
These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

These strange mystical beasts

Compiler, linker, preprocessor, object code,
debugger and makefiles.

Speaker: Carlos Beltrán-González

October 18, 2007

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

Introduction

Introduction

In this seminar we will introduce some of these mystical beasts that
we use when programming. These are basically, the compiler, the
preprocessor, the linker and the debugger. The main goals are:

1 To understand completely the tools involved in the creation of
programs (executables)

2 To become completely autonomous in the use of these tools

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

Introduction

Introduction

In this seminar we will introduce some of these mystical beasts that
we use when programming. These are basically, the compiler, the
preprocessor, the linker and the debugger. The main goals are:

1 To understand completely the tools involved in the creation of
programs (executables)

2 To become completely autonomous in the use of these tools

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

From the code to the executable

From the code to the executable (a bird’s

eye)

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Source and Object Code

Source Code

The source code (sometimes called just source) is a set of
instructions,data, used to implement an algorithm in machine code.
This, to build a program that can be executed by the computer.

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Source and Object Code

Object Code

The object code (or object file) is the
transformation/translation of source code into machine code
(bynary). This object code is only understandable by the
computer.

The object codes are normally grouped in libraries that
contain a number of functions intimately related. For
example, a set of mathematical operations.

The object code consist in a executable code plus information
that permits the linker to join the object code with other
object codes to generate a working program.

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Preprocessor

Preprocessor

What is the preprocessor

A preprocessor is a program (or part of a program) that makes
textual substitutions in the source code of a program.

The more common substitutions are:

Macro’s expansions

Inclusion of other files

The conditional code selection

The instructions inserted in the source code to be elaborated by
the preprocessors are called directives; in the C/C++ preprocessor,
these directives are the lines starting with the character #̈.̈

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Preprocessor

Preprocessor

What is the preprocessor

A preprocessor is a program (or part of a program) that makes
textual substitutions in the source code of a program.

The more common substitutions are:

Macro’s expansions

Inclusion of other files

The conditional code selection

The instructions inserted in the source code to be elaborated by
the preprocessors are called directives; in the C/C++ preprocessor,
these directives are the lines starting with the character #̈.̈

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Preprocessor

Preprocessor

What is the preprocessor

A preprocessor is a program (or part of a program) that makes
textual substitutions in the source code of a program.

The more common substitutions are:

Macro’s expansions

Inclusion of other files

The conditional code selection

The instructions inserted in the source code to be elaborated by
the preprocessors are called directives; in the C/C++ preprocessor,
these directives are the lines starting with the character #̈.̈

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Preprocessor

An example of preprocessor lines

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

The compiler

The compiler

What is a compiler?

A compiler is a ”translator” program in charge of producing the
object code (in machine language) from a source code written in a
given programming language (in our case C++). The source code
is considered to be in a more human readable level. This process
translation/transformation process is called compilation

What does the compiler do?

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

The compiler

The compiler

What is a compiler?

A compiler is a ”translator” program in charge of producing the
object code (in machine language) from a source code written in a
given programming language (in our case C++). The source code
is considered to be in a more human readable level. This process
translation/transformation process is called compilation

What does the compiler do?

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

The compiler

How does the compiler work?

Tasks

Lexical Analysis: The program is subdivided in known
keywords of the programming language, for example, while,
for, constants and varibles names; these keywords received the
name of tokens.

Syntantic and Semantic Analysis: In this phase, the compiler
creates a syntactic tree using the tokens extracted in the
previous phase. The tree is built based on a given grammar
that defines the possible sequences of tokens accepted by the
programming language.

Code Generation From the syntactic tree and from the
symbols tables the information is extracted to generate the
executable code.

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

The compiler

Can the compiler help the programmer?

Compiler tip!

Generally, the compiler is capable of recognising some types of
errors in the source code and, in some cases, suggest the ways of
fixing the code.

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

The compiler

Compiler errors

There exits two types of errors: errors and warnings.

Errors

The presence of errors blocks the invocation of the compiler.
Actually, the source code is not compiled at all.

Warnings

The compilation proccess in NOT blocked

Inform the programmer about ambiguity in the code

They can represent non desirable situations as logic errors

Some warning errors can be ignored if the compiler resolves
correctly the ambiguity.

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

The compiler

Compiler errors

There exits two types of errors: errors and warnings.

Errors

The presence of errors blocks the invocation of the compiler.
Actually, the source code is not compiled at all.

Warnings

The compilation proccess in NOT blocked

Inform the programmer about ambiguity in the code

They can represent non desirable situations as logic errors

Some warning errors can be ignored if the compiler resolves
correctly the ambiguity.

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

The Linker

The Linker

What is the linker?

The linker is a program that takes one or more modules containing
object codes and puts them together in a single executable
program.

The modules contain the machine code plus information useful to
the linker; mainly symbols definitions:

Symbols exported or defined These are functions or variables
that can be found in the object code and that can be
available for other modules.

Symbols not defined or imported These are functions or
variables that are used or called from within a particular
module but are not defined internally because defined in other
modules or in the system’s libraries.

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

The Linker

The Linker

What is the linker?

The linker is a program that takes one or more modules containing
object codes and puts them together in a single executable
program.

The modules contain the machine code plus information useful to
the linker; mainly symbols definitions:

Symbols exported or defined These are functions or variables
that can be found in the object code and that can be
available for other modules.

Symbols not defined or imported These are functions or
variables that are used or called from within a particular
module but are not defined internally because defined in other
modules or in the system’s libraries.

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

The Linker

Linker errors

Why linker errors?

Even if our source code didn’t produce errors when compiling,
errors may appear when linking. Linking errors can block the
process of building the executable code.

Possible linker errors

Undefined Symbol The linker is not capable of resolving all
the not defined symbols. In practice, this means that it can
not find the module that contains the definitions of a variable
or the implementation of a function that have been used in
the source code.

Ambiguous Symbol The linker can not distinguish which
among the exported symbols present in the modules
corresponds to a given imported symbol.

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

The Linker

Linker errors

Why linker errors?

Even if our source code didn’t produce errors when compiling,
errors may appear when linking. Linking errors can block the
process of building the executable code.

Possible linker errors

Undefined Symbol The linker is not capable of resolving all
the not defined symbols. In practice, this means that it can
not find the module that contains the definitions of a variable
or the implementation of a function that have been used in
the source code.

Ambiguous Symbol The linker can not distinguish which
among the exported symbols present in the modules
corresponds to a given imported symbol.

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

The debugger

The debugger

What is the debugger

The debugger is a program that give you runtime information of a
running program. The program has to be compiled in debug mode
thus the debugger can get the information needed to inform the
programmer about the flow of the program

What can a debugger do?

With a debugger the programmer can basically perform the next
task:

Follow the flow of the program step by step

Visualize memory states, variables values, conditions
status...etc

Change runtime context in the case of different threads

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

The debugger

The debugger

What is the debugger

The debugger is a program that give you runtime information of a
running program. The program has to be compiled in debug mode
thus the debugger can get the information needed to inform the
programmer about the flow of the program

What can a debugger do?

With a debugger the programmer can basically perform the next
task:

Follow the flow of the program step by step

Visualize memory states, variables values, conditions
status...etc

Change runtime context in the case of different threads

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

The debugger

The debugger in Unix/Linux

GDB

The debugger is called ”gdb”. It is a textual debugger. Difficult to
use with a long learning curve.

GDB screenshot

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

The debugger

The debugger in Unix/Linux

GDB

The debugger is called ”gdb”. It is a textual debugger. Difficult to
use with a long learning curve.

GDB screenshot

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

The debugger

The Windows debugger

Microsoft Visual Studio

The family of Visual Studio IDE’s provides one of the windows
based more powerfull debuggers in the market.

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Step by step compilation

An example of Compilation in Linux

environment

We will show step by step how to create a library and link it to an
executable. A library, as explained before, is nothing more than a
convenient grouping of one or more object modules.

Creating an object code

g++ -c imageClass.cpp -o imageClass.o

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Step by step compilation

An example of compilation in Linux

environment

Creating a library

ar rcs libImage.a imageClass.o

Linking the library with an example file

g++ -static esempio.cpp -L. -lImage -o executable_name

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Step by step compilation

An example of compilation in Linux

environment

Creating a library

ar rcs libImage.a imageClass.o

Linking the library with an example file

g++ -static esempio.cpp -L. -lImage -o executable_name

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Putting a project together

Putting a project together

Software complexity

Some software projects can arrive to have thousands of files and
hundreds of libraries (i.e. an operating system). Some tools have
been developed to assist the developer in structuring and manage
such a huge quantity of files.

Tip!

Today, these tools are used independently of the software project
complexity. They facilitate in any case the process of compilation,
linking...etc

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Putting a project together

Putting a project together

Software complexity

Some software projects can arrive to have thousands of files and
hundreds of libraries (i.e. an operating system). Some tools have
been developed to assist the developer in structuring and manage
such a huge quantity of files.

Tip!

Today, these tools are used independently of the software project
complexity. They facilitate in any case the process of compilation,
linking...etc

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Putting a project together

Tools used to group code (development

level)

Existing tools

Basically, these two types of tools:

Makefile like scripting

IDE’s environments

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Putting a project together

Makefiles

What are Makefiles?

In Unix/Linux environments the so called ”makefiles” are used to
group code. Other tools can be used to do this job like ”CMake”
or ”Ant”. In general, all these tools are script like files that
describe the software structure of a project

Makefiles facilitate

automation of the compilation, linking process.

Setting the compiler, linker tags.

Make conditional compilation/linking

Detect changes in source code and compile only parts of code

Automatically handling dependencies and libraries.

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Putting a project together

Makefiles

What are Makefiles?

In Unix/Linux environments the so called ”makefiles” are used to
group code. Other tools can be used to do this job like ”CMake”
or ”Ant”. In general, all these tools are script like files that
describe the software structure of a project

Makefiles facilitate

automation of the compilation, linking process.

Setting the compiler, linker tags.

Make conditional compilation/linking

Detect changes in source code and compile only parts of code

Automatically handling dependencies and libraries.

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Putting a project together

Makefile Example

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Putting a project together

Development environments

IDEs

IDE stands for Integrated Development Environment

Available IDEs are:

Microsoft Visual Studio (Visual Basic, C++, C#)

KDevelop (Linux-KDE)

Eclipse (All platforms)

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Putting a project together

Development environments

IDEs

IDE stands for Integrated Development Environment

Available IDEs are:

Microsoft Visual Studio (Visual Basic, C++, C#)

KDevelop (Linux-KDE)

Eclipse (All platforms)

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

Putting a project together

What IDEs do

They provide

Visual control of the software project.

Editor, visual classes manager

Integrated debugger

Integration with other tools or software modules

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

A word about editors available in the Linux environment

Some editors in Linux

gedit (recomended) easy to use

emacs (hard to use professional editor)

gvim (harder to use professional editor)modal

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.



These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.

The beasts

A word about editors available in the Linux environment

The end

Questions to cbeltran@dist.unige.it

Speaker: Carlos Beltrán-González These strange mystical beasts Compiler, linker, preprocessor, object code, debugger and makefiles.


	Introduction
	The beasts
	From the code to the executable
	Source and Object Code
	Preprocessor
	The compiler
	The Linker
	The debugger
	Step by step compilation
	Putting a project together
	 A word about editors available in the Linux environment


