Introduction

OS 2008-09

» My name: Giorgio Metta
e My email: pasa@liralab.it
» Office/Lab: 010 71781 411
» Cell: 320 4218836

*» Where: LIRA-Lab, Villa Bonino, Ground Floor (su
appuntamento)

e Web site: http://www.liralab.it/os
» Mailing list: os@liralab.it

Outline of the course

OS 2008-09

Background

OS 2008-09

References

OS 2008-09

OS 2008-09

What'’s inside the computer?

Layers:
Web browser Banking Airline
system reservation
Compilers Editors Command
Interpreter
(shell)

Operating system

Machine language

Microarchitecture

Physical devices

} application programs

} system programs

+ hardware

Physical devices: self explaining

Microarchitecture: define data path within the

microprocessor (using registers) sometimes using a
microprogram

Machine language/Assembly language: instruction
set (e.g. 50-300 instructions)

\

Kernel mode User mode
Supervisor mode

Hardware protection (on
modern microprocessors)

All instructions allowed Certain instructions not

allowed

Compiler, editor, web

Timer interrupt handler /
| browser

Microkernel RTOS. In
QNX Neutrino, only the
most fundamental OS
primitives (e.g. signals,
timers, scheduling) are
handled in the kernel
1tself. All other
components — drivers, file
systems, protocol stacks,
user applications — run
outside the kernel as
separate, memory-
protected processes.

ETHERNET, SERIAL

MEMORY PROTECTED

MIKROKERNEL MESSAGE-PASSING BUS

PHOTON HTTP
MICROGUI SERVER

MEMORY PROTECTED

ONX Newtrino message passing farms a vitual soffware bus that lafs you
dynamically plug in —ar plig out — whatever companants your systam reguires.

MULTI-TARGET
ARM, MIPS, PrwarPE, SH-A, StroaghRM, EScale, 88

Manage the hardware (all the devices)

Provide user programs with simpler interface to
the hardware (extended machine)

Specific chip (NEC PD765)
16 different commands
_oad between 1 and 9 bytes into a device register

Read/Write require 13 parameters packed into 9
pytes

Reply from the device consists of 7 bytes (23
parameters)

Control of the motor (on/off)

Abstraction

OS 2008-09

OS as resource manager

» Allocation of resources:

Processors, memory, 1/0 devices among a set of programs
competing for them

» Example: allocating the printer
Buffering output rather than just print at random

» Multiple users: sharing of resources and avoid
conflicts (share vs. security)

OS 2008-09

Computer hardware

]

T

OS 2008-09

Registers
* Program counter (PC): next instruction
* Stack pointer (SP): stack in memory } Context switch

* Program Status Word (PSW): condition bits (e.g.
kernel vs. user mode)

* Base register: relocation of executables

System call

*SW interrupt
* From User to Kernel mode

Complexity of the CPU HW

Fetch | Decode M Execute

* Pipeline architecture
* Superscalar

OS 2008-09

Memory (for real)

Typical access time

Size
1 nsec <1K
2 nsec ~ 1M
10 nsec ~1-4C
10 msec ~ 5.100C
100 sec > 200

0OS 2008-09

» Registers: typical 32 in a 32 bit CPU

» Cache: divided into cache lines (64 bytes each)
Cache hit — no main memory access, no bus involvement
Cache miss — costly

» Main memory

» Disk (multiple plates, heads, arms)
Logical structure: sectors, tracks, cylinders

» Magnetic tape: backup, cheap, removable

Base and Limit registers (Limit represents the size of
the memory block)

Hardware support for relocation and multiple
programs in memory

OxFFFFFFFF

Fetch: User program and data
Instruction
1f (PC<Limit) Fetch(PC+Base) Limie —
else Troubles(SigFault) Wi puograin aril dare
Data Base

if (Addr<Limit) Fetch(Addr+Base)

else Troubles(SigFault)

Operating system
0x00000000

DLL’s (in principle)

OS 2008-09

Memory Management Unit

OS 2008-09

» Usually a controller + the actual device

For example: a disk controller may hide the details of driving the arm
and heads to the appropriate location to read a certain piece of data

Sometimes the controller is a small embedded microprocessor in
Itself

» The interface to the OS I1s somewhat standardized:
IDE disk drives conform to a standard

» Device driver: a piece of the OS. Device drivers run in
kernel mode since they have to access 1/0 instructions and
device registers

Unix. Compiled and linked with the kernel
(although Linux supports dynamic loading of DD)
Windows. An entry into an OS table. Loaded at
boot

Dynamic. USB, IEEE1394 (firewire). At boot time
the OS detects the hardware, finds the DD, and

loads them

E.g. small number of registers used to communicate

Memory mapped: the registers appear at particular
locations within the OS address space

1/0 instructions: some CPUs have special privileged
(kernel mode) 170 instructions (IN/OUT). Registers
are mapped to special locations in 1/0 space

Ways of doing 1/0

OS 2008-09

User makes a system call

OS calls DD
DD talks to device, prepares 1/0, starts 1/0 and sits
waiting (busy waiting) for 1/0 completion

Busy waiting means that the CPU is busy polling a
flag

1

2.

Interrupt

» A piece of hardware

called “interrupt

controller”

. CPU issues the I/0 request

via the device driver |
On termination the device signals |
the CPU’s interrupt controller (if
the interrupt controller is not busy;
servicing another higher priority |
Iinterrupt) |
If the interrupt can be handled
then the controller asserts a pin
on the CPU. |
The interrupt controller puts the |
address of the device into the bus

Disk drive

oooo

Interrupt (cntd.)

OS 2008-09

Direct Memory Access DMA

OS 2008-09

Multiple buses (cache, local, memory, PCI, USB,
IDE...)

OS must be aware of all of them to manage things
appropriately

Plug&Play — dynamic allocation of 1/0 and
memory addresses (BIOS code)

OS 2008-09

Concepts

OS 2008-09

Unix command interpreter (or similarly the
“command” in windows)

Clearly, it’s not part of the OS

prompt

Associated with each process:
Address space (program + data + stack)
Entry into the process table (a list of processes)
Set of registers (e.g. PC, PSW, etc.)
MMU status, registers
Processes can be created, terminated, signaled (SW
Interrupt)

They form a tree (a hierarchy) on some systems

Process cooperation is obtained by means of IPC (inter-
process communication) mechanisms

Processes start with the privileges of the user who starts
them

Aug My Uideos
Mar My Wehs

Mar My eBooks
Aug OutlookMail
Jul PUTTY .RHD
Sep Paper revieuws
Aug Papers

Apr Repository
Mar RtOS

Jul su

Jul Thumhs .dhb

B Jan Trash

A Sep LUINDOWS

dr—xr—xr—x
druxr—xr—x
druxr—xr—x
druxr—xr—x
| gy —pr——p——
druxr—xr—x
druxr—xr—x
druxr—xr—x
druxr—xr—x
druxr—xr—x
| gy —pr——p——
druxr—xr—x
druxr—xr—x
—P—p——p——
druxr—xr—x
—P—p——p——

=
EEREREEE

-

75 Jan deszktop.ini
B Apr index
7254 Sep index. pdx

[y
Ll ol R LR |y - - N R A - - B L L R

PGID WINPID TIY UID STIME COMMAMD
2404 2484 con 10683 18:33:59 Ausr-bin-baszsh
1176 1628 con 18683 18:44:59 Ausr-bhinsps

Name

Starting time
Process ID Parent ID Owner UID

Two or more processes mutually requesting the
same set of resources

Example: two processes trying to use
simultaneously a tape and CD burner in reverse
order

tape
CD burner

Memory management

OS 2008-09

Concept of directory (group files together)

A tree-like structure similar to the process
hierarchy
A file Is specified by its path name
E.g. /usr/bin/ps
In UNIX there’s a root directory (/)
Windows has a root for each drive: A:, B:, C:, etc.

Working directory (a process property)
Where path not beginning with slash are looked for

Interface between OS and program code is through
a small integer called file descriptor

Before mount After mount

OS 2008-09

Special file

OS 2008-09

Special file (ctnd.)

7o)

8 iuno.lira.dist.unige.it - Iuno - SSH Secure Shell =10l x|
Eile Edit ew Window Help
H SR S 2l #80 % SN
& Quick Connect] Profiles JPTStE {Ehiieinzaid]
brw-—-———-- 1l root 0 13, 7 Apr 15 19893 ;I
bruy--———-- 1l root 0 13, 8 Apr 15 1999
bruy--———-- 1l root 0 13, 9 Apr 15 1999
bry--———--—- 1l root 1] 13, &4 apr 15 1999
bry--———--—- 1l root 1] 13, &4 apr 15 1999
bry--———--—- 1l root 1] 13, &5 apr 15 1999
bry--———--—- 1l root 1] 13, 74 apr 15 1999
bry--———--—- 1l root 1] 13, 75 apr 15 1999
bry--———--—- 1l root 1] 13, 76 apr 15 1999
bry--———--—- 1l root 1] 13, 77 apr 15 1999
bry--—-———- l root 1] 13, 78 Apr 15 1999
bry--—-———- l root 1] 13, 79 Apr 15 1999
bry--—-———- l root 1] 13, 66 Apr 15 1999
blOCk bry--—-———- l root 1] 13, &7 Apr 15 1999
brw------- l root 1] 13, 68 Apr 15 1999
S‘brw 1l koot] 13, &9 apr 15 1000
bry--———--—- 1l root 1] 13, 70 apr 15 1993
bry--———--—- 1l root 1] 13, 71 apr 15 1999
bry--———--—- 1l root 1] 13, 72 apr 15 1999
bry--———--—- 1l root 1] 13, 73 apr 15 1999
Character CEW-—————- 1l root 1] 41, 0 4apr 15 19939
brw----—--—- 1l root 1] 37, 0 4apr 15 19939
————y cru-ru-rw- 1 root 0 1, 5 apr 15 1533
iuno liraspasar I j
Insert Clipboard contents |SSH2 - 3des-cbe - hmac-mds - none | 0x24 | | e

Motorola
Bibliography
Chat
Music
Pictures
Received Files
Dideos
Wehs

v eBooks

OutlookMail

PUTTY .RHD

Paper reviews

Papers

Reposzitory

Rt0OS

su

Thumbhs .dhb

Trash

UINDOWS

desktop.ini

index
index.pdx

druxpr—xpr—x
dr—xr—xr—x
druxr—xr—x
dr—xr—xr—x
dr—xpr—xp—x
druwxr—xp—Xx
dr—xpr—xp—x
druwxr—xp—Xx
dpruxpr—xp—x
druxr—xp—x
—Py—p——p——
druxr—xp—x
druxpr—xpr—x
druxr—xr—x
druxr—xr—x
druxr—xr—x
—Pu—p——p——
druxpr—xp—x
druwxr—xp—Xx
— P ———p——
APruUXP—XP—X
‘—Pw—r——r——

- o)
o
Rl R B R R R e R R fnf o)

[y
B = = G0 OF G0 T D el e D e b 0 O

—FWXTWXrwX

* It's a sort of pseudofile

« Allows connecting two processes as they were
Issuing read/write system calls to a regular file

Process 1 Process 2

0OS 2008-09

druxr—xr—x
dr—xr—xr—x
druxr—xr—x
druxr—xr—x
druxr—xr—x
—PU—p——pr——
druxr—xr—x
druxr—xr—x
druxr—xr—x
druxr—xr—x
druxp—xr—x
—PU—p——pr——
druxr—xr—x
APruxPr—xKPr—x
—PU—p——pr——
druxr—xr—x
—PU—p——pr——

¢ 1s -1a !
druxr—xr—x
—Pu—pP——r——

=gl

[

[y
b b b G =] b GO DD P G0 (D b D DDl D

=g
=
AR ERREEE

[
=3

-]

=J w0
A& S

My Received Files

My Uideos
My Wehs

My eBooks
OutlookMail
PUTTY . RND
Paper revieuws
Papers
Repository
Rt0S

s

Thumbs .db
Trazh
WINDOWS
desktop.ini
index
index . pdx

index
index.pdx

OS 2008-09

count = read(fd,
OxFFFFFFFF

user space <

kernel <

System calls

buffer, nbytes);

Return to caller

Trap to kernel

Put code for read in register

Increment SP]_]_
Call read
Push fd
Push &buffer
Push nbytes

0x00000000
0S 2008-09

count = read(fd, buffer, nbytes);

Push nbytes into the stack

Push buffer into the stack

Push fd into the stack

Library calls read

Put sys call code into register
Trap to kernel

Examines the call code, query table
Call handler, execute read code
Return to caller (maybe)

Pop stack (i.e. increment SP)
Continue execution

read(2) - Linux man page

MAME
read - read from a file descriptor

SYNOPSIS

#include <unistd.h-

ggize t read{int fd, woid *buf, gize t coumi);
DESCRIPTION

read() attempts to read up to cownd bytes from file descriptor /4 into the buffer starting at burf,

If cownd is zero, read() returns zero and has no other results, If cound is greater than S5IZE_MAK, the resultis
unspecified,

RCTURMN YALUL

0O success, the number of bytes read is returned (zero indicates end of file), and the file position is advanced by this
number. It is not an error if this number is smaller than the number of bytes requested; this may happen for example
because fewer bytes are actually available right now (maybe because we were close to end-of-file, or because we
are reading from a pipe, or from a terminal), or because read() was interrupted by a signal, On errar, -1 is returned,
and errno s set appropriately. In this case it is left unspecfied whether the file position (if any) changes.

ERRORS

EIMTR

The call was interrupted by a signal before any data was read,
EAGATMN

Mon-blocking [FO has been selected using O_MNONBLOCK and no data was immediately available for reading.
EIO I/0 error. This will happen for example when the process is in a background process group, tries to read from

0S 2008-09 50

EAGAIMN
Mon-blocking IO has been selected using O_MOMBLOCK and no data was immediately available for reading.
EIDO I/O error, This will happen for example when the process is in a background process group, tries to read from
its controlling tty, and either it is ignaring or blocking SIGTTIM or its process group is orphaned. It may also
oceur when there is a low-level [FO error while reading from a disk ar tape.,
EISDIR
fd refers to a directory,
EBADF
fd is not a valid file descriptor ar is not open for reading,
EIMVAL
fd is attached to an object which is unsuitable for reading.
EFAULT
Lot is outside your accessible address space,

Other errars may occur, depending on the object connected to 7, POSIx allows a read that is interrupted after
reading some data to return -1 (with erpno set £o EINTR) ar to return the number of bytes already read,

COMFORMIMNG TO
Swrd, SYID, ATAT, POSIK, ¥/OPEN, BSD 4.3
RESTRICTIOMNS

R MFS file systems, reading small amounts of data will only update the time stamp the first time, subsequent calls
may not do so, This is caused by client side attribute caching, because most if not all NFS clients leave atime updates
to the server and client side reads satisfied from the client's cache will not cause atime updates on the server as
there are no server side reads, UNIX semantics can be obtained by disabling client side attribute caching, but in most
situations this will substantially increase server load and decrease performance.,

Many filesystems and disks were considered to be fast enough that the implementation of O_NOMBLOCK was
deemed unneccesary, So, O_NOMNBLOCE may not be available on files andfor disks.,

SEE ALSO

cloce(2], fontl(2), ioctli2), Iseek (2], readdir(2], readlink{2), select{2), write(2), fread(2), readwi2)

0S 2008-09 51

Call Description
pid = fork() Create a child process identical to the parent
pid = waitpid(pid, &statloc, options) Wait for a child to terminate
s = execve(name, argv, environp) Replace a process’ core image
exit(status) Terminate process execution and return status

fd = fopen(file, how, ...)

Open a file for reading, writing or both

s = close(fd) Close an open file
n = read(fd, buffer, nbytes) Read data from a file into a buffer
n = write(fd, buffer, nbytes) Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf) Get a file’s status information

s = mkdir(name, mode) Create a new directory

s = rmdir(name) Remove an empty directory

s = link(namel, name2) Create a new entry, name2 pointing to namel
s = ulink(name) Remove a directory entry

s = mount(special, name, flag) Mount a file system

s = umount(special) Unmount a file system

System call interface (cntd.)

OS 2008-09

Process management

OS 2008-09

OS 2008-09

Each file is identified by an i-number
The I-number Is an index Into a table of 1-nodes

A directory is a file containing a list of
I-number — ASCII name

Called a shortcut In some versions of Windows

/usr/ast /usr/jim
16 mail 31 bin
81 games 70 memo
40 test 38 progl

Link(*“/usr/jim/memo”, ““usr/ast/note’)

/usr/ast /usr/jim
16 mail 31 bin
81 games 70 memo
40 test 38 progl
70 note

Different philosophy

Many calls (APl — Application Program Interface),
not all of them are actually system calls

GUI included into the API (in comparison X-
Windows is all user level code)

fork CreateProcess Create a new process

waitpid WaitForSingleObject Can wait for a process to exit
execve None CreateProcess does the job

exit ExitProcess Terminate execution

open CreateFile Create a file or open an existing file
close CloseHandle Close a file

read ReadFile Read data from a file

Write WriteFile Write data to a file

Lseek SetFilePointer Move the file pointer

stat GetFileAttributeEx Get various file attributes

mkdir CreateDirectory Create a new directory

rmdir RemoveDirectory Remove an empty directory

link None

unlink DeleteFile Destroy an existing file

mount None

umount None

chdir SetCurrentDirectory Change the current working directory
chmod None

kill None

time GetLocalTime Get the current time

Operating system structure

OS 2008-09

Monolithic systems

OS 2008-09

Each layer relies only on services provided by lower
level layers

Layer Function
5 User/operator
4 User programs
3 I/0 management
2 Operator-process communication
1 Memory and disk management
0 Processor allocation and multiprogramming

» Timesharing provides:
Multiprogramming
Extended machine

» Decouple the two functions:
Virtual machine monitor (a SW layer)

It does the multiprogramming providing a “simulation”
of the bare HW

» On top of the monitor any compatible OS could be
run

» Also the Pentium (8086 mode, running DOS
applications) and Java VM provide a similar
mechanism (slightly different though)

Virtual machines

OS 2008-09

Each process is given a subset of the resources (at
any given moment) and NOT a simulation of the
whole machine

Simpler
Saves a layer of mapping

Each VM In this case Is given a subset of memory,
disk space, etc.

The OS checks for conflicts

Microkernel

Services are moved into user-space processes (e.g. the
filesystem)

The kernel handles message passing mechanisms to make
communication possible between user code and services

Easy to “remote” the message passing (distributed system)

Resilient: a crash in one module doesn’t compromise the
whole system (which can then recover from the crash)

/0 and HW access must be done into the kernel (spoils a
bit the nice client-server model) for example in device
drivers

Microkernel RTOS. In
QNX Neutrino, only the
most fundamental OS
primitives (e.g. signals,
timers, scheduling) are
handled in the kernel
1tself. All other
components — drivers, file
systems, protocol stacks,
user applications — run
outside the kernel as
separate, memory-
protected processes.

ETHERMET, SERIAL

MEMORY PROTECTED

MIKROKERNEL

A N P G G0

MEMORY PROTECTED

ONX Neutrino massage passing forms a vitual software bus that lats you
dynamically plug in —or plug out — whataver companants your systam rqiies.

ARM, MIPS, PowwPL, SH-4, StrongARM, IScale, 286

