
Nova library documentation 
Version 1.0 

 
 
 
 
 

Nova is a tiny C++ wrapper library over a larger set of libraries that provide OS 
functionalities over a variety of platform, for example, Windows and Linux. Nova has 
been written by Paul Fitzpatrick and documented by Giorgio Metta. Nova has been 
created as course/teaching support material about the basic concepts of operating systems 
programming. 
 
Nova is distributed with a MS Visual Studio 6.0 SP6 project and Linux Makefile’s. Nova 
is also distributed precompiled for MSVC 6.0 SP6 and Linux Debian gcc 3.xx. 
 
One day this simple manual might evolve into proper Doxygen documentation. 
 
Please send bug reports to Paul Fitzpatrick: paulfitz@csail.mit.edu 
Please send amendments to this manual to Giorgio Metta: pasa@liralab.it 
 



class NovaInit { 
public: 
  static void init(); 
  static void fini(); 
}; 
 

 
This class provides initialization and finalization functionalities to the library by 
constructing and destroy library-specific global objects. 
 
The method init() must be called before any other class and/or library function is used. 
The method fini() is called before completion to free any memory allocated by the 
library. 
 



class NovaThread { 
 
public: 
  NovaThread(); 
  virtual ~NovaThread(); 
 
  virtual void main(); 
 
  void begin(); 
  void end(double grace_period = -1); 
  bool isEnding(); 
 
private: 
  void *system_resource; 
 
}; 
 

 
The NovaThread class provides encapsulation to the OS thread management routines. 
This class is designed to be used as a base class. The method main() can be overridden 
and represents the thread routine (where thread execution starts). The thread is started by 
the invocation of begin() and its termination is requested by calling end(). The thread 
cannot be signalled and thus it must be periodically checking the termination condition 
by calling isEnding(). 
 
The grace_period variable of end() has the following meaning: 

- -1: end() will wait (possibly forever) for the thread to actually terminate 
- 0: the thread is terminated immediately 
- >0: the thread is terminated after waiting for grace_period seconds 

 
No error check is provided (for now) since thread creation should not fail in the simple 
context of this library. 
 



class NovaTime { 
public: 
  static double now(); 
  static void sleep(double seconds); 
}; 
 

 
NovaTime provides an interface to OS time-related functions. It contains two methods: 
now() which returns the current time as a double which represents the number of seconds 
since some suitable origin (e.g. Jan 1st, 1970), and sleep() which blocks the calling thread 
for the specified number of seconds. 
 
 



class NovaSemaphore { 
 
public: 
  NovaSemaphore(int initial_count = 0); 
  virtual ~NovaSemaphore(); 
 
  void wait(); 
  void post(); 
  bool check(); 
 
private: 
  void *system_resource; 
 
}; 

 
 
NovaSemaphore encapsulates the OS semaphore data structure. The constructor is used to 
assign the initial value to the semaphore count. The argument must be greater than 0. The 
method wait() is equivalent to the down operation, that is, if the count is 0 the calling 
thread goes to sleep otherwise the counter is decremented and the caller continues 
execution. Vice versa, the method post() increments the count by one and wakes up a 
sleeping thread on the same semaphore if any. post() will never block. 
Finally the method check() verifies whether the caller would block, that is whether the 
semaphore count is equal to 0. It returns true iff at the time of the call the semaphore 
count is equal 0, otherwise it will decrement the count by one and behave as a normal 
wait(). 
 



class NovaServer { 
public: 
  NovaServer(); 
  virtual ~NovaServer(); 
 
  int begin(int port); 
 
  void accept(NovaClient& client); 
 
private: 
  void *system_resource; 
}; 

 
The NovaServer represents a server side socket factory. Once started, it will wait for 
incoming connections. Upon reception, it allows accepting the connection and the 
instantiation of the appropriate socket to manage the communication channel. 
 
The method to start listening for incoming connection is called begin(). The argument 
port is the TCP protocol port number (e.g. 9999, 8080). This method returns zero if 
initialization of the socket went ok. 
 
To start accepting connections the user must call accept(). The call to accept() will block 
until a new valid connection is established. When accept() returns, the argument client is 
a new object of type NovaClient representing a communication channel which can be 
read or written. 
 



class NovaClient { 
public: 
 
  NovaClient(); 
  virtual ~NovaClient(); 
 
  void connect(const char *hostname, int port); 
 
  int send(const char *data, int len); 
  int receive(char *data, int len, double timeout = -1); 
 
private: 
  void *system_resource; 
 
  friend class NovaServer; 
}; 
 

 
NovaClient encapsulates the communication socket of a TCP connection. It can act both 
on the client and server side. On the client side: 

- The socket is created (constructor). 
- The channel is connected by calling connect(hostname, port) where the hostname 

can be replaced also with the remote IP address and the port argument is the TCP 
port number. 

- Aftter a successful connection either send() or receive() calls can be issued. 
On the server side a NovaClient is returned by calling the accept() method of a 
NovaServer object. In this case the NovaClient object is already connected to the remote 
peer. The send() and receive() methods are available as before. 
 
The send() method requires a pointer to the buffer with the data to send and the length of 
this buffer. The receive method requires the pointer to the data buffer, its size (len), and a 
timeout period in seconds. 
 
receive() returns the number of bytes received or a negative number in case of 
failure/error. 0 is returned to indicate the EOF. 
 
send() returns the number of bytes transferred or a negative number in case of 
failure/error. 
 


