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Memory management

OS 2007-08 2

Memory (ideally)

• Ideally…
– Extremely fast (faster than the CPU in 

executing an instruction)
– Abundantly large
– Dirt cheap
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Memory (for real)

Registers

Cache

Main memory

Magnetic disk

Magnetic tape

< 1K

~ 1M

~ 1-4G

~ 5-100G
> 20G

Size

1 nsec

2 nsec

10 nsec

10 msec
100 sec

Typical access time
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Memory cntd.

• Registers: typical 32 in a 32 bit CPU
• Cache: divided into cache lines (64 bytes each)

– Cache hit – no main memory access, no bus 
involvement

– Cache miss – costly

• Main memory
• Disk (multiple plates, heads, arms)

– Logical structure: sectors, tracks, cylinders

• Magnetic tape: backup, cheap, removable
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OS management of memory

• The part of the OS that handles the 
management of the memory is called:
– Surprise, surprise: memory manager!

• Various levels of complicacy
– Depending on the type of OS

• E.g. mono-programming, 
multiprogramming, and so forth
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Specifics of memory management

• Basic memory management strategies
– Monoprogramming without swapping or 

paging
– Multiprogramming with fixed partitions
– Multiprogramming with variable partitions
– Swapping
– Virtual memory: paging
– Virtual memory: segmentation
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Mono-programming
• No swapping, a couple of options…

Operating system
(e.g. DOS)

0x00000000

User program and data

Device drivers
(BIOS)

0xFFFF…

User program and data

0x00000000

Operating system
(ROM)

0xFFFF…

Some embedded systems (e.g. PALM)
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Multiprogramming with fixed partitions

Partition 2

Partition 3

Operating system

Partition 1

Partition 4

Multiple queues

Partition 2

Partition 3

Operating system

Partition 1

Partition 4

Single queue

Curiosity: used by the IBM OS/360 (1960 or so) in version called MFT
(multiprogramming with fixed number of tasks)
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Modeling multiprogramming

• Each process spends a fraction p of its 
time waiting for I/O to complete

• If we have n processes, the probability 
that all of them are simultaneously 
waiting for I/O is: 

• CPU utilization is thus:

np

1 np−
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CPU utilization

Number of processes (n)
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100

80% I/O wait

50% I/O wait

20% I/O wait
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Example
• A system has 32Mbyte of RAM, OS takes 

16Mbytes
• Each process occupies on average 4Mbytes (4 

processes simultaneously in memory) and has 
20% utilization time (80% blocked on I/O)

• CPU utilization approx 60%
• Buying 16M additional RAM will allow to 

increase multiprogramming to 8, CPU 
utilization will get to about 83%

• Another 16M will get from 83 to 93%, 
depending on memory price we can make an 
informed choice
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Relocation and protection

• Relocation when loading the code. The 
linker stores some additional 
information which is used at load time 
to relocate (rewrite) every single 
instruction referencing memory.

• HW support through the use of base and 
limit registers

• Partial support, only base but no limit
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Swapping and virtual memory

• Swapping: whole process data/code in 
memory when running

• Virtual memory: only part of the 
data/code in memory
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Swapping

Operating system

A

B

Operating system

A

C

B

Operating system

A

C

B

Operating system

D
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Swapping cntd.

• Memory compaction (remove holes)
• If processes could grow (by allocating 

memory on a heap like in many 
programming languages), how does the 
OS take care of it?

• Many different solutions: e.g. reserve 
room for growth or swap the process out 
and relocate it to a bigger memory 
partition, etc.
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How is it implemented?

• Bitmaps
– Memory is divided into allocation units
– Each bit of the bitmap represents a unit

(1 = used, 0 = free)
– The size of allocation unit is an important 

design issue (less unused memory, bigger 
bitmap)

– Search bitmaps when loading in a new 
process for k consecutive free allocation 
units
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How is it implemented?

• Linked lists
– A linked list may store: 

• Information about a process or a hole
• Address where it starts
• Length
• Pointer to the next element

– Merging operation (e.g. two consecutive 
holes)

– Process’ table entry will contain a pointer to 
the element in the list relative to it
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Different algorithms

• First fit: the first hole that fits the process is 
used (hole is broken down into two pieces)

• Next fit: it doesn’t start from the beginning, 
simply restart from where it left the previous 
search

• Best fit: search the whole list for the smallest 
hole that fits

• Performance: best fit creates a lot of 
fragmentation in practice, first fit tends to 
leave larger holes (less fragmentation)
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Fragmentation

• Internal: partition or page not fully used 
by a given process

• External: entire partitions or free space 
(holes) not used because no process fits 
in the size of any of the holes
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Fragmentation

D

C

B

Operating system

D
Internal: using the partition 
but leaving some memory unused

External: processes are all too 
big to run on empty partitions
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MVT

• Curiosity: used by the IBM OS/360 
(1960 or so) in a version called MVT 
(multiprogramming with variable 
number of tasks):
– Dynamical partitions: sized as the size of 

processes
– Swapping: as described earlier
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Virtual memory

• Once upon a time there was the 
“overlay”

• In practice programmer divided the 
program (by hand) into many parts that 
could be swapped in and out from disk 
(overlaid onto unused parts)

• Why don’t we delegate this function to 
the machine itself?

• Virtual memory was born!
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Demand paging

• Pages are loaded from disk only when needed 
(demanded)

• Process that causes the page fault can be 
considered blocked for I/O (and another 
process could run)

• Swapping (of pages), lazy backing store (e.g. 
“lazy” means that pages are only loaded when 
needed otherwise the system does nothing, it 
doesn’t swap entire processes)
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Paging

Bus

Memory Disk 
controller

CPU

CPU package MMU

CPU sends
virtual addresses

to the MMU

MMU sends physical
addresses to memory
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Paging can be

• Pure: for every logical page there exists 
a physical page, always everything 
available in memory

• On demand: at any given instant only a 
subset of the virtual address space is in 
memory (but everything is still 
consistent)
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MMU’s internals

20-4K

14-8K

68-12K

012-16K

416-20K

320-24K

X24-28K

X28-32K

X32-36K

536-40K

X40-44K

744-48K

X48-52K

X52-56K

X56-60K

X60-64K

Virtual address space

0-4K

4-8K

8-12K

12-16K

16-20K

20-24K

24-28K

28-32K

Physical address space

Virtual page

Page frame
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Example

• MOV REG,0
– CPU sends request for address 0
– MMU looks for 0 and sees that the page 

containing virtual address 0 is at frame 2
– It thus adds 8192 (frame 2 start address)
– MMU finally sends 8192 on the bus
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Since memory is finite

• Present/absent bit in the virtual page table 
(the X’s in the picture)

• Same as before:
– MOV REG,32780 what happens?

• Page fault, the page is not in physical memory 
but rather on the disk

• The OS needs to evict a page from main 
memory and to replace it with the missing 
page, to update the MMU’s tables, and to 
restart the instruction that caused the fault
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Operation of the MMU

0000000001000010

Virtual page table

000000000100110

Virtual page index

To bus

8196

24580

Present/absent
bit for each entry
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Is it a simple task?

• The page table can be extremely large
– 32bits systems with a 4K-page size has 

more than a million pages
– 64bits 2^52 pages? Gosh!

• The mapping must be fast (VERY fast)
– Every memory reference requires a virtual 

to physical conversion, a single instruction 
might have >1 reference
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Where’s the page table?

• Within the MMU
– Every context switch requires loading the 

whole page table into the MMU registers, 
good because it doesn’t require more 
memory reference afterwards

• Memory
– A single pointer to the table needs to be 

reloaded in a context switch, more memory 
references (to the page table) are required 
for mapping each memory reference
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Multi-level page tables
• Example: 32 bits could be partitioned as 

a 10-bit pointer to level 1 table, 10-bit to 
level 2 and 12-bit offset fields

OffsetPT2PT1

0

1

2

3

4

5

…

1023

PT1

0

1

2

3

4

5

…

1023

0

1

2

3

4

5

…

1023

0

1

2

3

4

5

…

1023

0

1

2

3

4

5

…

1023

0

1

2

3

4

5

…

1023

PT2

Address to the page

Offset

Each points to 4Mbytes of pages
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About the page table

Page frame #Present/AbsentProtectionModifiedReferencedCaching 
disabled

• Present/absent: in memory?
• Protection bits: e.g. read/write/execute
• Modified: whether any address has been changed, 

rewrite to disk is required before evicting the page
• Referenced: used by the OS to decide which page to 

evict
• Caching: may be used to avoid caching pages required 

for I/O
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TLBs

• Translation Lookaside Buffers
– Page tables in memory require additional 

memory accesses, unpractical
– Most programs tend to make a large 

number of references to a small number of 
pages

– Use something called a TLB or Associative 
Memory
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What does the TLB do?

14RW18601

38RX0201

31RW11401

Page frameProtectionModifiedVirtual pageValid

• Small number of entries, within the MMU, fast
• Association (direct) of virtual page to page frame
• Parallel compare over the whole table, if virtual page 

is not there, do the normal lookup (over memory) and 
then evict an entry and replace with the new one
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Additional issues

• Software TLB management
– Some microprocessors don’t have the TLB 

completely in HW, the handling of the TLB fault is 
done in SW (i.e. the OS does it)

• Inverted Page Tables
– Imagine a 64 bit computer: page tables would be 

too big
– Inverted table, one per page frame rather than per 

page
– It requires a search (potentially slow), needs a good 

implementation (fast) and a possibly large TLB


