocation of executables

S llSystem call
•SW interrupt
•From User to Kernel mode

Complexity of the CPU HW
•Pipeline architecture
•Superscalar

Fetch Decode Execute

OS 2009-10

Superscalar

Memory
18

 Ideally…
 Extremely fast (faster than the CPU in executing an y (g

instruction)
 Abundantly large

Di t h Dirt cheap

OS 2009-10

Memory (for real)
19

Registers < 1K

Size
1 nsec

Typical access time

Registers
Cache

Main memory

~ 1M

~ 1-4G

2 nsec

10 nsec
10 Magnetic disk

Magnetic tape
~ 5-100G
> 20G

10 msec
100 sec

OS 2009-10

Memory cntd.
20

 Registers: typical 32 in a 32 bit CPUg yp 3 3
 Cache: divided into cache lines (64 bytes each)
 Cache hit – no main memory access, no bus involvementy
 Cache miss – costly

 Main memory
 Disk (multiple plates, heads, arms)
 Logical structure: sectors, tracks, cylinders

 Magnetic tape: backup, cheap, removable

OS 2009-10

Multiple programs in memory
21

 Base and Limit registers (Limit represents the size of
h bl k)the memory block)

 Hardware support for relocation and multiple
programs in memoryp g y

0xFFFFFFFF

User program and dataFetch:
Instruction

Limit

B

User program and data

if (PC<Limit) Fetch(PC+Base)
else Troubles(SigFault)

D t Base

Operating system

Data
if (Addr<Limit) Fetch(Addr+Base)
else Troubles(SigFault)

OS 2009-10

0x00000000
Operating system

DLL’s (in principle)
22

 Requires an MMU with
0xFFFFFFFF

DLL multiple Base/Limit
register pairs

DLL

Limit

Base
User program

Data 1

Data 2

Operating system

OS 2009-10

0x00000000

Operating system

Memory Management Unit
23

 Managing the MMU is one of the OS tasks:
 Balancing context switches since they impact on g y p

performances: e.g. MMU registers have to be saved, cache
emptied, etc.

OS 2009-10

I/O devices
24

 Usually a controller + the actual devicey
 For example: a disk controller may hide the details of driving the arm

and heads to the appropriate location to read a certain piece of data
 Sometimes the controller is a small embedded microprocessor in  Sometimes the controller is a small embedded microprocessor in

itself

 The interface to the OS is somewhat standardized:
IDE di k d i f d d IDE disk drives conform to a standard

 Device driver: a piece of the OS. Device drivers run in
kernel mode since they have to access I/O instructions and y /
device registers

OS 2009-10

Device drivers
25

1. Unix. Compiled and linked with the kernel
(although Linux supports dynamic loading of DD)

2. Windows. An entry into an OS table. Loaded at
bootboot

3. Dynamic. USB, IEEE1394 (firewire). At boot time
the OS detects the hardware, finds the DD, and , ,
loads them

OS 2009-10

I/O registers
26

 E.g. small number of registers used to communicate
 Memory mapped: the registers appear at particular

locations within the OS address space
I/O i t ti CPU h i l i il d  I/O instructions: some CPUs have special privileged
(kernel mode) I/O instructions (IN/OUT). Registers
are mapped to special locations in I/O spacepp p / p

OS 2009-10

Ways of doing I/O
27

1. Polling1. Polling
2. Interrupt based
3 DMA3. DMA

OS 2009-10

Polling
28

 User makes a system call
 OS calls DD
 DD talks to device, prepares I/O, starts I/O and sits

iti (b iti) f I/O l tiwaiting (busy waiting) for I/O completion

 Busy waiting means that the CPU is busy polling a
flagg

OS 2009-10

Interrupt
29

 A piece of hardware
called “interrupt called interrupt
controller”

Disk drive1. CPU issues the I/O request
i th d i d ivia the device driver

2. On termination the device signals
the CPU’s interrupt controller (if
the interrupt controller is not busy

ControllerInterrupt
controllerCPU

3
p y

servicing another higher priority
interrupt)

3. If the interrupt can be handled
then the controller asserts a pin

1

24then the controller asserts a pin
on the CPU.

4. The interrupt controller puts the
address of the device into the bus

OS 2009-10

Interrupt (cntd.)
30

 When the CPU decides to take the interrupt:p
 Stores registers (push them into the stack)
 Switches into kernel mode
 Uses the device’s address to index a table (interrupt

vector)
 Calls the handler contained at the location located in the  Calls the handler contained at the location located in the

interrupt vector
 Once the handler is executed it returns from the handler

by popping the registers from the stack

OS 2009-10

Direct Memory Access DMA
31

 Yet another piece of hardware: DMA controllerYet another piece of hardware: DMA controller
 Communication between memory and device can be carried

out by the DMA controller with little CPU intervention
h h A i l d h ll  When the DMA is completed the controller asserts an

interrupt as before

OS 2009-10

Buses
32

l i l b (h l l Multiple buses (cache, local, memory, PCI, USB,
IDE…)
OS t b f ll f th t thi  OS must be aware of all of them to manage things
appropriately

 Plug&Play – dynamic allocation of I/O and  Plug&Play – dynamic allocation of I/O and
memory addresses (BIOS code)

OS 2009-10

33

This slide is intentionally left blank

OS 2009-10

Concepts
34

 Processes
 Deadlocks
 Memory managementy g
 I/O
 Files
 Security
 …

OS 2009-10

The Shell
35

 Unix command interpreter (or similarly the p (y
“command” in windows)

 Clearly, it’s not part of the OS

prompt

OS 2009-10

Processes
36

 Associated with each process:p
 Address space (program + data + stack)
 Entry into the process table (a list of processes)

 Set of registers (e.g. PC, PSW, etc.)Set of registers (e.g. PC, PSW, etc.)
 MMU status, registers

 Processes can be created, terminated, signaled (SW
interrupt)interrupt)

 They form a tree (a hierarchy) on some systems
 Process cooperation is obtained by means of IPC (inter-

 i i) h iprocess communication) mechanisms
 Processes start with the privileges of the user who starts

them

OS 2009-10

ps (process status) command
37

Name

OS 2009-10

Process ID Parent ID Owner UID
Starting time

Name

Deadlocks
38

 Two or more processes mutually requesting the
same set of resources

 Example: two processes trying to use
i lt l t d CD b i simultaneously a tape and CD burner in reverse

order

1 ?
tape

CD burner 2

?

OS 2009-10

?

Memory management
39

 Virtual memory
 Allowing processes requesting more memory than the

computer main memory to run
 Swap space/swapping. Storing some of the process’ memory

in the diskin the disk

OS 2009-10

Files
40

 Concept of directory (group files together)
 A tree-like structure similar to the process

hierarchy
 A file is specified by its path name A file is specified by its path name
 E.g. /usr/bin/ps

 In UNIX there’s a root directory (/)
 Windows has a root for each drive: A:, B:, C:, etc.

 Working directory (a process property)
 Where path not beginning with slash are looked for Where path not beginning with slash are looked for

 Interface between OS and program code is through
a small integer called file descriptor

OS 2009-10

mount
41

Root Floppy RootRoot Floppy

a b x y a b

x y

c d c d

Before mount After mount

OS 2009-10

Special file
42

d i d i i l i h fil A device driver gets a special entry into the file
system (usually under /dev)
Bl k i l fil Block special files
 Randomly addressable blocks: a disk

 Character special files Character special files
 A stream of character data: modem, printer

OS 2009-10

Special file (ctnd.)
43

block

character

OS 2009-10

Security
44

OS 2009-10

-rwxrwxrwx

Pipe
45

 It’s a sort of pseudofile
 Allows connecting two processes as they were

issuing read/write system calls to a regular file

pipepipe

Process 1 Process 2

OS 2009-10

Pipe example
46

OS 2009-10

47

This slide is intentionally left empty

OS 2009-10

System calls
48

count = read(fd, buffer, nbytes);
0xFFFFFFFF

Return to caller

Trap to kernel

Put code for read in register5

Increment SP

Call read

4

5
10

11
user space

Call read

Push fd

Push &buffer

Push nbytes1
2
3

6 9

Dispatch Sys call
handler

6

7 8
kernel

OS 2009-10

7 8
0x00000000

System calls
49

h b i h k
count = read(fd, buffer, nbytes);

1. Push nbytes into the stack
2. Push buffer into the stack
3. Push fd into the stack3
4. Library calls read
5. Put sys call code into register
6 Trap to kernel6. Trap to kernel
7. Examines the call code, query table
8. Call handler, execute read code

R ll (b)9. Return to caller (maybe)
10. Pop stack (i.e. increment SP)
11. Continue execution

OS 2009-10

OS 2009-10 50

OS 2009-10 51

System call interface (part of)
52

Call Description
id f k() C hild id i l h pid = fork() Create a child process identical to the parent

pid = waitpid(pid, &statloc, options) Wait for a child to terminate
s = execve(name, argv, environp) Replace a process’ core image
exit(status) Terminate process execution and return status

fd = fopen(file, how, ...) Open a file for reading, writing or both
s = close(fd) Close an open file
n = read(fd, buffer, nbytes) Read data from a file into a buffer

it (fd b ff b t) W i d f b ff i filn = write(fd, buffer, nbytes) Write data from a buffer into a file
position = lseek(fd, offset, whence) Move the file pointer
s = stat(name, &buf) Get a file’s status information

kdi (d) C dis = mkdir(name, mode) Create a new directory
s = rmdir(name) Remove an empty directory
s = link(name1, name2) Create a new entry, name2 pointing to name1
s = ulink(name) Remove a directory entry

t(i l fl) M fil

OS 2009-10

s = mount(special, name, flag) Mount a file system
s = umount(special) Unmount a file system

System call interface (cntd.)
53

Call Description

s = chdir(dirname) Change the working directory

s = chmod(name, mode) Change a file’s protection bits
s = kill(pid, signal) Send a signal to a process

seconds = time(&seconds) Get elapsed time in seconds since Jan 1st, 1970Get elapsed time in seconds since Jan 1 , 1970

OS 2009-10

Process management
54

while (1)
{

type_prompt();
read_command(command, parameters);

if (fork() != 0)
{

waitpid(-1, &status, 0);
}
else
{

execve(command parameters 0);execve(command, parameters, 0);
}

}

OS 2009-10

lseek
55

position = lseek(fd, offset, whence)

 Random access to a file
 Imagine the file as accessed through a pointer
 lseek moves the pointer

OS 2009-10

Directory (in UNIX)
56

E h fil i id tifi d b i b Each file is identified by an i-number
 The i-number is an index into a table of i-nodes

A di t i fil t i i li t f  A directory is a file containing a list of
i-number – ASCII name

OS 2009-10

Link
57

 Called a shortcut in some versions of Windows

/usr/ast

16 mail

/usr/jim

31 bin

81 games

40 test

70 memo

38 prog1

link(“/usr/jim/memo” “usr/ast/note”)link(/usr/jim/memo , usr/ast/note)

/usr/ast

16 mail

/usr/jim

31 bin

81 games

40 test

70 note

70 memo

38 prog1

OS 2009-10

Win32 API
58

Diff t hil h Different philosophy
 Many calls (API – Application Program Interface),

not all of them are actually system callsnot all of them are actually system calls
 GUI included into the API (in comparison X-

Windows is all user level code)Windows is all user level code)

OS 2009-10

Example of Win32
59

fork CreateProcess Create a new process

waitpid WaitForSingleObject Can wait for a process to exit

execve None CreateProcess does the job

exit ExitProcess Terminate execution

open CreateFile Create a file or open an existing file

close CloseHandle Close a file

read ReadFile Read data from a file

Write WriteFile Write data to a file

Lseek SetFilePointer Move the file pointer

stat GetFileAttributeEx Get various file attributes

mkdir CreateDirectory Create a new directory

rmdir RemoveDirectory Remove an empty directory

link None

unlink DeleteFile Destroy an existing file

mount None

umount None

chdir SetCurrentDirectory Change the current working directory

chmod None

OS 2009-10

kill None

time GetLocalTime Get the current time

Operating system structure
60

 Monolithic systems
 Layered systemsy y
 Virtual machines
 Exokernelso e e s
 Client-Server model

OS 2009-10

Monolithic systems
61

 The “big mess”g
 No organized structure
 A bit of structure anyway:y y
 System calls requires parameters in a well defined place (e.g.

the stack)
 Three layers: Three layers:

 Application program
 Service procedures
 Helper procedures

OS 2009-10

Layered systems
62

 Each layer relies only on services provided by lower y y p y
level layers

Layer Functiony

5 User/operator

4 User programs

3 I/O management

2 Operator-process communication

1 Memory and disk management

0 Processor allocation and multiprogramming

OS 2009-10

Virtual machines
63

 Timesharing provides:
 Multiprogramming
 Extended machine

 Decouple the two functions: Decouple the two functions:
 Virtual machine monitor (a SW layer)
 It does the multiprogramming providing a “simulation”

of the bare HWof the bare HW
 On top of the monitor any compatible OS could be

run
 Also the Pentium (8086 mode, running DOS

applications) and Java VM provide a similar
mechanism (slightly different though)

OS 2009-10

mechanism (slightly different though)

Virtual machines
64

Applications

CMS CMS CMS

VM/370

370 Bare Hardware

syscall

I/O instruction

OS 2009-10

Exokernel
65

 Each process is given a subset of the resources (at p g (
any given moment) and NOT a simulation of the
whole machine

 Simpler
 Saves a layer of mapping
 Each VM in this case is given a subset of memory,

disk space, etc.
Th OS h k f fli The OS checks for conflicts

OS 2009-10

Client-Server model
66

 Microkernel
S i d i (h  Services are moved into user-space processes (e.g. the
filesystem)

 The kernel handles message passing mechanisms to make
i ti ibl b t d d icommunication possible between user code and services

 Easy to “remote” the message passing (distributed system)
 Resilient: a crash in one module doesn’t compromise the

h l (hi h h f h h)whole system (which can then recover from the crash)
 I/O and HW access must be done into the kernel (spoils a

bit the nice client-server model) for example in device
d idrivers

OS 2009-10

Example: microkernel OS
67

Microkernel RTOS. In
QNX Neutrino, only the

most fundamental OS
primitives (e.g. signals,
timers, scheduling) are

handled in the kernel
itself. All other

components drivers file components – drivers, file
systems, protocol stacks,

user applications – run
outside the kernel as

separate, memory-p , y
protected processes.

OS 2009-10

