
1

OS 2007-08 1

Memory management

OS 2007-08 2

Memory (ideally)

• Ideally…
– Extremely fast (faster than the CPU in 

executing an instruction)
– Abundantly large
– Dirt cheap

OS 2007-08 3

Memory (for real)

Registers

Cache

Main memory

Magnetic disk

Magnetic tape

< 1K

~ 1M

~ 1-4G

~ 5-100G
> 20G

Size

1 nsec

2 nsec

10 nsec

10 msec
100 sec

Typical access time

OS 2007-08 4

Memory cntd.

• Registers: typical 32 in a 32 bit CPU
• Cache: divided into cache lines (64 bytes each)

– Cache hit – no main memory access, no bus 
involvement

– Cache miss – costly

• Main memory
• Disk (multiple plates, heads, arms)

– Logical structure: sectors, tracks, cylinders

• Magnetic tape: backup, cheap, removable

OS 2007-08 5

OS management of memory

• The part of the OS that handles the 
management of the memory is called:
– Surprise, surprise: memory manager!

• Various levels of complicacy
– Depending on the type of OS

• E.g. mono-programming, 
multiprogramming, and so forth

OS 2007-08 6

Specifics of memory management

• Basic memory management strategies
– Monoprogramming without swapping or 

paging
– Multiprogramming with fixed partitions
– Multiprogramming with variable partitions
– Swapping
– Virtual memory: paging
– Virtual memory: segmentation



2

OS 2007-08 7

Mono-programming
• No swapping, a couple of options…

Operating system
(e.g. DOS)

0x00000000

User program and data

Device drivers
(BIOS)

0xFFFF…

User program and data

0x00000000

Operating system
(ROM)

0xFFFF…

Some embedded systems (e.g. PALM)

OS 2007-08 8

Multiprogramming with fixed partitions

Partition 2

Partition 3

Operating system

Partition 1

Partition 4

Multiple queues

Partition 2

Partition 3

Operating system

Partition 1

Partition 4

Single queue

Curiosity: used by the IBM OS/360 (1960 or so) in version called MFT
(multiprogramming with fixed number of tasks)

OS 2007-08 9

Modeling multiprogramming

• Each process spends a fraction p of its 
time waiting for I/O to complete

• If we have n processes, the probability 
that all of them are simultaneously 
waiting for I/O is: 

• CPU utilization is thus:

np

1 np−

OS 2007-08 10

CPU utilization

Number of processes (n)

C
P

U
 u

ti
liz

at
io

n

100

80% I/O wait

50% I/O wait

20% I/O wait

OS 2007-08 11

Example
• A system has 32Mbyte of RAM, OS takes 

16Mbytes
• Each process occupies on average 4Mbytes (4 

processes simultaneously in memory) and has 
20% utilization time (80% blocked on I/O)

• CPU utilization approx 60%
• Buying 16M additional RAM will allow to 

increase multiprogramming to 8, CPU 
utilization will get to about 83%

• Another 16M will get from 83 to 93%, 
depending on memory price we can make an 
informed choice

OS 2007-08 12

Relocation and protection

• Relocation when loading the code. The 
linker stores some additional 
information which is used at load time 
to relocate (rewrite) every single 
instruction referencing memory.

• HW support through the use of base and 
limit registers

• Partial support, only base but no limit



3

OS 2007-08 13

Swapping and virtual memory

• Swapping: whole process data/code in 
memory when running

• Virtual memory: only part of the 
data/code in memory

OS 2007-08 14

Swapping

Operating system

A

B

Operating system

A

C

B

Operating system

A

C

B

Operating system

D

OS 2007-08 15

Swapping cntd.

• Memory compaction (remove holes)
• If processes could grow (by allocating 

memory on a heap like in many 
programming languages), how does the 
OS take care of it?

• Many different solutions: e.g. reserve 
room for growth or swap the process out 
and relocate it to a bigger memory 
partition, etc.

OS 2007-08 16

How is it implemented?

• Bitmaps
– Memory is divided into allocation units
– Each bit of the bitmap represents a unit

(1 = used, 0 = free)
– The size of allocation unit is an important 

design issue (less unused memory, bigger 
bitmap)

– Search bitmaps when loading in a new 
process for k consecutive free allocation 
units

OS 2007-08 17

How is it implemented?

• Linked lists
– A linked list may store: 

• Information about a process or a hole
• Address where it starts
• Length
• Pointer to the next element

– Merging operation (e.g. two consecutive 
holes)

– Process’ table entry will contain a pointer to 
the element in the list relative to it

OS 2007-08 18

Different algorithms

• First fit: the first hole that fits the process is 
used (hole is broken down into two pieces)

• Next fit: it doesn’t start from the beginning, 
simply restart from where it left the previous 
search

• Best fit: search the whole list for the smallest 
hole that fits

• Performance: best fit creates a lot of 
fragmentation in practice, first fit tends to 
leave larger holes (less fragmentation)



4

OS 2007-08 19

Fragmentation

• Internal: partition or page not fully used 
by a given process

• External: entire partitions or free space 
(holes) not used because no process fits 
in the size of any of the holes

OS 2007-08 20

Fragmentation

D

C

B

Operating system

D
Internal: using the partition 
but leaving some memory unused

External: processes are all too 
big to run on empty partitions

OS 2007-08 21

MVT

• Curiosity: used by the IBM OS/360 
(1960 or so) in a version called MVT 
(multiprogramming with variable 
number of tasks):
– Dynamical partitions: sized as the size of 

processes
– Swapping: as described earlier

OS 2007-08 22

Virtual memory

• Once upon a time there was the 
“overlay”

• In practice programmer divided the 
program (by hand) into many parts that 
could be swapped in and out from disk 
(overlaid onto unused parts)

• Why don’t we delegate this function to 
the machine itself?

• Virtual memory was born!

OS 2007-08 23

Demand paging

• Pages are loaded from disk only when needed 
(demanded)

• Process that causes the page fault can be 
considered blocked for I/O (and another 
process could run)

• Swapping (of pages), lazy backing store (e.g. 
“lazy” means that pages are only loaded when 
needed otherwise the system does nothing, it 
doesn’t swap entire processes)

OS 2007-08 24

Paging

Bus

Memory Disk 
controller

CPU

CPU package MMU

CPU sends
virtual addresses

to the MMU

MMU sends physical
addresses to memory



5

OS 2007-08 25

Paging can be

• Pure: for every logical page there exists 
a physical page, always everything 
available in memory

• On demand: at any given instant only a 
subset of the virtual address space is in 
memory (but everything is still 
consistent)

OS 2007-08 26

MMU’s internals

20-4K

14-8K

68-12K

012-16K

416-20K

320-24K

X24-28K

X28-32K

X32-36K

536-40K

X40-44K

744-48K

X48-52K

X52-56K

X56-60K

X60-64K

Virtual address space

0-4K

4-8K

8-12K

12-16K

16-20K

20-24K

24-28K

28-32K

Physical address space

Virtual page

Page frame

OS 2007-08 27

Example

• MOV REG,0
– CPU sends request for address 0
– MMU looks for 0 and sees that the page 

containing virtual address 0 is at frame 2
– It thus adds 8192 (frame 2 start address)
– MMU finally sends 8192 on the bus

OS 2007-08 28

Since memory is finite

• Present/absent bit in the virtual page table 
(the X’s in the picture)

• Same as before:
– MOV REG,32780 what happens?

• Page fault, the page is not in physical memory 
but rather on the disk

• The OS needs to evict a page from main 
memory and to replace it with the missing 
page, to update the MMU’s tables, and to 
restart the instruction that caused the fault

OS 2007-08 29

Operation of the MMU

0000000001000010

Virtual page table

000000000100110

Virtual page index

To bus

8196

24580

Present/absent
bit for each entry

OS 2007-08 30

Is it a simple task?

• The page table can be extremely large
– 32bits systems with a 4K-page size has 

more than a million pages
– 64bits 2^52 pages? Gosh!

• The mapping must be fast (VERY fast)
– Every memory reference requires a virtual 

to physical conversion, a single instruction 
might have >1 reference



6

OS 2007-08 31

Where’s the page table?

• Within the MMU
– Every context switch requires loading the 

whole page table into the MMU registers, 
good because it doesn’t require more 
memory reference afterwards

• Memory
– A single pointer to the table needs to be 

reloaded in a context switch, more memory 
references (to the page table) are required 
for mapping each memory reference

OS 2007-08 32

Multi-level page tables
• Example: 32 bits could be partitioned as 

a 10-bit pointer to level 1 table, 10-bit to 
level 2 and 12-bit offset fields

OffsetPT2PT1

0

1

2

3

4

5

…

1023

PT1

0

1

2

3

4

5

…

1023

0

1

2

3

4

5

…

1023

0

1

2

3

4

5

…

1023

0

1

2

3

4

5

…

1023

0

1

2

3

4

5

…

1023

PT2

Address to the page

Offset

Each points to 4Mbytes of pages

OS 2007-08 33

About the page table

Page frame #Present/AbsentProtectionModifiedReferencedCaching 
disabled

• Present/absent: in memory?
• Protection bits: e.g. read/write/execute
• Modified: whether any address has been changed, 

rewrite to disk is required before evicting the page
• Referenced: used by the OS to decide which page to 

evict
• Caching: may be used to avoid caching pages required 

for I/O

OS 2007-08 34

TLBs

• Translation Lookaside Buffers
– Page tables in memory require additional 

memory accesses, unpractical
– Most programs tend to make a large 

number of references to a small number of 
pages

– Use something called a TLB or Associative 
Memory

OS 2007-08 35

What does the TLB do?

14RW18601

38RX0201

31RW11401

Page frameProtectionModifiedVirtual pageValid

• Small number of entries, within the MMU, fast
• Association (direct) of virtual page to page frame
• Parallel compare over the whole table, if virtual page 

is not there, do the normal lookup (over memory) and 
then evict an entry and replace with the new one

OS 2007-08 36

Additional issues

• Software TLB management
– Some microprocessors don’t have the TLB 

completely in HW, the handling of the TLB fault is 
done in SW (i.e. the OS does it)

• Inverted Page Tables
– Imagine a 64 bit computer: page tables would be 

too big
– Inverted table, one per page frame rather than per 

page
– It requires a search (potentially slow), needs a good 

implementation (fast) and a possibly large TLB


