
Processes and threads
1

Processes and threads

OS 2008-09

Conceptual model
2

Sequential process modelq p
Process → executing program
Better think about “things” being executed in parallel g g p
rather than sequentially (too complicated)
Switching back and forth of processes is called
multiprogramming

OS 2008-09

Model
3

Reality Our imagination

A

B

C A
B

C D
D

OS 2008-09

Processes
4

Should not be designed with timing issues is mind g g
since:

We don’t know when a context switch occurs

Special actions need to be taken when timing is
importantimportant

OS 2008-09

Process vs. Program
5

Program: the instructions to be executedg
The program is “unique”

Process: the actual execution
There might be multiple instances (processes) of the
same program

OS 2008-09

Process creation
6

System initialization (boot time)y ()
Creation (by sys call) by a running process
A user request (shell)q ()
Initiation of a batch job (or scheduled job)

OS 2008-09

Interactive vs. background
7

Background processesg p
TSR (old DOS terminology)
Daemons (UNIX)
S i (Wi d)Services (Windows)

Batch systems
When the system decides that there are enough resources it When the system decides that there are enough resources it
might start a new job. Users submit (possibly remotely) jobs to
the system

OS 2008-09

Process creation/termination
8

Creation
Unix: fork() → exact copy of the caller
Win32: CreateProcess() → a brand new one

Termination
Voluntary: normal vs. error exit exit()
Involuntary: fatal error vs killed TerminateProcess()Involuntary: fatal error vs. killed TerminateProcess()

OS 2008-09

Process hierarchy
9

Root → init
a → login process
c, d → shells Root,
b → background process

a ba b

c d

OS 2008-09

Wait for process termination
10

Synchronous: waitpid()Synchronous: waitpid()
Asynchronous: SIGCHLD

fork()
Child

fork()
ChildChild Child

exit()

waitpid()
exit()

Signal
H dl

OS 2008-09

Handler

Process states
11

Running (using the CPU)g (g)
Ready (runnable)
Blocked (temporarily stopped, waiting)(p y pp , g)

Running

ReadyBlocked

OS 2008-09

Scheduler
12

processes

0 1 N-2 N-1

…

schedulerscheduler

OS 2008-09

Processes
13

Associated with each process:
Address space (program + data + stack)
Entry into the process table (a list of processes)

Set of registers (e.g. PC, PSW, etc.)
MMU status, registers

Processes can be created, terminated, signaled (SW
interrupt)
They form a tree (a hierarchy) on some systems
Process cooperation is obtained by means of IPC (inter-
process communication) mechanismsprocess communication) mechanisms
Processes start with the privileges of the user who starts
them

OS 2008-09

Implementation
14

Process table
Scheduler is called when particular events occur (I/O
interrupts, blocking calls, timers, etc.)

OS 2008-09

Threads
15

Two concepts:p
Shared resources: signal handlers, open files, memory, etc.
Thread of execution: PC, stack, etc.

Decoupling the two concept:
Process: the container of the shared resources
Thread: the executionThread: the execution

OS 2008-09

Multiple threads
16

Lightweight processesg g p
Multithreading

User
aceTh d

Multithreading
spaceThread

Kernel Kernel

OS 2008-09

Threads (cntd.)
17

Threads share the same address spacep
No protection between thread
A thread has a state (running, blocked, ready)(g, , y)
A thread of execution is scheduled by the scheduler
(depending on the implementation)

OS 2008-09

Needless to say…
18

Per process items
Address space

Per thread items
Program counterp

Global variables
Open files
Child processes

g
Registers
Stack
StateChild processes

Pending alarms
Signals and handlers

State

Accounting information

OS 2008-09

Exemplar thread calls
19

thread_create()()
thread_exit()

thread_wait()
Similar to waitpid()

thread_yield()
Important, since there’s no clock interrupt

OS 2008-09

Why?
20

Simpler programming model:p p g g
If we need multiple quasi-parallel activities then it’s better to
provide a mechanism to support them
Background activity within an applicationBackground activity within an application

Efficiency:
Keep the CPU busyKeep the CPU busy
Multi-processor architectures

OS 2008-09

The web server
21

pa
ce

dispatcher

workers

U
se

r
s

cache

Kernel

Network
connection

OS 2008-09

Many possibilities
22

Threads: parallelism, blocking sys calls
Single-threaded process: No parallelism,
blocking sys calls

i i hi ll li bl kiFinite state machine: Parallelism, non-blocking
sys calls (interrupt handling!)

OS 2008-09

Thread implementation
23

User space
Kernel space
Hybrid

OS 2008-09

User space
24

Each process maintain a thread tablep
Threads are implemented by implementing library
calls (user code, not kernel code)
Efficient since there’s no kernel trap to call the
thread code
Switching can be easy (thread switching)
The kernel knows nothing of threads

OS 2008-09

Issues
25

How do we implement blocking sys calls?p g y
Change libraries: messy
Use select() to see if a prospective call would block,
requires a “wrapper” to the library

Page fault:
Wh h ld h d d hil i i f h k f What should a thread do while waiting for a chunk of
memory from disk?

How do we switch from thread to thread?How do we switch from thread to thread?
User space threads do not have a timer clock

OS 2008-09

Kernel space threads
26

Since the kernel knows everything about the system y g y
it can easily take care of managing threads
Creating/destroying threads has a cost: a system call

Thread recycling in the kernel

The kernel scheduler, schedules threads instead of
h l whole processes

OS 2008-09

Making code multithreaded
27

Access to global variables:g
Thread local storage (TLS), library calls
Example: the errno variable

Reentrant library calls:
The possibility of having a second call made while a

i ll h fi i h dprevious call has not yet finished
E.g. malloc (maintains lists of memory chunks)

Who should catch unspecific interrupts?Who should catch unspecific interrupts?
Stack growth: how do we handle it?

OS 2008-09

