
Yarp Threads Exercise

Carlos Beltran-Gonzalez

October 22, 2007

1 Introduction

In this exercise the student should be able to under-
stand completely what a YARP thread is. The stu-
dent should use the YARP documentation to study
the classes and the library structure. The examples
section, in particular, an example with YARP thread
should be used by the student to develop the work.

Exercise goal

Create a program that starts a number of threads
that write messages in the standard output (termi-
nal).

2 Download the documenta-
tion

Download the yarp documentation using the com-
mand:

wget http://eris.liralab.it/yarp/specs/dox/yarpdoc.zip

In the case the Internet connections is not available
the instructor will distribute the zip file using a pen
drive.

2.1 Decompress

Decompress the documentation in your preferred di-
rectory:

unzip yarpdoc.zip

Access the documentation by using the command:

firefox index.html

The instructor will explain the structure of the
YARP documentation and how to navigate through
the documentation structure

3 Exercise 1

Now, the student should create the threads program.
It is requested to create program that creates three
threads, starts them, sleeps for a second, and then
terminates the threads. Each thread must write in
the standard output an initialization message with
its number. The threads must be created with an ini-
tialization number. Next you can find a pseudocode
of the exercise:

#include<stdio.h>
#include<yarp/os/Thread.h>
#include<yarp/os/Time.h>

class MyThread: public Thread
{

...
public:

virtual bool threadInit()
{

...
}
virtual void run()
{

while(!isStopping())
{

...
}

}
......

};

int main (....)
{

// Here declare your threads
....
// Here start your thread
...
// Here add a delay for the main loop
...

1

// Here stop your threads
...
return 0;

}

TIP: Use previous code

It is recommended to reuse the code development in
the previous exercise (hello world example) and re-
name the necessary parts.

Check the output

When the program has been compiled and running,
check the output and ask the instructor to see your
code.

4 Exercise 2

Make the same thing that before, but this time the
class MyThread must reside in another file. Write
also the corresponding headers file (MyThread.h).
Modify the CMakeLists.txt to include the new file
and modify the code thus everything compiles and
runs nicely as before.

5 Exercise 3 (optional)

Make as before, but this time create and destroy the
Threads dynamically. Use some sort of YARP data
structure to store the references(pointer) to the dy-
namically created thread’s.

6 Exercise 4 (optional)

Concurrent Programming: Make as before but use
a YARP classes to protect the common access of
threads to the standard output. Eventually, cre-
ate a common data structure and protect it with
the YARP classes. TIP!! A YARP class used to
manage concurrent access to process resources is:
yarp::os::Semaphore

References

[1] Yarp Open source project, Yet Another Robotic
Platform, 2004

[2] Bruce Eckel, Thinking in C++, Prentice Hall.

2

