
OS 2007-08 1

Page replacement algorithms



OS 2007-08 2

When a page fault occurs

• OS has to choose a page to evict from 
memory

• If the page has been modified, the OS 
has to schedule a disk write of the page

• The page just read overwrites a page in 
memory (e.g. 4Kbytes)

• Clearly, it’s better not to pick a page at 
random

• Same problem applies to memory caches



OS 2007-08 3

Benchmarking

• Tests are done by generating page 
references (either from real code or 
random)

• Sequences of page numbers (no real 
address, no offset)

• Example:

10710212303240302107



OS 2007-08 4

Optimal page replacement
• At the moment of page fault:

– Label each page in memory is labeled with 
the number of instructions that will be 
executed before that page is first referenced

– Replace the page with the highest number: 
i.e. postpone as much as possible the next 
page fault

• Nice, optimal, but unrealizable
– The OS can’t look into the future to know 

how long it’ll take to reference every page 
again



OS 2007-08 5

Example: optimal

Sequence

Phy
s m

em

PF

6 page faults



OS 2007-08 6

Belady’s anomaly

Try this sequence

With 3 page frames

With 4 page frames

With FIFO, with the optimal algorithm, (later) with the LRU



OS 2007-08 7

“Not recently used” algorithm
• Use Referenced and Modified bits
• R&M are in hardware, potentially changed at 

each reference to memory
– R&M are zero when process is started

• On clock interrupt the R bit is cleared
• On page fault, to decide which page to evict:

– Classify:
• Class 0 – R=0,M=0 
• Class 1 – R=0,M=1
• Class 2 – R=1,M=0
• Class 3 – R=1,M=1

– Replace a page at random from the lowest class



OS 2007-08 8

FIFO replacement

• FIFO, first in first out for pages
• Clearly not particularly optimal
• It might end up removing a page that is 

still referenced since it only looks at the 
page’s age

• Rarely used in pure form…

1 8 3 7 2 

Next removal

Latest load



OS 2007-08 9

Example (FIFO)

Sequence

Phy
s m

em

PF

12 page faults



OS 2007-08 10

“Second chance” algorithm
• Like FIFO but…
• Before throwing out a page checks the R 

bit:
– If 0 remove it
– If 1 clear it and move the page to the end of 

the list (as it were just been loaded)
– If all pages have R=1, eventually the 

algorithm degenerates to FIFO (why?)

1 8 3 7 2 

Latest load



OS 2007-08 11

Clock page algorithm

• Like “second chance” but…
• …implemented differently:

– Check starting from the
latest visited page

– More efficient:
doesn’t have to move
list’s entries all the 
time

c

d

ef

h

g

ba



OS 2007-08 12

Least recently used (LRU)

• Pages recently used tend to be used again soon 
(on average)

• Idea! Get a counter, maybe a 64bit counter
• Store the value of the counter in each entry of 

the page table (last access time to the page)
• When is time to remove a page, find the lowest 

counter value (this is the LRU page)

• Nice & good but expensive: it requires 
dedicated hardware



OS 2007-08 13

Example LRU

Sequence

Phy
s m

em

PF

9 page faults



OS 2007-08 14

NFU algorithm
• Since LRU is expensive
• NFU: “Not Frequently Used” algorithm
• At each clock interrupt add the R bit to a 

counter for each page: i.e. count how 
often a page is referenced

• Remove page with lowest counter value
• Unfortunately, this version tends not to 

forget anything



OS 2007-08 15

Aging (NFU + forgetting)

• Take NFU but…
• At each clock interrupt:

– Right shift the counters (divide by 2)
– Add the R bit to the left (MSB)

• As for NFU remove pages with lowest counter

• Note: this is different from LRU since the time 
granularity is a clock tick and not every 
memory reference!



OS 2007-08 16

Process’ behavior

• Locality of reference: most of the time 
the last k references are within a finite 
set of pages < a large address space

• The set of pages a process is currently 
using is called the working set of the 
process

• Knowing the working set of processes we 
can do very sophisticate things (e.g. pre-
paging)



OS 2007-08 17

Working set

k-most-recent memory references

W
or

ki
ng

 s
et



OS 2007-08 18

WS based algorithm
• Store time information in the table entries
• At clock interrupt handle R bits as usual 

(clear them)
• At page fault, scan entries:

– If R=1 just store current time in the entry
– If R=0 compute “current-last time page was 

referenced” and if > threshold the page can be 
removed since it’s no longer in the working set (not 
used for threshold time)

• Note: we’re using time rather than actual 
memory references



OS 2007-08 19

WSClock algorithm

• Use the circular structure (as seen 
earlier)

• R=1, page in the WS – don’t remove it
• R=0, M=0 no problem (as before)
• M=1, schedule disk write appropriately 

to procrastinate as long as possible a 
process switch
– No write is schedulable (R=1 always), just 

choose a clean page



OS 2007-08 20

Summary

Good and efficientWSClock

Expensive to implementWorking set

Efficient in approximating LRUAging

Crude approx to LRUNFU

Excellent but difficult to 
implement

LRU (Least Recently Used)

Realistic (better implementation)Clock

Big improvement over FIFOSecond chance

Might throw out important pagesFIFO

Very crudeNRU (Not recently used)

Not implementable, useful for 
benchmarking

Optimal

CommentAlgorithm



OS 2007-08 21

Design issues



OS 2007-08 22

Design issues

• Local vs. global allocation policy
– When a page fault occurs, whose page 

should the OS evict?

• Which process should get more or less 
pages?
– Monitor the number of page faults for every 

process (PFF – page fault frequency)
– For many page replacement algorithms, the 

more pages the less page faults



OS 2007-08 23

Page fault behavior

Number of page frames assigned

P
ag

e 
fa

ul
ts

/s
ec

Thrashing

Too many pages

Optimal (fair to others)



OS 2007-08 24

Load control

• If the WS of all processes > memory, 
there’s thrashing

• E.g. the PFF says a process requires 
more memory but none require less

• Solution: swapping – swap a process out 
of memory and re-assign its pages to 
others



OS 2007-08 25

Page size

• Page size p, n pages of memory
• Average process size s, in pages s/p
• Each entry in the page table requires e bytes
• On average p/2 is lost (fragmentation)
• Internal fragmentation: how much memory is 

not used within pages
• Wasted memory: p/2 + se/p
• Minimizing it yields the optimal page size 

(under simplifying assumptions)



OS 2007-08 26

Two memories

• Separate data and program address 
spaces

• Two independent spaces, two paging 
systems

• The linker must know about the two 
address spaces



OS 2007-08 27

Other issues

• Shared pages, handle shared pages (e.g. 
program code)
– Sharing data (e.g. shared memory)

• Cleaning policy
– Paging algorithms work better if there are a lot of 

free pages available
– Pages need to be swapped out to disk
– Paging daemon (write pages to disk during spare 

time and evict pages if there are to few)



OS 2007-08 28

Page fault handling
1. Page fault, the HW traps to the kernel

1. Perhaps registers are saved (e.g. stack)
2. Save general purpose microprocessor information (registers, PC, PSW, 

etc.)
3. The OS looks for which page caused the fault (sometimes this 

information is already somewhere within the MMU)
4. The system checks whether the process has access to the page 

(otherwise a protection fault is generated, and the process killed)
5. The OS looks for a free page frame, if none is found then the 

replacement algorithm is run
6. If the selected page is dirty (M=1) a disk write is scheduled (suspending 

the calling process)
7. When the page frame is clean, the OS schedules another transfer to read 

in the required page from disk
8. When the load is completed, the page table is updated consequently
9. The faulting instruction is backed up, the situation before the fault is 

restored, the process resumes execution


