
1

OS 2007-08 1

Scheduling

OS 2007-08 2

Issue

• When a computer is multiprogrammed it
frequently has multiple processes
competing for the CPU at the same time

Running

ReadyBlocked

• A choice has to be made which process to
run next

OS 2007-08 3

• the part of the operating system that
makes this decision is called the
scheduler

• the algorithm it uses is called the
scheduling algorithm

• scheduling may involve both processes
and threads

OS 2007-08 4

Other issues

• depending on the application different
scheduling strategies can make a difference
example:
simple PC
networked server

• process switching is expensive
user mode � kernel mode
save the state of current process
run the scheduler
load MMU
run new program
� the cache is now spoiled

OS 2007-08 5

Process behavior

A

B

Long CPU burst
I/O request (wait)

timeShort CPU burst I/O request (wait)

A spends most of his time computing, it is called compute-bound
B spends most of his time waiting for I/O, it is called I/O-bound

OS 2007-08 6

When to schedule

• a new process is created
- select the new one or keep the current one running

• a process terminates
- select and run another process, if any

• a process blocks (semaphore, I/O)
- dependencies btw processes may improve scheduling

• I/O interrupt
- run a waiting process

• hardware clock
- run the scheduler each clock interrupt or every k-th clock interrupt

2

OS 2007-08 7

Scheduling can be divided:

• non preemptive
- picks a process to run
- lets it run until it blocks, terminates or voluntary releases the
CPU
- after clock interrupt, resume the process that was running
before

• preemptive
- picks a process to run
- after a maximum amount of some fixed time suspends it
(if still running)
- picks another process to run (if any available)
- requires clock

OS 2007-08 8

Scheduling: common goals

• fairness
- comparable processes should get comparable service (CPU time)

• policy enforcement
- different categories of processes may be treated differently

• balance
- try to keep all the part of the system busy when possible

OS 2007-08 9

Scheduling: specific goals

• batch systems
- throughput: # of processes completed per unit of time (hour)
- turnaround time: average time to completion
- CPU utilization

• interactive systems
- response time (clear)
- proportionality (with the difficulty of the task)

• real-time systems
- meeting deadlines
- predictability

OS 2007-08 10

Scheduling in Batch Systems (1)

• First-Come First-Served
nonpreemptive
the CPU is assigned in the order processes require it
when the running process blocks the following one in the queue is
selected
when a blocked process becomes ready it is put on the end of the
queue
simple (a single queue), fair
not optimal

• Shortest Job First
nonpreemptive
suppose we know the run-time in advance
the CPU is assigned to the shortest job in the queue
optimal if all the jobs are available at the same time

OS 2007-08 11

Example (1)

A B DC

8 4 4 4

AB DC

4 4 4 8

turnaround:
A = 8
B = 12
C = 16
D = 20
average= 16

turnaround:
B = 4
C = 8
D = 12
A = 20
average= 11

suppose a,b,c,d
ta = a
tb = a+b
tc = a+b+c
td = a+b+c+d

average = ¼(4a+3b+2c+d) � shortest time first is optimal
OS 2007-08 12

Scheduling in Batch Systems (2)

• Shortest Remaining Time Next
preemptive (it is a preemptive version of the SJF)
the scheduler here chooses the process whose remaining run-time
is the shortest
the time has to be known in advance
new short jobs get good service

3

OS 2007-08 13

Example (2)
compare with a preemptive algorithm

A, runs for 1s and blocks for I/O
B, C, D blocks after short time, they need to

perform 1000 disk reads

A

B

C

D

A

B

C

D

B, C, D, take at least 1000s to complete

A

OS 2007-08 14

Scheduling in Interactive
Systems (1)

• Round Robin
each process is assigned a time interval, called quantum
if the process is still running at the end of its quantum, the CPU
is preempted and given to another process

B D F G A

next process
current process

D F G A B

current process B blocked or finished its quantum

OS 2007-08 15

Scheduling in Interactive
Systems (2)

• Issues with Round Robin
length of the quantum
too short � context switch overhead
too long � poor response to short interactive requests
usually a reasonable value is 20-50 ms

• Priority Scheduling
each process is assigned a priority
priorities can be assigned:
- statically
- dynamically: e.g. assign more CPU to I/O bound processes

divide processes in classes depending on priority
use priority scheduling within classes
round robin within classes

OS 2007-08 16

Example, 4 priority classes

Priority 4 P1 P2 P3

P4 P5

P6 P7 P8

P9

Priority 3

Priority 2

Priority 1

highest priority

lowest priority

OS 2007-08 17

assign priority depending on the fraction of
quantum each process has used

example: time slice 50ms
process A uses 1ms, f=1/50, priority = 50
process B uses 50 ms, f=50/50, priority = 1

Example: dynamic priority

1
P

f
=

OS 2007-08 18

Scheduling in Interactive
Systems (3)

• Shortest Process Next
shortest job produces the minimum average response time for
batch systems
the problem here is figuring which of the runnable processes is
the shortest one
solution: use estimates based on past behavior

�

� �
1

 measured run-time at time i

 estimate run-time at time i

(1)

i

i

n n n

T

T

T aT a T−= + −

0 0 0 31 1 2 1 2
0

Example: 0.5

, , ,
2 2 4 4 2 8 8 4 2

a

T T T TT T T T T
T

=

+ + + + + +

4

OS 2007-08 19

Scheduling in Interactive
Systems (4)

• Guaranteed Scheduling
make promises about performance to the users/processes
compute the real amount of CPU a user/process has consumed
increase priority accordingly
difficult to implement

• Lottery Scheduling
basic idea: give processes lottery tickets for various system
resources (CPU time)
whenever a scheduling decision is required a lottery ticket is
randomly chosen
similar to priority scheduling, but:
- the rule is clearer
- interesting properties: tickets can be exchanged (a process/user
can own/trade tickets)

OS 2007-08 20

Scheduling in Interactive
Systems (4)

• Fair-Share Scheduling
Example:
User A has 9 processes, User B has 1 process
A and B have same priority, Round Robin:
B1, A1, A2, A3, A4, … A9, B1, A1, A2, …, A9
A gets 90% if the CPU, B gets 10%

Possible solution: take into account who owns a process before scheduling it:
B1, A1, B1, A2, B1, A3, B1, A4…, B1, A9

OS 2007-08 21

Policy versus Mechanism
• Often a process has many children running under its

control performing different tasks. In this case only
the process itself knows which one is the most
important or time critical

• For this reason it is important to separate
scheduling mechanism from the scheduling
policy

• The scheduling mechanism (algorithm) defines the
parameters used by the scheduler

• The user process is responsible for filling in those
parameters for its children (policy)

OS 2007-08 22

Scheduling in Real Time Systems

In real time systems time plays a crucial role. Usually the system
is connected to one or more external devices which generate
stimuli and the OS has to react appropriately to them within a
fixed amount of time.

Examples: aircraft control, over-temperature monitor in nuclear
power station, ABS, biomedical systems, robotics

- hard-real time, missing a deadline has catastrophic effects
- soft-real time, missing a deadline is undesirable but tolerable
Stimuli (events) may be:
- periodic (occurring at regular intervals)
- aperiodic (unpredictable)

OS 2007-08 23

Schedulability

• Depending on the situation, it may happen
that not all the events can be handled

• Consider m periodic events
event i occurs with period Pi and requires Ci
second of CPU time
the system is schedulable if:

1

1
m

i

i i

C
P=

≤�

OS 2007-08 24

Let’s consider the following situation:
Multimedia system: three processes A, B, C
A is periodic, T = 30ms, and uses 10 ms of CPU time
B is periodic, f = 25 Hz (T=40ms) and uses 15 ms of CPU time
C is periodic, f = 20 Hz, (T=50ms) and uses 5 ms of CPU time
Schedulability ? 10/30 + 15/40 + 5/50 = 0.808 < 1

0 10 20 30 40 50 60 70 80 90 100 110 120

deadline A1 deadline B1 deadline C1

time (ms)

A1 A2 A3

B1 B2 B3

A4

C1 C2 C3

5

OS 2007-08 25

Rate Monotonic Scheduling
(RMS)

• Assumptions:
- each periodic process must complete within
its period
- no process is dependent on any other process
- each process needs the same amount of CPU
time on each burst
- any non periodic processes have no deadlines
- preemption has no overhead

• Assign each process a fixed (static) priority
equal to the frequency of occurrence of its
triggering event
(priorities are linear with the rate)

OS 2007-08 26

Example: Rate Monotonic

A1 A2 A3

B1 B2 B3

0 10 20 30 40 50 60 70 80 90 100 110 120 time (ms)

A1 B1 C1 A2 C2B2

A4

B3A3 A4 C3

C1 C2 C3

OS 2007-08 27

Earliest Deadline First
Scheduling (EDF)

• Assumptions:
- the same as rate monotonic but
- it doesn’t require processes to be periodic
- processes can use different amounts of CPU
for different bursts

• runnable processes are kept in a list with their
deadline

• the scheduler runs the process with the closest
deadline

• preempts the current process if another one
with a closer deadline is ready

OS 2007-08 28

Example: Earliest Deadline First

A1 A2 A3

B3

0 10 20 30 40 50 60 70 80 90 100 110 120 time (ms)

A1 B1 C1 A2 C2B2

A4

B3A3 A4 C3

C1 C2 C3

B2B1

OS 2007-08 29

RMS versus EDF

C1

B1

A1 A2 A3 A4

B2 B3

RMS uses static priorities and fails if CPU utilization is too high.
EDF always works if CPU utilization is < 100%
now A takes 15 ms of CPU time to complete
Schedulability ? 15/30 + 15/40 + 5/50 = 0.975 < 1

C2 C3

0 10 20 30 40 50 60 70 80 90 100 110 120 time (ms)

A1 B1 A2 B2 failed

A1 B1 A2 B2C1 A3 C2 B3 A4

RMS

EDF

OS 2007-08 30

Case study: scheduling in win32
• Only threads are scheduled, not processes
• Time-sliced, round robin with priorities
• Threads have priorities 0 through 31

31

16
15

1
0

16 “real-time” levels

15 variable levels

Used by zero page thread

6

OS 2007-08 31

How are priorities assigned ?

1
2
3
4
5
6

15
Idle

111116Idle

4681122Lowest

5791223Below-Normal

68101324Normal

79111425Above-normal

810121526Highest

1515151531Time-critical

Below
NormalNormal

Above
NormalHigh

Real
Time

Win32 Process Classes

Win32
Thread
Priorities

OS 2007-08 32

Priority Boost

• dynamic boost (< 15)
- foreground threads get doubled time
slice
- if resumed by keyboard/mouse + 6
- if resumed on wait +1

• decay: after boost priority is reduced of
one level until it reaches base priority
(the priority before boost)

OS 2007-08 33

CPU Starvation

• Balance Set Manager (priority 16, every
second)
- looks for “starved thread” that have
been ready for more than 4 seconds

• Special boost:
- set priority to 15
- doubled quantum

• Apply only to non real-time threads

