Memory management

OS 2008-09

Memory (ideally)

OS 2008-09

Memory (for real)

Typical access time

Size
1 nsec <1K
2 nsec ~ 1M
10 nsec ~1-4C
10 msec ~ 5.100C
100 sec > 200

0OS 2008-09

» Registers: typical 32 ina 32 bit CPU

» Cache: divided into cache lines (64 bytes each)
Cache hit — no main memory access, no bus involvement
Cache miss — costly

» Main memory

» Disk (multiple plates, heads, arms)
Logical structure: sectors, tracks, cylinders

» Magnetic tape: backup, cheap, removable

The part of the OS that handles the management of
the memory is called:
Surprise, surprise: memory manager!

Various levels of complicacy
Depending on the type of OS

E.g. mono-programming, multiprogramming, and so
forth

Specifics of memory management

OS 2008-09

Mono-programming

OS 2008-09

Multiprogramming with fixed partitions

Curiosity: used by the IBM OS/360 (1960 or so) in version called MFT

Multiple queues Single queue

OS 2008-09

Each process spends a fraction p of its time waiting
for 1/0 to complete

If we have n processes, the probability that all of
them are simultaneously waiting for 1/0 is: p”

CPU utilization is thus: 1— p"

CPU utilization

OS 2008-09

A system has 32Mbyte of RAM, OS takes 16 Mbytes

Each process occupies on average 4Mbytes (4
processes simultaneously in memory) and has 20%
utilization time (80% blocked on 1/0)

CPU utilization approx 60%

Buying 16M additional RAM will allow to increase
multiprogramming to 8, CPU utilization will get to
about 83%

Another 16M will get from 83 to 93%, depending
on memory price we can make an informed choice

Relocation when loading the code. The linker stores
some additional information which is used at load
time to relocate (rewrite) every single instruction
referencing memory.

HW support through the use of base and limit
registers

Partial support, only base but no limit

Swapping and virtual memory

OS 2008-09

Z _
: B

Memory compaction (remove holes)

If processes could grow (by allocating memory on a
heap like In many programming languages), how
does the OS take care of it?

Many different solutions: e.g. reserve room for

growth or swap the process out and relocate it to a
bigger memory partition, etc.

How is it implemented?

OS 2008-09

How is it implemented?

OS 2008-09

First fit: the first hole that fits the process is used
(hole is broken down into two pieces)

Next fit: it doesn’t start from the beginning, simply
restart from where it left the previous search

Best fit; search the whole list for the smallest hole
that fits

Performance: best fit creates a lot of fragmentation
In practice, first fit tends to leave larger holes (less
fragmentation)

Internal: partition or page not fully used by a given
process

External: entire partitions or free space (holes) not
used because no process fits in the size of any of

the holes

Fragmentation

OS 2008-09

Once upon a time there was the “overlay”

In practice programmer divided the program (by
hand) into many parts that could be swapped in and
out from disk (overlaid onto unused parts)

Why don’t we delegate this function to the machine
itself?
Virtual memory was born!

Pages are loaded from disk only when needed
(demanded)

Process that causes the page fault can be
considered blocked for 1/0 (and another process

could run)

Swapping (of pages), lazy backing store (e.g. “lazy”
means that pages are only loaded when needed
otherwise the system does nothing, it doesn’t swap
entire processes)

Disk

controller

OS 2008-09

Pure: for every logical page there exists a physical
page, always everything available in memory

On demand: at any given instant only a subset of the
virtual address space is in memory (but everything is
still consistent)

Virtual-addressspace

60-64K

| ___— Virtual page

56-60K

52-56K

48-52K

Physical address space

44-48K

40-44K

36-40K

32-36K

28-32K

24-28K

20-24K

16-20K

X

12-16K

8-12K

4-8K

0-4K

D[R [|k [[<< <| <

N

28-32K
24-28K
20-24K
16-20K
12-16K
8-12K
4-8K
0-4K

Page frame

OS 2008-09

Present/absent bit in the virtual page table (the X’s
In the picture)

Same as before:
MOV REG,32780 what happens?

Page fault, the page is not in physical memory but
rather on the disk

The OS needs to evict a page from main memory
and to replace it with the missing page, to update
the MMU's tables, and to restart the instruction
that caused the fault

OS 2008-09

Is it a simple task?

OS 2008-09

Where’s the page table?

OS 2008-09

» Example: 32 bits could be partitioned as a 10-bit
pointer to level 1 table, 10-bit to level 2 and 12-bit

offset fields
PT1 PT2 Offset
Address to the page
1023 |
—1 1023 | /
| T 1022 |
PT1 o [S e /
Ny
9] 4 Offset
PT2 41"
— — 1 3
2 _o_l—1 Es
\ RiE
L !
0¥ — 0

Multi-level page tables

Each points to 4Mbytes of pages

Present/absent: in memory?
Protection bits: e.g. read/write/execute

Modified: whether any address has been changed, rewrite
to disk Is required before evicting the page

Referenced: used by the OS to decide which page to evict

Caching: may be used to avoid caching pages required for
170

Caching | Referenced | Modified | Protection | Present/Absent Page frame #
disabled

OS 2008-09

Small number of entries, within the MMU, fast
Association (direct) of virtual page to page frame

Parallel compare over the whole table, if virtual page is
not there, do the normal lookup (over memory) and then

evict an entry and replace with the new one

Valid

Virtual page

Modified

Protection

Page frame

1

140

1

RW

31

1

20

0

RX

38

860

RW

14

Additional issues

OS 2008-09

