
1

OS 2007-08 1

Inter-Process 
Communication

OS 2007-08 2

Issues

• How a process can pass information to 
another

• Make sure processes don’t get into each 
others’ way

• Sequencing and dependencies

OS 2007-08 3

The issues…

• They apply to threads as well

• Communication: easy for threads 
(common address space)

• Remaining two issues apply to thread as 
to processes

OS 2007-08 4

Race condition

• Example: printer spooler (a daemon)

7
prog.n6
prog.c5

abc4

Spooler directory

in = 7

out = 4

Process A

Process B

OS 2007-08 5

Race condition

• Two processes reading/writing on the 
same data and the result depends on 
who runs precisely when is called a race 
condition

• Since obviously we’d like computation to 
be deterministic

OS 2007-08 6

Critical regions
• Mutual exclusion
• The part of the program where the 

shared memory (or something else) is 
accessed is called a critical section

• This is not enough (more rules):
– Not two processes simultaneously in their critical regions
– No assumptions may be made about speed and number of 

CPUs
– No process running outside its critical region may block 

another process
– No process should have to wait forever to enter its critical 

region



2

OS 2007-08 7

Ideally

A

B

A enters critical region
A leaves critical region

B attempts to enter critical region

blocked

B enters critical region

B leaves critical region

OS 2007-08 8

Many solutions…

• Disabling interrupts
• Locks
• TSL instruction (hardware)
• Semaphores
• Mutexes
• Monitors
• Message passing
• …

OS 2007-08 9

Disabling interrupts

• Simplest solution
• CPU switches from process to process 

only when an interrupt occurs (e.g. the 
clock interrupt)

• This approach can be taken by the 
kernel

• Should the OS trust the user in 
disabling/enabling interrupts? Too 
dangerous!

OS 2007-08 10

Locks
• A lock variable (alone it doesn’t work)
• Strict alternation (no two in the critical 

region, not convenient)

while (TRUE)
{
while (turn!=0);
critical_region();
turn = 1;
noncritical_region();

}

while (TRUE)
{
while (turn!=1);
critical_region();
turn = 0;
noncritical_region();

}

OS 2007-08 11

Peterson’s solution
#define FALSE 0
#define TRUE 1
#define N 2

int turn;
int interested[N]; // initialized = 0

void enter_region(int process)
{

int other;
other = 1 – process;
intereseted[process] = TRUE;
turn = process;
while (turn == process && interested[other] == TRUE) ;

}

void leave_region(int process)
{

interested[process] = FALSE;
}

OS 2007-08 12

TSL instruction

• TSL RX, LOCK (test and set lock)
• Reads the content of LOCK into RX and 

stores a non-zero value into LOCK 
atomically (can’t be interrupted)



3

OS 2007-08 13

Example

enter_region:

TSL REGISTER, LOCK

CMP REGISTER, #0

JNE enter_region

RET

leave_region:

MOVE LOCK, #0

RET

OS 2007-08 14

Semaphores
• An atomically accessible counter. Similar to 

a lock but with multiple values and possibly 
blocking a process without busy-waiting

• There are two operations possible:
– Up, Down

• Down, if 0 the process will go to sleep 
otherwise it decrements the semaphore and 
continues execution

• Up, increments the semaphore, if a process is 
sleeping on the semaphore, it is awakened, the 
caller never blocks

OS 2007-08 15

Example consumer-producer
#define N 100

typedef int semaphore; /// with a bit of\
imagination

semaphore mutex = 1;

semaphore empty = N;

semaphore full = 0;

void producer(void)

{

int item;

while (TRUE)

{

item = produce_item();

down(&emty);

down(&mutex);

insert_item(item);

up(&mutex);

up(&full);

}

}

void consumer(void)

{

int item;

while (TRUE)

{

down(&full);

down(&mutex);

item = remove_item();

up(&mutex);

up(&empty);

consume_item(item);

}

}

OS 2007-08 16

Mutexes

• Semaphores with binary values
• What’s nice? Simpler implementation 

than semaphores
• Of course, a semaphore can be made to 

behave as a mutex and vice-versa a 
mutex is enough to implement a 
semaphore

OS 2007-08 17

Monitors

• Abstract construct (a package):
– It’s a sort of class (in fact there’s something 

similar in Java)
– Monitor’s data is private
– Only one process can be active in a monitor 

at a given time
– Condition variables: wait and signal

primitives (equivalent to down and up)

OS 2007-08 18

Part of an example…
monitor ProducerConsumer

condition full, empty;

integer count;

/// PROCEDURES_HERE()

/// it’s guaranteed that no process can change

/// count at the same time, just need to check

/// the full and empty conditions 

count = 0;

end monitor;



4

OS 2007-08 19

Message passing

• Why? Distributed systems for example
– send(destination, &message)

– receive(source, &message)

OS 2007-08 20

Issues with message passing

• Acknowledgement (message)
– We need to be sure a message is not lost 

otherwise synchronization will go berserker
– Message numbering
– A good part of the study on computer 

networks
• Authentication

– Make sure only who’s supposed to receive 
the message actually receives it and vice-
versa

OS 2007-08 21

Example of message passing
#define N 100

void producer(void)

{

int item; 

message m;

while (TRUE)

{

item = produce_item();

receive(consumer, &m); 
waits for an EMPTY

build_message(&m, item);

send(consumer, &m);

}

}

void consumer(void)

{

int item, i; 

message m;

for (i=0;i<N;i++) send(producer, &m);

sends N EMPTIES

while (TRUE)

{

receive(producer, &m);

item = extract_item(&m);

send(producer, &m);

send an EMPTY
consume_item(item);

}

}

OS 2007-08 22

Access to database

• Many readers
• Only one writer

• Issues: no write until all readers are out, 
but try not to accept other readers if a 
write is pending!

OS 2007-08 23

Dining philosophers


