
x86 architecture et similia

F R E E L Y I N S P I R E D F R O M

1

x86 architecture et similia

F R E E L Y I N S P I R E D F R O M
C L A S S 6 . 8 2 8 , M I T

OS 2009-10

PC architecture
2

 A full PC has: A full PC has:
 an x86 CPU with registers, execution unit, and memory

management
 CPU chip pins include address and data signals
 memory

di k disk
 keyboard
 display display
 other resources: BIOS ROM, clock, ...

OS 2009-10

CPU
3

 CPU runs instructions:
for(;;) {

run next instruction
}}

 We will start with the original 16-bit 8086 CPU We will start with the original 16-bit 8086 CPU
(1978)

OS 2009-10

CPU & Memory
4

 Needs work space: registers
 four 16-bit data registers: AX, CX, DX, BX
 each in two 8-bit halves, e.g. AH and AL
 very fast very few very fast, very few

 More work space: memory
 CPU sends out address on address lines (wires, one bit per

i) wire)
 Data comes back on data lines
 or data is written to data lines

OS 2009-10

CPU & Memory
5

 Add address registers: pointers into memory g p y
 SP - stack pointer
 BP - frame base pointer

SI i d SI - source index
 DI - destination index

OS 2009-10

IP (program counter)
6

 Instructions are in memory too! y
 IP - instruction pointer (PC on PDP-11, everything else)
 increment after running each instruction

 b difi d b CALL RET JMP di i l j can be modified by CALL, RET, JMP, conditional jumps

OS 2009-10

Flags
7

 Want conditional jumps
 FLAGS - various condition codes

 whether last arithmetic operation overflowed
 i i / i ... was positive/negative

 ... was [not] zero
 ... carry/borrow on add/subtract
 ... overflow
 ... etc.
 whether interrupts are enabled whether interrupts are enabled
 direction of data copy instructions

 JP, JN, J[N]Z, J[N]C, J[N]O ...

OS 2009-10

I/O
8

 Still not interesting - need I/O to interact with
outside worldoutside world
 Original PC architecture: use dedicated I/O space

 Works same as memory accesses but set I/O signal
O l I/O dd Only 1024 I/O addresses

 Memory-Mapped I/O
 Use normal physical memory addresses

G t d li it d i f I/O dd Gets around limited size of I/O address space
 No need for special instructions
 System controller routes to appropriate device

 Works like “magic” memory: g y
 Addressed and accessed like memory, but ...
 ... does not behave like memory!
 Reads and writes can have “side effects”

R d lt h d t t l t

OS 2009-10

 Read results can change due to external events

Example
9

Example: write a byte to line printer:
 #define DATA_PORT 0x378

d fi S S O #define STATUS_PORT 0x379
 #define BUSY 0x80
 #define CONTROL_PORT 0x37A
 #define STROBE 0x01

 void lpt_putc(int c) {
 /* wait for printer to consume previous byte */
 while((inb(STATUS_PORT) & BUSY) == 0);

 /* put the byte on the parallel lines */
 outb(DATA_PORT, c);

/* ll h i l k h d */ /* tell the printer to look at the data */
 outb(CONTROL_PORT, STROBE);
 outb(CONTROL_PORT, 0);
 }

OS 2009-10

More memory
10

 What if we want to use more than 2^16 bytes of memory?
8 86 h bit h i l dd h M RAM 8086 has 20-bit physical addresses, can have 1 Meg RAM

 each segment is a 2^16 byte window into physical memory
 virtual to physical translation: pa = va + seg*16

 the segment is usually implicit, from a segment register
 CS - code segment (for fetches via IP)
 SS stack segment (for load/store via SP and BP) SS - stack segment (for load/store via SP and BP)
 DS - data segment (for load/store via other registers)
 ES - another data segment (destination for string operations)
 tricky: can't use the 16-bit address of a stack variable as a pointer tricky: can t use the 16 bit address of a stack variable as a pointer

(still need 20 bits to identify an address in memory)
 but a far pointer includes full segment:offset (16 + 16 bits)

OS 2009-10

More memory is needed
11

 But 8086's 16-bit addresses and data were still
i f ll ll painfully small

 80386 added support for 32-bit data and addresses
(1985)

 boots in 16-bit mode, then switches to 32-bit mode
 registers are 32 bits wide, called EAX rather than AX
 operands and addresses are also 32 bits, e.g. ADD does operands and addresses are also 32 bits, e.g. ADD does

32-bit arithmetic
 prefix 0x66 gets you 16-bit mode: MOVW is really 0x66

MOVW O
 80386 also changed segments and added paged

memory...

OS 2009-10

Memory map
12

 x86 Physical Memory Map y y p
 The physical address space mostly looks like ordinary RAM
 Except some low-memory addresses actually refer to other

things things
 Writes to VGA memory appear on the screen
 Reset or power-on jumps to ROM at 0x000ffff0p j p

OS 2009-10

32-bit memory mapped devices
4Gb

Unused

Extended Memory

0x00100000 (1MB)

BIOS ROM

0x000F0000 (960KB)

16-bit devices, expansion ROMs

0x000C0000 (768KB)

VGA Display

0x000A0000 (640KB)

OS 2009-10 13

Low Memory

Assembly
14

 Two-operand instruction set
 Intel syntax: op dst src Intel syntax: op dst, src
 AT&T (gcc/gas) syntax: op src, dst

 uses b, w, l suffix on instructions to specify size of operands
 Operands are registers, constant, memory via register, memory via constant

l Examples:

AT&T syntax "C"-ish equivalent
movl %eax %edx edx = eax; register modemovl %eax, %edx edx = eax; register mode
movl $0x123, %edx edx = 0x123; immediate
movl 0x123, %edx edx = *(int32_t*)0x123; direct
movl (%ebx) %edx edx = *(int32 t*)ebx; indirectmovl (%ebx), %edx edx (int32_t)ebx; indirect
movl 4(%ebx), %edx edx = *(int32_t*)(ebx+4); displaced

OS 2009-10

Assembly (instr. classes)
15

 Instruction classes
 data movement: MOV, PUSH, POP, ...
 arithmetic: TEST, SHL, ADD, AND, ...

i/ IN OUT i/o: IN, OUT, ...
 control: JMP, JZ, JNZ, CALL, RET
 string: REP MOVSB, ... string: REP MOVSB, ...
 system: IRET, INT

OS 2009-10

GCC (a particular compiler)
16

 Example instruction What it does

 pushl %eax subl $4, %esp; movl %eax, (%esp)

 popl %eax movl (%esp), %eax; addl $4, %esp

 call $0x12345 pushl %eip; movl $0x12345, %eip

 ret popl %eipp p p

OS 2009-10

Examples
17

 GCC dictates how the stack is used. Contract between caller
and callee on x86: and callee on x86:
 after call instruction:

 %eip points at first instruction of function
 %esp+4 points at first argument

% i t t t dd %esp points at return address
 after ret instruction:

 %eip contains return address
 %esp points at arguments pushed by caller

ll d f i h h d called function may have trashed arguments
 %eax contains return value (or trash if function is void)
 %ecx, %edx may be trashed
 %ebp, %ebx, %esi, %edi must contain contents from time of call

i l Terminology:
 %eax, %ecx, %edx are "caller save" registers
 %ebp, %ebx, %esi, %edi are "callee save" registers

OS 2009-10

GCC (cntd.)
18

 Functions can do anything that doesn't violate y g
contract with the GCC

OS 2009-10

OS 2009-10 19

Compilation
20

 Compiling, linking, loading: p g, g, g
 Compiler takes C source code (ASCII text), produces

assembly language (also ASCII text)
 Assembler takes assembly language (ASCII text),

produces .o file (binary, machine-readable!)
 Linker takes multiple ' o's produces a single program Linker takes multiple .o s, produces a single program

image (binary)
 Loader loads the program image into memory at run-

time and starts it executing

OS 2009-10

x86 & the OS
21

 One way to think about an operating system interface is that it extends
h h d i i i h f "i i " h the hardware instructions with a set of "instructions" that are

implemented in software. These instructions are invoked using a
system call instruction (INT and RETI on the x86). In this view, a
task of the operating system is to provide each application with a task of the operating system is to provide each application with a
virtual version of the interface; that is, it provides each application with
a virtual computer.

 One of the challenges in an operating system is multiplexing the
physical resources between the potentially many virtual computers.
What makes the multiplexing typically complicated is an additional
constraint: isolate the virtual computers well from each other.

OS 2009-10

Virtual x86 (the OS)
22

 To give each application its own set of virtual processor, we need to virtualize
the physical processors. One way to do is to multiplex the physical processor the physical processors. One way to do is to multiplex the physical processor
over time: the operating system runs one application for a while, then runs
another application for while, etc. We can implement this solution as follows:
when an application has run for its share of the processor, unload the state of
the physical processor, save that state to be able to resume the application later,
l d i th t t f th t li ti d it load in the state for the next application, and resume it.

 What needs to be saved and restored? That depends on the processor, but for
the x86:
 IP

SP SP
 The other processor registers (eax, etc.)

 To enforce that a virtual processor doesn't keep a processor, the operating
 f i di i d i h h i h system can arrange for a periodic interrupt, and switch the processor in the

interrupt routine.

OS 2009-10

Interrupt
23

 Big picture: kernel is trusted third-party that runs the
hi O l h k l i il d machine. Only the kernel can execute privileged

instructions (e.g., changing MMU state). The processor
enforces this protection through the ring bits in the code

 If li i d segment. If a user application needs to carry out a
privileged operation or other kernel-only service, it must
ask the kernel nicely. How can a user program change to
h k l dd h k l fthe kernel address space? How can the kernel transfer to a

user address space? What happens when a device attached
to the computer needs attention? These are the topics for

d ' ltoday's lecture.

OS 2009-10

Continued…
24

 There are three kinds of events that must be handled by the
kernel not user programs: (1) a system call invoked by a kernel, not user programs: (1) a system call invoked by a
user program, (2) an illegal instruction or other kind of bad
processor state (memory fault, etc.). and (3) an interrupt
from a hardware device. from a hardware device.

 Although these three events are different, they all use the
same mechanism to transfer control to the kernel. This
mechanism consists of three steps that execute as one ec a s co s sts o t ee steps t at e ecute as o e
atomic unit. (a) change the processor to kernel mode; (b)
save the old processor somewhere (usually the kernel
stack); and (c) change the processor state to the values set

 th “ ffi i l k l t l ” Th t up as the “official kernel entry values.” The exact
implementation of this mechanism differs from processor
to processor, but the idea is the same.

OS 2009-10

Mutual exclusion x86
25

Here is one way we can implement acquire and release using the x86
xchgl instruction: xchgl instruction:

struct Lock {
unsigned int locked; g ;

};

acquire(Lock *lck) {
while(TSL(&(lck->locked)) != 0) ;

}

l (L k *l k) { release(Lock *lck) {
lck->locked = 0;

}

OS 2009-10

xchg
26

int
TSL(int *addr)
{ {

register int content = 1;
// xchgl content, *addr
// xchgl exchanges the values of its two operands, while
// locking the memory bus to exclude other operations.
asm volatile ("xchgl %0 %1" : asm volatile (xchgl %0,%1 :
"=r" (content),
"=m" (*addr) :
"0" (content),
"m" (*addr));
return(content);

}

the instruction "XCHG %eax, (content)" works as follows:

1. freeze other CPUs' memory activity
2 temp := content 2. temp := content
3. content := %eax
4. %eax := temp
5. un-freeze other CPUs

steps 1 and 5 make XCHG special: it is "locked" special signal lines on the inter-CPU bus, bus arbitration

OS 2009-10

