Inter-Process Commmunication

OS 2008-09



OS 2008-09




They apply to threads as well

Communication: easy for threads (common address
space)

Remaining two issues apply to thread as to processes



Race condition

OS 2008-09




Two processes reading/writing on the same data
and the result depends on who runs precisely when
Is called a race condition

Since obviously we’d like computation to be
deterministic



Critical regions

» Mutual exclusion

» The part of the program where the shared memory
(or something else) iIs accessed is called a critical
section

» This is not enough (more rules):
Not two processes simultaneously in their critical regions
No assumptions may be made about speed and number of CPUs

No process running outside its critical region may block another
process

No process should have to wait forever to enter its critical region




Ideally

OS 2008-09




Many solutions...

OS 2008-09




Simplest solution

CPU switches from process to process only when an
Interrupt occurs (e.g. the clock interrupt)

This approach can be taken by the kernel

Should the OS trust the user in disabling/enabling
Interrupts? Too dangerous!



A lock variable (alone it doesn’t work)

Strict alternation (no two In the critical region, not
convenient)

while (TRUE) while (TRUE)

{ {
while (turn!=0); while (turn!=1);
critical_region(); critical _region();
turn = 1; turn = 0;
noncritical _region(); noncritical _region();

} }



Peterson’s solution

OS 2008-09




TSL RX, LOCK (test and set lock)

Reads the content of LOCK into RX and stores a

non-zero value into LOCK atomically (can’t be
Interrupted)



OS 2008-09




An atomically accessible counter. Similar toa
lock but with multiple values and possibly blocking
a process without busy-waiting

There are two operations possible:
Up, Down
Down, If O the process will go to sleep otherwise it

decrements the semaphore and continues
execution

Up, increments the semaphore, if a process Is
sleeping on the semaphore, it Is awakened, the
caller never blocks



Example consumer-producer

OS 2008-09




Semaphores with binary values

What’s nice? Simpler implementation than
semaphores

Of course, a semaphore can be made to behave as a
mutex and vice-versa a mutex Is enough to
Implement a semaphore



Monitors

OS 2008-09




monitor ProducerConsumer
condition full, empty;
integer count;

/// PROCEDURES HEREQ)

/// 1t’s guaranteed that no process can change
/// count at the same time, just need to check
/// the Tull and empty conditions

count = 0O;
end monitor;



Message passing

OS 2008-09




Issues with message passing

OS 2008-09




Example of message passing

OS 2008-09




Access to database

OS 2008-09




Dining philosophers

OS 2008-09




