Processes and threads

OS 2008-09

Sequential process model
Process — executing program

Better think about “things” being executed in parallel
rather than sequentially (too complicated)

Switching back and forth of processes is called
multiprogramming

Reality Our imagination
A
]
C _> A C
B D
D >

OS 2008-09

Processes

OS 2008-09

Process vs. Program

OS 2008-09

System initialization (boot time)

Creation (by sys call) by a running process
A user request (shell)

Initiation of a batch job (or scheduled job)

Interactive vs. background

OS 2008-09

Process creation/termination

OS 2008-09

Process hierarchy

OS 2008-09

Synchronous: waitpid()
Asynchronous: SIGCHLD

fork() ™ |~ — fork() ™ | T
Child Child
T exit()
exit() 1
waitpid() - -
[Signal

V/Handler

Process states

OS 2008-09

Scheduler

processes
A
Y N
0 1 N-2 N-1
scheduler

OS 2008-09

Associated with each process:
Address space (program + data + stack)
Entry into the process table (a list of processes)
Set of registers (e.g. PC, PSW, etc.)
MMU status, registers
Processes can be created, terminated, signaled (SW
Interrupt)

They form a tree (a hierarchy) on some systems

Process cooperation is obtained by means of IPC (inter-
process communication) mechanisms

Processes start with the privileges of the user who starts
them

Implementation

OS 2008-09

Threads

OS 2008-09

Lightweight processes

Multithreading

/‘ Thread

/

(O

/

Kernel

User
space

Multithreading

Kernel

Threads share the same address space
No protection between thread
A thread has a state (running, blocked, ready)

A thread of execution is scheduled by the scheduler
(depending on the implementation)

Per process 1tems

Address space

Global variables

Open files

Child processes
Pending alarms
Signals and handlers
Accounting information

Per thread items

Program counter
Registers

Stack

State

Exemplar thread calls

OS 2008-09

OS 2008-09

The web server

OS 2008-09

Threads: parallelism, blocking sys calls

Single-threaded process: No parallelism,
blocking sys calls

Finite state machine: Parallelism, non-blocking
sys calls (interrupt handling!)

Thread implementation

OS 2008-09

Each process maintain a thread table

Threads are implemented by implementing library
calls (user code, not kernel code)

Efficient since there’s no kernel trap to call the
thread code

Switching can be easy (thread switching)
The kernel knows nothing of threads

OS 2008-09

Since the kernel knows everything about the system
It can easily take care of managing threads

Creating/destroying threads has a cost: a system call
Thread recycling in the kernel

The kernel scheduler, schedules threads instead of
whole processes

Making code multithreaded

» Access to global variables:
o Thread local storage (TLS), library calls
o Example: the errno variable

» Reentrant library calls:

o The possibility of having a second call made while a
previous call has not yet finished

o E.g. malloc (maintains lists of memory chunks)
» Who should catch unspecific interrupts?
» Stack growth: how do we handle it?

0OS 2008-09

