
Inter-Process Communication
1

Inter Process Communication

OS 2008-09

Issues
2

How a process can pass information to another
Make sure processes don’t get into each others’ wayMake sure processes don t get into each others way
Sequencing and dependencies

OS 2008-09

The issues…
3

They apply to threads as welly pp y

Communication: easy for threads (common address y (
space)
Remaining two issues apply to thread as to processes

OS 2008-09

Race condition
4

Example: printer spooler (a daemon)Example: printer spooler (a daemon)

4 abc
5 prog.c

out = 4

6 prog.n
7 in = 7

Process A

Process B

Spooler directory

Process B

OS 2008-09

p y

Race condition
5

Two processes reading/writing on the same data
and the result depends on who runs precisely when
i ll d di iis called a race condition
Since obviously we’d like computation to be
d t i i tideterministic

OS 2008-09

Critical regions
6

Mutual exclusion
The part of the program where the shared memory
(or something else) is accessed is called a critical
sectionsection
This is not enough (more rules):

Not two processes simultaneously in their critical regionsp y g
No assumptions may be made about speed and number of CPUs
No process running outside its critical region may block another
process
No process should have to wait forever to enter its critical region

OS 2008-09

Ideally
7

A enters critical region A leaves critical region

A

B
blocked

B

B attempts to enter critical region
B enters critical region

B leaves critical region

OS 2008-09

Many solutions…
8

Disabling interrupts
Locks
TSL instruction (hardware)
Semaphores
Mutexes
M itMonitors
Message passing
…

OS 2008-09

Disabling interrupts
9

Simplest solution
CPU switches from process to process only when an
interrupt occurs (e.g. the clock interrupt)
Thi h b t k b th k lThis approach can be taken by the kernel
Should the OS trust the user in disabling/enabling
interrupts? Too dangerous!interrupts? Too dangerous!

OS 2008-09

Locks
10

A lock variable (alone it doesn’t work)()
Strict alternation (no two in the critical region, not
convenient)

while (TRUE) while (TRUE)while (TRUE)
{
while (turn!=0);
critical_region();

while (TRUE)
{
while (turn!=1);
critical_region();

turn = 1;
noncritical_region();

}

turn = 0;
noncritical_region();

}

OS 2008-09

Peterson’s solution
11

#define FALSE 0
#define TRUE 1
#define N 2

int turn;
int interested[N]; // initialized = 0

void enter_region(int process)
{
int other;
other = 1 – process;
intereseted[process] = TRUE;
turn = process;
while (turn == process && interested[other] == TRUE) ;

}

void leave_region(int process)
{
interested[process] = FALSE;

}

OS 2008-09

TSL instruction
12

TSL RX, LOCK (test and set lock), ()
Reads the content of LOCK into RX and stores a
non-zero value into LOCK atomically (can’t be
interrupted)

OS 2008-09

Example
13

enter_region:
TSL REGISTER, LOCK
CMP REGISTER #0CMP REGISTER, #0
JNE enter_region
RET

leave_region:
MOVE LOCK, #0
RET

OS 2008-09

Semaphores
14

An atomically accessible counter. Similar to a
l k b t ith lti l l d ibl bl ki lock but with multiple values and possibly blocking
a process without busy-waiting
There are two operations possible:There are two operations possible:

Up, Down
Down, if 0 the process will go to sleep otherwise it
decrements the semaphore and continues decrements the semaphore and continues
execution
Up, increments the semaphore, if a process is p, p , p
sleeping on the semaphore, it is awakened, the
caller never blocks

OS 2008-09

Example consumer-producer
15

#define N 100
typedef int semaphore; /// with a bit of\ imagination

void consumer(void)
{

semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

int item;
while (TRUE)
{

down(&full);
d (t)

void producer(void)
{

int item;
while (TRUE)

down(&mutex);
item = remove_item();
up(&mutex);
up(&empty);
consume item(item);()

{
item = produce_item();
down(&emty);
down(&mutex);

_ ()
}

}

insert_item(item);
up(&mutex);
up(&full);

}
}

OS 2008-09

}

Mutexes
16

Semaphores with binary valuesp y
What’s nice? Simpler implementation than
semaphores
Of course, a semaphore can be made to behave as a
mutex and vice-versa a mutex is enough to
i l t himplement a semaphore

OS 2008-09

Monitors
17

Abstract construct (a package):(p g)
It’s a sort of class (in fact there’s something similar in Java)
Monitor’s data is private
O l b i i i i iOnly one process can be active in a monitor at a given time
Condition variables: wait and signal primitives (equivalent to
down and up)p

OS 2008-09

Part of an example…
18

monitor ProducerConsumer
condition full, empty;
integer count;

/// PROCEDURES_HERE()
/// it’s guaranteed that no process can change
/// count at the same time just need to check/// count at the same time, just need to check
/// the full and empty conditions

count = 0;
end monitor;

OS 2008-09

Message passing
19

Why? Distributed systems for example
send(destination, &message)
receive(source, &message)

OS 2008-09

Issues with message passing
20

Acknowledgement (message)
We need to be sure a message is not lost otherwise
synchronization will go berserker
Message numberingg g
A good part of the study on computer networks

Authentication
M k l h ’ d i h ll Make sure only who’s supposed to receive the message actually
receives it and vice-versa

OS 2008-09

Example of message passing
21

#define N 100 void consumer(void)
{

void producer(void)
{
int item;
message m;

{
int item, i;
message m;

message m;

while (TRUE)
{

for (i=0;i<N;i++) send(producer, &m);
sends N EMPTIES

while (TRUE)
item = produce_item();
receive(consumer, &m);

waits for an EMPTY
build_message(&m, item);

{
receive(producer, &m);
item = extract_item(&m);
send(producer, &m);

send(consumer, &m);
}

}

(p ,)
send an EMPTY

consume_item(item);
}

}

OS 2008-09

}

Access to database
22

Many readersy
Only one writer

Issues: no write until all readers are out, but try not
to accept other readers if a write is pending!

OS 2008-09

Dining philosophers
23

OS 2008-09

