
OS 2007-08 1

Input/Output



OS 2007-08 2

I/O
• One of the functions of the OS, 

controlling the I/O devices
• Wide range in type and speed
• The OS is concerned with how the 

interface between the hardware and the 
user is made

• The goal in designing the OS is to 
provide a uniform interface (e.g. if I 
replace my HD I’d like to see the same 
sort of filesystem)



OS 2007-08 3

Types of devices

• Block devices: random addressable, 
blocks of fixed size
– Example: disks

• Character: stream of date, they don’t 
have a seek operation
– Example: terminal, printer, mouse, etc.

• Others:
– Timers and clocks



OS 2007-08 4

528Mb/sPCI bus

125Mb/sGigabit Ethernet

80Mb/sSCSI ultra 2 disk

60Mb/sXGA monitor

50Mb/sFirewire (IEEE1394)

16.7Mb/sISA bus

12.5Mb/sEthernet (100Mbit)

5Mb/s40x CD

5Mb/sIDE disk

4Mb/sDigital camcorder

1.5Mb/sUSB

1.25Mb/sEthernet (10Mbit)

400Kb/sScanner

16Kb/sISDN line

8Kb/sTelephone channel

7Kb/s56K modem

100 bytes/sMouse

10 bytes/sKeyboard

Data rate [byte/s]Device



OS 2007-08 5

Computer hardware

• Processors
• Memory
• I/O devices
• Buses

CPU Mem Video

Buses

Floppy

…
Controllers

…



OS 2007-08 6

Interface

• Controller and device
– Controller: a piece of electronics
– Device: the mechanics

• Interface
– E.g. for a disk, a bit-stream with a 

preamble, a certain amount of bits (4096) of 
a sector, and finally an error-correcting code
(ECC).



OS 2007-08 7

Example: floppy drive
• Specific chip (NEC PD765)
• 16 different commands
• Load between 1 and 9 bytes into a device 

register
• Read/Write require 13 parameters 

packed into 9 bytes
• Reply from the device consists of 7 bytes 

(23 parameters)
• Control of the motor (on/off)



OS 2007-08 8

Memory mapped I/O
• Two solutions:

– Memory mapped registers or buffers (e.g. 
the display buffer)

– Special I/O instructions
• IN/OUT instructions

– A mix of the two

I/O space

0xFFFF

0x00000x00000000

Memory

0xFFFFFFFF



OS 2007-08 9

Pentium example

• I/O ports (using IN and OUT): 0 to 64K
• I/O buffers: from 640K to 1M

I/O space
0xFFFF

0x0000

640K

0x00000000

I/O buffers
1M

0xFFFFFFFF



OS 2007-08 10

How do they fare in practice?
• Address is put in the bus.

– Another line tells whether the address is I/O or memory.
• For memory mapped I/O:

– C/C++ instructions can write into I/O registers
– No special protection is needed (beside the usual one needed to 

protect memory pages)
– Every instruction can reference memory (e.g. can do a TEST 

without loading into a register first)
• For special I/O instructions:

– Don’t need to disable caching selectively as for memory 
mapped

– Multiple buses, need a way to send the memory address on all 
the buses where it might be required (e.g. memory bus, PCI, 
etc.)

• Pentium solution: the PCI bridge chip(s) does the 
filtering of addresses (e.g. the 640 to 1M area)



OS 2007-08 11

DMA

Address

Count

Control

BUS

1. CPU programs the
DMA controller

CPU

DMA controller Disk controller

Disk

Main memory

2. DMA requests
transfer to memory

Buffer

3. Data transferred

4. Ack

5. Interrupt when done



OS 2007-08 12

DMA’s steps
1. CPU programs the DMA controller by setting its 

registers (where and what to transfer)
2. DMA controller issues the request to read from the 

disk. The memory address where to write to is 
passed along with the READ request

3. Data is read and then transferred to memory 
directly by the HD controller

4. ACK is sent to the DMA controller to tell the 
transfer is completed

5. The DMA controller interrupts the CPU to tell the 
data is in main memory now.



OS 2007-08 13

DMA sophistication

• One word at a time or block mode:
– Word at a time: cycle stealing
– Block or burst mode

• Many lines and multiple requests
– Similar in principle but can accept many 

requests simultaneously

• DMA controllers use physical addresses
– Not virtual addresses



OS 2007-08 14

Interrupts

Interrupt lines

Interrupt controllerCPU

queue

1.2.

3.



OS 2007-08 15

Interrupt (old slide)
• A piece of hardware called “interrupt 

controller”
Disk drive

ControllerInterrupt
controllerCPU

1

2

3

4

1. CPU issues the I/O request
via the device driver

2. On termination the device signals
the CPU’s interrupt controller (if
the interrupt controller is not busy
servicing another higher priority
interrupt)

3. If the interrupt can be handled
then the controller asserts a pin
on the CPU.

4. The interrupt controller puts the 
address of the device into the bus



OS 2007-08 16

On occurrence of interrupt
• Save information about the state of the CPU:

– PC at least
• Where to save the information:

– Stack (page faults?), user or kernel mode?
– Internal registers, beware of a second interrupt, 

interrupting the copy, delay the ACK
• More troubles:

– Pipeline, at the moment of interrupt, some 
instructions are only partly executed, the PC might 
not even point to the last fully executed instruction

– On superscalar CPU things are even worse 
(instructions executed out of order)



OS 2007-08 17

Definition

• Precise interrupt, when:
– The PC is saved in a known place
– All instructions before the one pointed to by 

the PC have fully executed
– No instruction beyond the one pointed to by 

the PC has been executed
– The execution state of the instruction 

pointed to by the PC is known



OS 2007-08 18

Pentium

• Starting from the PPRO the Pentium 
has a superscalar architecture

• The price paid to have precise interrupts 
(and being compatible with 486’s) is in 
chip complexity

• A part of the chip allows instructions to 
complete after the interrupt has been 
issued and empties the remainder of the 
pipeline



OS 2007-08 19

I/O Software



OS 2007-08 20

General goals
• Device independence:

– E.g. use the floppy as you use the HD or CD
• Uniform naming:

– Related to device independence
– Use a common naming system (e.g. within the filesytem

hierarchy)
• Error handling:

– Errors should be handled as low-level as possible, e.g. an 
error on disk might be serviced by re-reading the sector 
already from the controller

• Make calls appear synchronous:
– Blocking vs. non-blocking

• Buffering:
– Keep data being transferred at a constant rate



OS 2007-08 21

Ways of doing I/O

• Programmed I/O
– The CPU does all the work

• Interrupt-driven
– We’ve already said a lot about interrupts

• DMA-based
– We’ve already said a lot about DMA



OS 2007-08 22

Programmed I/O

copy_from_user (buffer, p, count);

for (i = 0; i < count; i++)
{

while (*printer_status_reg != READY);
*printer_data_register = p[i];

}

return_to_user();



OS 2007-08 23

Interrupt-driven I/O
copy_from_user(buffer, p, count);

enable_interrupts();

while (*printer_status_reg!=READY);

*printer_data_register = p[0];

scheduler();

if (count == 0)

{

unblock_user();

}

else

{

*printer_data_register = p[i];

count = count – 1;

i = i + 1;

}

ack_interrupt();

return_from_interrupt();



OS 2007-08 24

DMA-based I/O

copy_from_user(buffer, p, count);

set_up_DMA_controller();

scheduler(); 

ack_interrupt();

unblock_user();

return_from_interrupt();



OS 2007-08 25

Software layers

Hardware

Interrupt handlers

Device drivers

Device-independent OS software

User level I/O software



OS 2007-08 26

Interrupt handlers

• How to hide interrupts:
– Caller – does a Wait on a semaphore
– Interrupt handler – does a Post on the 

semaphore

• The user process knows nothing of the 
interrupt (it just blocks for some time)



OS 2007-08 27

In reality the OS…
• Save any register that wasn’t saved by the HW
• Set up the context for the handler to run.

– E.g. setup TLB, MMU, page table, etc.
• Set up a stack for the handler
• ACK the interrupt controller
• Copy registers from where they were saved (stack)

– E.g. the interrupted process not necessarily will continue next
• Run the interrupt handler

– Maybe communicating again with the HW controller
• Choose which process to run next (scheduler)
• Setup the MMU, TLB, etc. for the process to run next
• Load the new process’ registers
• Start running the new process

• A nightmare!



OS 2007-08 28

Device drivers
• Device-specific code talking to the device 

controller
– E.g. a SCSI driver could control a set of SCSI disks 

or CD
• In order to access the HW, the device driver 

needs to be part of the kernel
– Loadable at run time
– To be compiled into the kernel

• Since the OS writer doesn’t know in advance 
which device will be attached to the machine
– Well-defined model of how the DD interacts with 

the kernel



OS 2007-08 29

Functions
• Character/block interface

– Accept abstract read/write requests and translates 
into actual commands to the HW

• Check status of the device when R/W are 
issued
– E.g. start/stop motor if disk is not ready

• Parameters/addresses conversion
• Blocking vs. non-blocking
• Reentrant code

– An interrupt might cause another request on the 
same device driver already running



OS 2007-08 30

By the way…

• Device drivers are a source of troubles
– In fact, a buggy DD can interfere with the 

kernel leading to unpredictable results
– Likely a system crash!

• A nice architecture would see the DD 
not being part of the kernel
– Microkernel architecture we mentioned 

some time ago



OS 2007-08 31

Device independent I/O

• Uniform interfacing
• Buffering
• Error reporting
• Allocating and releasing dedicated 

devices
• Providing device-independent block size



OS 2007-08 32

Uniform interfacing

• Required, otherwise how could the OS 
call the DD?

• Not all devices are identical, but…
– There is a finite number of classes though

• Protection
– E.g. it is better not to leave anyone the 

control of the printer



OS 2007-08 33

Buffering

• Continuous flow of data
– E.g. from a modem
– Requires something like double-buffering
– Time is required to move data around 

(kernel, user space)

• Buffering can affect performance
– Delay



OS 2007-08 34

Other issues

• Error reporting
– The OS should try to do its best before 

complaining
• Allocation of dedicated devices

– Possible deadlocks
– E.g. a CD burner

• Uniform block size
– Show all disks as having the same block 

size



OS 2007-08 35

User space I/O

• Spooling:
– Daemon + spooling directory
– It solves the problem of not leaving control 

of devices completely to the user
– Example: printer

Daemon

Spooling area

User process

Device driver

Kernel


