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PC architecture
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 A full PC has: A full PC has: 
 an x86 CPU with registers, execution unit, and memory 

management 
 CPU chip pins include address and data signals 
 memory 

di k  disk 
 keyboard 
 display  display 
 other resources: BIOS ROM, clock, ...
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CPU
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 CPU runs instructions: 
for(;;) { 

run next instruction
}}

 We will start with the original 16-bit 8086 CPU  We will start with the original 16-bit 8086 CPU 
(1978)
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CPU & Memory
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 Needs work space: registers 
 four 16-bit data registers: AX, CX, DX, BX 
 each in two 8-bit halves, e.g. AH and AL 
 very fast  very few  very fast, very few 

 More work space: memory 
 CPU sends out address on address lines (wires, one bit per 

i ) wire) 
 Data comes back on data lines 
 or data is written to data lines 
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CPU & Memory
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 Add address registers: pointers into memory g p y
 SP - stack pointer 
 BP - frame base pointer 

SI  i d   SI - source index 
 DI - destination index 
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IP (program counter)
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 Instructions are in memory too! y
 IP - instruction pointer (PC on PDP-11, everything else) 
 increment after running each instruction 

 b  difi d b  CALL  RET  JMP  di i l j   can be modified by CALL, RET, JMP, conditional jumps 
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Flags
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 Want conditional jumps
 FLAGS - various condition codes 

 whether last arithmetic operation overflowed 
  i i / i   ... was positive/negative 

 ... was [not] zero 
 ... carry/borrow on add/subtract 
 ... overflow 
 ... etc. 
 whether interrupts are enabled  whether interrupts are enabled 
 direction of data copy instructions 

 JP, JN, J[N]Z, J[N]C, J[N]O ... 
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I/O
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 Still not interesting - need I/O to interact with 
outside worldoutside world
 Original PC architecture: use dedicated I/O space 

 Works same as memory accesses but set I/O signal 
O l   I/O dd   Only 1024 I/O addresses 

 Memory-Mapped I/O 
 Use normal physical memory addresses 

G t  d li it d i  f I/O dd    Gets around limited size of I/O address space 
 No need for special instructions 
 System controller routes to appropriate device 

 Works like “magic” memory: g y
 Addressed and accessed like memory, but ... 
 ... does not behave like memory! 
 Reads and writes can have “side effects” 

R d lt   h  d  t  t l t
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Example
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Example: write a byte to line printer: 
 #define DATA_PORT 0x378 

d fi  S S O    #define STATUS_PORT 0x379 
 #define BUSY 0x80 
 #define CONTROL_PORT 0x37A 
 #define STROBE 0x01 

 void lpt_putc(int c) { 
 /* wait for printer to consume previous byte */ 
 while((inb(STATUS_PORT) & BUSY) == 0); 

 /* put the byte on the parallel lines */ 
 outb(DATA_PORT, c); 

/* ll h  i   l k  h  d  */  /* tell the printer to look at the data */ 
 outb(CONTROL_PORT, STROBE); 
 outb(CONTROL_PORT, 0); 
 }
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More memory
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 What if we want to use more than 2^16 bytes of memory? 
8 86 h  bit h i l dd   h   M  RAM  8086 has 20-bit physical addresses, can have 1 Meg RAM 

 each segment is a 2^16 byte window into physical memory 
 virtual to physical translation: pa = va + seg*16 

 the segment is usually implicit, from a segment register 
 CS - code segment (for fetches via IP) 
 SS stack segment (for load/store via SP and BP)  SS - stack segment (for load/store via SP and BP) 
 DS - data segment (for load/store via other registers) 
 ES - another data segment (destination for string operations) 
 tricky: can't use the 16-bit address of a stack variable as a pointer  tricky: can t use the 16 bit address of a stack variable as a pointer 

(still need 20 bits to identify an address in memory)
 but a far pointer includes full segment:offset (16 + 16 bits) 
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More memory is needed
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 But 8086's 16-bit addresses and data were still 
i f ll  ll painfully small 

 80386 added support for 32-bit data and addresses 
(1985) 

 boots in 16-bit mode, then switches to 32-bit mode 
 registers are 32 bits wide, called EAX rather than AX 
 operands and addresses are also 32 bits, e.g. ADD does  operands and addresses are also 32 bits, e.g. ADD does 

32-bit arithmetic 
 prefix 0x66 gets you 16-bit mode: MOVW is really 0x66 

MOVW O
 80386 also changed segments and added paged 

memory...
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Memory map
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 x86 Physical Memory Map y y p
 The physical address space mostly looks like ordinary RAM 
 Except some low-memory addresses actually refer to other 

things things 
 Writes to VGA memory appear on the screen 
 Reset or power-on jumps to ROM at 0x000ffff0p j p
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32-bit memory mapped devices
4Gb

Unused

Extended Memory

0x00100000 (1MB) 

BIOS ROM

0x000F0000 (960KB) 

16-bit devices, expansion ROMs

0x000C0000 (768KB) 

VGA Display

0x000A0000 (640KB) 
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Assembly
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 Two-operand instruction set 
 Intel syntax: op dst  src  Intel syntax: op dst, src 
 AT&T (gcc/gas) syntax: op src, dst 

 uses b, w, l suffix on instructions to specify size of operands 
 Operands are registers, constant, memory via register, memory via constant 

l Examples: 

AT&T syntax "C"-ish equivalent 
movl %eax  %edx edx = eax; register modemovl %eax, %edx edx = eax; register mode
movl $0x123, %edx edx = 0x123; immediate
movl 0x123, %edx edx = *(int32_t*)0x123; direct 
movl (%ebx)  %edx edx = *(int32 t*)ebx; indirectmovl (%ebx), %edx edx  (int32_t )ebx; indirect
movl 4(%ebx), %edx edx = *(int32_t*)(ebx+4); displaced
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Assembly (instr. classes)
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 Instruction classes 
 data movement: MOV, PUSH, POP, ... 
 arithmetic: TEST, SHL, ADD, AND, ... 

i/  IN  OUT    i/o: IN, OUT, ... 
 control: JMP, JZ, JNZ, CALL, RET 
 string: REP MOVSB, ...  string: REP MOVSB, ... 
 system: IRET, INT
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GCC (a particular compiler)
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 Example instruction What it does 

 pushl %eax subl $4, %esp; movl %eax, (%esp)

 popl %eax movl (%esp), %eax; addl $4, %esp

 call $0x12345 pushl %eip; movl $0x12345, %eip

 ret popl %eipp p p
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Examples
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 GCC dictates how the stack is used. Contract between caller 
and callee on x86: and callee on x86: 
 after call instruction: 

 %eip points at first instruction of function 
 %esp+4 points at first argument 

%  i t  t t  dd   %esp points at return address 
 after ret instruction: 

 %eip contains return address 
 %esp points at arguments pushed by caller 

ll d f i   h  h d   called function may have trashed arguments 
 %eax contains return value (or trash if function is void) 
 %ecx, %edx may be trashed 
 %ebp, %ebx, %esi, %edi must contain contents from time of call 

i l Terminology: 
 %eax, %ecx, %edx are "caller save" registers 
 %ebp, %ebx, %esi, %edi are "callee save" registers
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GCC (cntd.)
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 Functions can do anything that doesn't violate y g
contract with the GCC
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Compilation
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 Compiling, linking, loading: p g, g, g
 Compiler takes C source code (ASCII text), produces 

assembly language (also ASCII text) 
 Assembler takes assembly language (ASCII text), 

produces .o file (binary, machine-readable!) 
 Linker takes multiple ' o's  produces a single program  Linker takes multiple .o s, produces a single program 

image (binary) 
 Loader loads the program image into memory at run-

time and starts it executing
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x86 & the OS
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 One way to think about an operating system interface is that it extends 
h  h d  i i  i h   f "i i " h   the hardware instructions with a set of "instructions" that are 

implemented in software. These instructions are invoked using a 
system call instruction (INT and RETI on the x86). In this view, a 
task of the operating system is to provide each application with a task of the operating system is to provide each application with a 
virtual version of the interface; that is, it provides each application with 
a virtual computer. 

 One of the challenges in an operating system is multiplexing the 
physical resources between the potentially many virtual computers. 
What makes the multiplexing typically complicated is an additional 
constraint: isolate the virtual computers well from each other. 
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Virtual x86 (the OS)
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 To give each application its own set of virtual processor, we need to virtualize 
the physical processors. One way to do is to multiplex the physical processor the physical processors. One way to do is to multiplex the physical processor 
over time: the operating system runs one application for a while, then runs 
another application for while, etc. We can implement this solution as follows: 
when an application has run for its share of the processor, unload the state of 
the physical processor, save that state to be able to resume the application later, 
l d i  th  t t  f  th  t li ti  d  it  load in the state for the next application, and resume it. 

 What needs to be saved and restored? That depends on the processor, but for 
the x86: 
 IP 

SP  SP 
 The other processor registers (eax, etc.) 

 To enforce that a virtual processor doesn't keep a processor, the operating 
   f   i di  i  d i h h   i  h  system can arrange for a periodic interrupt, and switch the processor in the 

interrupt routine.
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Interrupt
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 Big picture: kernel is trusted third-party that runs the 
hi  O l  h  k l   i il d machine. Only the kernel can execute privileged 

instructions (e.g., changing MMU state). The processor 
enforces this protection through the ring bits in the code 

 If   li i  d      segment. If a user application needs to carry out a 
privileged operation or other kernel-only service, it must 
ask the kernel nicely. How can a user program change to 
h k l dd h k l fthe kernel address space? How can the kernel transfer to a 

user address space? What happens when a device attached 
to the computer needs attention? These are the topics for 

d ' ltoday's lecture.
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Continued…
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 There are three kinds of events that must be handled by the 
kernel  not user programs: (1) a system call invoked by a kernel, not user programs: (1) a system call invoked by a 
user program, (2) an illegal instruction or other kind of bad 
processor state (memory fault, etc.). and (3) an interrupt 
from a hardware device. from a hardware device. 

 Although these three events are different, they all use the 
same mechanism to transfer control to the kernel. This 
mechanism consists of three steps that execute as one ec a s  co s sts o  t ee steps t at e ecute as o e 
atomic unit. (a) change the processor to kernel mode; (b) 
save the old processor somewhere (usually the kernel 
stack); and (c) change the processor state to the values set 

  th  “ ffi i l k l t  l ” Th  t up as the “official kernel entry values.” The exact 
implementation of this mechanism differs from processor 
to processor, but the idea is the same.
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Mutual exclusion x86
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Here is one way we can implement acquire and release using the x86 
xchgl instruction: xchgl instruction: 

struct Lock { 
unsigned int locked; g ;

};

acquire(Lock *lck)  { 
while(TSL(&(lck->locked)) != 0) ; 

}

l (L k *l k) { release(Lock *lck) { 
lck->locked = 0; 

}
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xchg
26

int 
TSL(int *addr) 
{ { 

register int content = 1; 
// xchgl content, *addr 
// xchgl exchanges the values of its two operands, while 
// locking the memory bus to exclude other operations. 
asm volatile ("xchgl %0 %1" : asm volatile ( xchgl %0,%1  : 
"=r" (content), 
"=m" (*addr) : 
"0" (content), 
"m" (*addr)); 
return(content); 

} 

the instruction "XCHG %eax, (content)" works as follows: 

1. freeze other CPUs' memory activity 
2  temp := content 2. temp := content 
3. content := %eax 
4. %eax := temp 
5. un-freeze other CPUs 

steps 1 and 5 make XCHG special: it is "locked" special signal lines on the inter-CPU bus, bus arbitration
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