
1

OS 2007-08 1

Processes and threads

OS 2007-08 2

Conceptual model

• Sequential process model
• Process → executing program
• Better think about “things” being

executed in parallel rather than
sequentially (too complicated)

• Switching back and forth of processes is
called multiprogramming

OS 2007-08 3

Model

D

C

B

A

Reality

A
B

C D

Our imagination

OS 2007-08 4

Processes

• Should not be designed with timing
issues is mind since:
– We don’t know when a context switch occurs

• Special actions need to be taken when
timing is important

OS 2007-08 5

Process vs. Program

• Program: the instructions to be executed
– The program is “unique”

• Process: the actual execution
– There might be multiple instances (processes) of

the same program

OS 2007-08 6

Process creation

• System initialization (boot time)
• Creation (by sys call) by a running

process
• A user request (shell)
• Initiation of a batch job (or scheduled

job)

2

OS 2007-08 7

Interactive vs. background

• Background processes
– TSR (old DOS terminology)
– Daemons (UNIX)
– Services (Windows)

• Batch systems
– When the system decides that there are

enough resources it might start a new job.
Users submit (possibly remotely) jobs to the
system

OS 2007-08 8

Process creation/termination

• Creation
– Unix: fork() → exact copy of the caller
– Win32: CreateProcess() → a brand new one

• Termination
– Voluntary: normal vs. error exit exit()
– Involuntary: fatal error vs. killed

TerminateProcess()

OS 2007-08 9

Process hierarchy

Root

a b

c d

• Root → init
• a → login process
• c, d → shells
• b → background process

OS 2007-08 10

Wait for process termination

• Synchronous: waitpid()
• Asynchronous: SIGCHLD

waitpid()

fork()
Child

exit()

fork()
Child

exit()

Signal
Handler

OS 2007-08 11

Process states

• Running (using the CPU)
• Ready (runnable)
• Blocked (temporarily stopped, waiting)

Running

Ready
Blocked

OS 2007-08 12

Scheduler

scheduler

N-1N-2

…
10

processes

3

OS 2007-08 13

Processes
• Associated with each process:

– Address space (program + data + stack)
– Entry into the process table (a list of processes)

• Set of registers (e.g. PC, PSW, etc.)
• MMU status, registers

• Processes can be created, terminated, signaled (SW
interrupt)

• They form a tree (a hierarchy) on some systems
• Process cooperation is obtained by means of IPC

(inter-process communication) mechanisms
• Processes start with the privileges of the user who

starts them

OS 2007-08 14

Implementation

• Process table
• Scheduler is called when particular

events occur (I/O interrupts, blocking
calls, timers, etc.)

OS 2007-08 15

Threads

• Two concepts:
– Shared resources: signal handlers, open

files, memory, etc.
– Thread of execution: PC, stack, etc.

• Decoupling the two concept:
– Process: the container of the shared

resources
– Thread: the execution

OS 2007-08 16

Multiple threads
• Lightweight processes
• Multithreading

Kernel Kernel

User
spaceThread

Multithreading

OS 2007-08 17

Threads (cntd.)

• Threads share the same address space
• No protection between thread
• A thread has a state (running, blocked,

ready)
• A thread of execution is scheduled by the

scheduler (depending on the
implementation)

OS 2007-08 18

Needless to say…

Per thread items
Program counter
Registers
Stack
State

Per process items
Address space
Global variables
Open files
Child processes
Pending alarms
Signals and handlers
Accounting information

4

OS 2007-08 19

Exemplar thread calls

• thread_create()
• thread_exit()

• thread_wait()
– Similar to waitpid()

• thread_yield()
– Important, since there’s no clock interrupt

OS 2007-08 20

Why?
• Simpler programming model:

– If we need multiple quasi-parallel activities
then it’s better to provide a mechanism to
support them

– Background activity within an application

• Efficiency:
– Keep the CPU busy
– Multi-processor architectures

OS 2007-08 21

The web server

Kernel

U
se

r
sp

ac
e

Network
connection

dispatcher

cache

workers

OS 2007-08 22

Many possibilities

• Threads: parallelism, blocking sys calls
• Single-threaded process: No parallelism,

blocking sys calls
• Finite state machine: Parallelism, non-

blocking sys calls (interrupt handling!)

OS 2007-08 23

Thread implementation

• User space
• Kernel space
• Hybrid

OS 2007-08 24

User space

• Each process maintain a thread table
• Threads are implemented by

implementing library calls (user code,
not kernel code)

• Efficient since there’s no kernel trap to
call the thread code

• Switching can be easy (thread switching)
• The kernel knows nothing of threads

5

OS 2007-08 25

Issues
• How do we implement blocking sys calls?

– Change libraries: messy
– Use select() to see if a prospective call would block,

requires a “wrapper” to the library

• Page fault:
– What should a thread do while waiting for a chunk

of memory from disk?

• How do we switch from thread to thread?
– User space threads do not have a timer clock

OS 2007-08 26

Kernel space threads

• Since the kernel knows everything about
the system it can easily take care of
managing threads

• Creating/destroying threads has a cost:
a system call
– Thread recycling in the kernel

• The kernel scheduler, schedules threads
instead of whole processes

OS 2007-08 27

Making code multithreaded

• Access to global variables:
– Thread local storage (TLS), library calls
– Example: the errno variable

• Reentrant library calls:
– The possibility of having a second call made while a

previous call has not yet finished
– E.g. malloc (maintains lists of memory chunks)

• Who should catch unspecific interrupts?
• Stack growth: how do we handle it?

