Input/Output

One of the functions of the OS, controlling the 1/0
devices

Wide range In type and speed

The OS i1s concerned with how the interface between
the hardware and the user I1s made

The goal in designing the OS is to provide a uniform
Interface (e.qg. iIf | replace my HD I'd like to see the
same sort of filesystem)

Types of devices

OS 2008-09

Device Data rate [byte/s]
Keyboard 10 bytes/s
Mouse 100 bytes/s
56K modem 7Kb/s
Telephone channel 8Kb/s
ISDN line 16Kb/s
Scanner 400Kb/s
Ethernet (10Mbit) 1.25Mb/s
USB 1.56Mb/s
Digital camcorder 4Mb/s
IDE disk 5Mb/s
40x CD 5Mb/s
Ethernet (100Mbit) 12.5Mb/s
ISA bus 16.7Mb/s
Firewire IEEE1394) 50Mb/s
XGA monitor 60Mb/s
SCSI ultra 2 disk 80Mb/s
Gigabit Ethernet 125Mb/s
PCI bus 528Mb/s

Computer hardware

]

T

OS 2008-09

Interface

OS 2008-09

Specific chip (NEC PD765)
16 different commands
_oad between 1 and 9 bytes into a device register

Read/Write require 13 parameters packed into 9
nytes

Reply from the device consists of 7 bytes (23
parameters)

Control of the motor (on/off)

Memory mapped 1/0

OS 2008-09

Pentium example

OS 2008-09

How do they fare in practice?

» Address is put in the bus.
o Another line tells whether the address is I/0 or memory.

* For memory mapped 1/0:
o C/C++ instructions can write into 1/0 registers

o No special protection is needed (beside the usual one needed to
protect memory pages)

o Every instruction can reference memory (e.g. can do a TEST without
loading into a register first)

» For special 1/0 instructions:
o Don’t need to disable caching selectively as for memory mapped
o Multiple buses, need a way to send the memory address on all the
buses where it might be required (e.g. memory bus, PCI, etc.)
» Pentium solution: the PCI bridge chip(s) does the filtering
of addresses (e.g. the 640 to 1M area)

0OS 2008-09

1. CPU programs the
DMA controller oooo Disk

DMA controller ;o oontroller

Main memory

< 5. Interrupt when done

BUS transfer to memory

2. DMA requests >

3. Data transferred

0OS 2008-09

CPU programs the DMA controller by setting its registers
(where and what to transfer)

DMA controller issues the request to read from the disk.
The memory address where to write to Is passed along
with the READ request

Data is read and then transferred to memory directly by
the HD controller

ACK 1s sent to the DMA controller to tell the transfer is
completed

The DMA controller interrupts the CPU to tell the data is
IN main memory now.

DMA sophistication

OS 2008-09

Interrupts

CPU Interrupt controller

| |

1
/
Interrupt'm ,] 0
=

0OS 2008-09

Interrupt (old slide)

* A piece of hardware called “interrupt controller”

1. CPU issues the I/0 request Disk drive
via the device driver
2. On termination the device signals —

the CPU’s interrupt controller if
the interrupt controller is not busy
servicing another higher priority 3

Iinterrupt)

3. If the interrupt can be handled t
then the controller asserts a pin
on the CPU.

4. The interrupt controller puts the 1

address of the device into the bus

On occurrence of interrupt

» Save Information about the state of the CPU:
o PC at least

» Where to save the information:
o Stack (page faults?), user or kernel mode?

o Internal registers, beware of a second interrupt,
Interrupting the copy, delay the ACK

» More troubles:

o Pipeline, at the moment of interrupt, some instructions
are only partly executed, the PC might not even point to
the last fully executed instruction

o On superscalar CPU things are even worse (instructions
executed out of order)

0OS 2008-09

Definition

OS 2008-09

Starting from the PPRO the Pentium has a
superscalar architecture

The price paid to have precise interrupts (and being
compatible with 486’s) is in chip complexity

A part of the chip allows instructions to complete
after the interrupt has been issued and empties the
remainder of the pipeline

/0 Software

OS 2008-09

General goals

OS 2008-09

Ways of doing 1/0

OS 2008-09

Programmed 1/0

OS 2008-09

Interrupt-driven 1/0

OS 2008-09

DMA-based 1/0

OS 2008-09

Software layers

OS 2008-09

Interrupt handlers

OS 2008-09

Save any register that wasn’t saved by the HW

Set up the context for the handler to run.
E.g. setup TLB, MMU, page table, etc.

Set up a stack for the handler
ACK the interrupt controller

Copy registers from where they were saved (stack)
E.g. the interrupted process not necessarily will continue next

Run the interrupt handler
Maybe communicating again with the HW controller

Choose which process to run next (scheduler)

Setup the MMU, TLB, etc. for the process to run next
Load the new process’ registers

Start running the new process

A nightmare!

» Device-specific code talking to the device
controller

E.g. a SCSI driver could control a set of SCSI disks or CD
» In order to access the HW, the device driver needs
to be part of the kernel
Loadable at run time
To be compiled into the kernel
» Since the OS writer doesn’t know In advance which
device will be attached to the machine

Well-defined model of how the DD interacts with the
kernel

Functions

o Character/block interface

Accept abstract read/write requests and translates into
actual commands to the HW

» Check status of the device when R/W are iIssued
E.g. start/stop motor if disk Is not ready

» Parameters/addresses conversion
» Blocking vs. non-blocking

» Reentrant code

An interrupt might cause another request on the same
device driver already running

OS 2008-09

Uniform interfacing

Buffering

Error reporting

Allocating and releasing dedicated devices
Providing device-independent block size

Uniform interfacing

OS 2008-09

Buffering

OS 2008-09

Other i1ssues

OS 2008-09

User space 1/0

OS 2008-09

