Useful information

* My name: Giorgio Metta
* My email: pasa@liralab.it
e Office/Lab: 010 71781 411

e Where: LIRA-Lab, Villa Bonino, Ground Floor (su
appuntamento)

e Web site: http://www.liralab.it/os
® Mailing list: os@liralab.it

0S 2007-08

o000
(XXX
'YX
eecoe
XX
o0
e o
Introduction
0S 2007-08 1
Outline of the course
® Processes, threads, ® The exam consists of:
scheduling — 1 problem set
e TPC * C++ programming 1/3
— 1 oral exam:
¢ Memory * Theory and short
management exercises 2/3
* 1/O

* Filesystem
* Embedded systems

08 2007-08 3

Background
® Required
— Programming C/C++
e Helpful

— Linux/Unix, Windows

e Main idea is to learn, so, don’t freak out
even if it might seem hard!

08 2007-08

References

e Andrew S. Tanenbaum, Modern
operating systems, Prentice Hall
International 2001. ISBN: 0-13-092641-8

0S 2007-08 5

This slide is intentionally left blank

0S 2007-08

Operating system

* What'’s inside the computer?

— Layers:
Web browser Banking Airline L
system reservation | | @PPlication programs
Compilers Editors Command
interpreter } system programs
(shell)
Operating system
Machine language } hardware
Microarchitecture
Physical devices

08 2007-08 7

Meaning of the layers

® Physical devices: self explaining

® Microarchitecture: define data path
within the microprocessor (using
registers) sometimes using a
microprogram

* Machine language/Assembly language:
instruction set (e.g. 50-300 instructions)

08 2007-08 8

Where does the OS start?

Kernel mode User mode
Supervisor mode

Hardware protection (on
modern microprocessors)

All instructions allowed \Certain instructions not

DS e N P S

allowed
Timer interrupt handler Compiler, editor, web
browser

0S 2007-08 9

Example: microkernel OS

ETHERIE, SERIAL

MENORY PROTECTED

Microkernel RTOS. In mm m w
QNX Neutrino, only the < ¥ ¥ ¥ ¥
most fundamental OS
primitives h(e&g]sigx))als, £ £ £ 1, 1,
timers, scheduling) are PHOTON JHTIP.
handled in the kernel m m w
itself. All other MENORY PROTECTED
components — drivers, file
systems, protocol stacks,

user applications — run
outside the kernel as ONX Neutrino message passing forms a vitual software bus that les you
separate, memory- dynamicaly plug in—or plug out — Whatever Gomponents your system rquies.

protected processes.

{ ARM, MIPS, PowarPC, SH-4, StroaghRMl, IScale. x86 }

08 2007-08 10

Operating system’s job

* Manage the hardware (all the devices)

* Provide user programs with simpler interface
to the hardware (extended machine)

0S 2007-08 11

Example: floppy drive

* Specific chip (NEC PD765)
¢ 16 different commands

® Load between 1 and 9 bytes into a device
register

* Read/Write require 13 parameters
packed into 9 bytes

® Reply from the device consists of 7 bytes
(23 parameters)

e Control of the motor (on/off)

0S 2007-08 12

Abstraction

® Better to think in terms of files with
names rather than specific floppy drive
commands

® Other unpleasant hardware:
— Interrupts
— Timers
— Memory management

e Extended or virtual machine

0S8 2007-08 13

OS as resource manager

e Allocation of resources:

— Processors, memory, I/0 devices among a
set of programs competing for them

e Example: allocating the printer

— Buffering output rather than just print at
random

® Multiple users: sharing of resources and
avoid conflicts (share vs. security)

0S 2007-08 14

Sharing

® Time and space multiplexing

* Multiplexing in time: e.g. printer, processor
— Print one job at a time

* Multiplexing in space: e.g. memory, disks
— Divide memory among many processes

Computer hardware

<
® Processors Ilﬂ

08 2007-08 15
Registers
*Program counter (PC): next instruction
«Stack pointer (SP): stack in memory } Context switch

*Program Status Word (PSW): condition bits (e.g.
kernel vs. user mode)

*Base register: relocation of executables

System call
*SW interrupt
*From User to Kernel mode

Complexity of the CPU HW
*Pipeline architecture

*Superscalar

0S 2007-08 17

* Memory
* I/O devices [cPU | [Mem || Video | | Floppy | Controllers
* Buses @
< Buses D
0S 2007-08 16
Memory
e Ideally...

— Extremely fast (faster than the CPU in
executing an instruction)

— Abundantly large
— Dirt cheap

0S 2007-08 18

Memory (for real)

Typical access time Size
1 nsec <1K
10 msec Magnetic disk ~ 5-100G
100 sec ‘ Magnetic tape ‘ > 20G
08 2007-08 19

Memory cntd.

* Registers: typical 32 in a 32 bit CPU
* Cache: divided into cache lines (64 bytes each)

— Cache hit — no main memory access, no bus
involvement

— Cache miss — costly
¢ Main memory
* Disk (multiple plates, heads, arms)

— Logical structure: sectors, tracks, cylinders

* Magnetic tape: backup, cheap, removable

0S 2007-08 20

Multiple programs in memory

* Base and Limit register

* Hardware support for relocation and multiple
programs in memory

OxFFFFFFFF

Fetch:

User program and data

Instruction

if (PC<Limit) Fetch(PC+Base) Limit ——>
else Troubles(SigFault) User program and data

Data Base ——p

if (Addr<Limit) Fetch(Addr+Base)

else Troubles(SigFault)

Operating system

0x00000000

08 2007-08 21

DLL’s (in principle)

OxFFFFFFFF

* Requires an MMU

= with multiple
B Base/Limit register
o Vs progeam pairs

Base

Data 1

Data 2

Operating system

0x00000000

08 2007-08 22

Memory Management Unit

® Managing the MMU is one of the OS
tasks:

— Balancing context switches since they
impact on performances: e.g. MMU
registers have to be saved, cache emptied,
etc.

0S 2007-08 23

I/O devices

® Usually a controller + the actual device

— For example: a disk controller may hide the details of driving
the arm and heads to the appropriate location to read a
certain piece of data

— Sometimes the controller is a small embedded microprocessor
in itself
¢ The interface to the OS is somewhat standardized:
— IDE disk drives conform to a standard
* Device driver: a piece of the OS. Device drivers run in
kernel mode since they have to access I/O instructions
and device registers

0S 2007-08 24

Device drivers

1. Unix. Compiled and linked with the
kernel (although Linux supports
dynamic loading of DD)

2. Windows. An entry into an OS table.
Loaded at boot

3. Dynamic. USB, IEEE1394 (firewire).
At boot time the OS detects the
hardware, finds the DD, and loads
them

I/0 registers

¢ E.g. small number of registers used to
communicate

* Memory mapped: the registers appear at
particular locations within the OS
address space

¢ [/O instructions: some CPUs have
special privileged (kernel mode) I/O
instructions (IN/OUT). Registers are
mapped to special locations in I/O space

0S 2007-08 26

Polling

e User makes a system call
e OS calls DD
e DD talks to device, prepares I/O, starts

I/O and sits waiting (busy waiting) for
I/0O completion

* Busy waiting means that the CPU is
busy polling a flag

08 2007-08 28

08 2007-08 25
Ways of doing I/0
1. Polling
2. Interrupt based
3. DMA
Interrupt

* A piece of hardware called “interrupt
controller”

1. CPU issues the I/O request Disk drive

via the device driver P e N
2. On termination the device signals
the CPU’s interrupt controller (if

the interrupt controller is not busy
servicing another higher priority
interrupt)

3. If the interrupt can be handled
then the controller asserts a pin
on the CPU.

4. The interrupt controller puts the
address of the device into the bus

0S 2007-08 29

Interrupt (cntd.)

* When the CPU decides to take the interrupt:
— Stores registers (push them into the stack)
— Switches into kernel mode

— Uses the device’s address to index a table (interrupt
vector)

— Calls the handler contained at the location located
in the interrupt vector

— Once the handler is executed it returns from the
handler by popping the registers from the stack

0S 2007-08 30

Direct Memory Access DMA

® Yet another piece of hardware: DMA
controller

— Communication between memory and
device can be carried out by the DMA
controller with little CPU intervention

— When the DMA is completed the controller
asserts an interrupt as before

0S 2007-08 31

Buses

® Multiple buses (cache, local, memory,
PCI, USB, IDE...)

* OS must be aware of all of them to
manage things appropriately

® Plug&Play — dynamic allocation of I/O
and memory addresses (BIOS code)

0S 2007-08 32

This slide is intentionally left blank

0S 2007-08 33

Concepts

® Processes

® Deadlocks

* Memory management
* I/O

¢ Files

® Security

0S 2007-08 34

The Shell

® Unix command interpreter (or similarly the
“command” in windows)

¢ Clearly, it’s not part of the OS

prompt

35

Processes

Associated with each process:
— Address space (program + data + stack)
— Entry into the process table (a list of processes)
* Set of registers (e.g. PC, PSW, etc.)
e MMU status, registers
* Processes can be created, terminated, signaled (SW
interrupt)
They form a tree (a hierarchy) on some systems
Process cooperation is obtained by means of IPC
(inter-process communication) mechanisms
Processes start with the privileges of the user who
starts them

0S 2007-08 36

PS (process status) command

8 Apr ?
None 954 Sep 18

PGID WINPID TTY UID STIHE COHMAND
3484 3484 con 1003 18:33:59 susr/bins/bash
1176 1628 con 1003 18:44:5% susrshinsps

Starting time

Process ID
ParentID (o o00705 Owner UID 37

Deadlocks

* Two or more processes mutually
requesting the same set of resources

e Example: two processes trying to use
simultaneously a tape and CD burner in
reverse order

?
tape \
\‘ CD burner @

Memory management

¢ Virtual memory
— Allowing processes requesting more
memory than the computer main memory to
run
— Swap space/swapping. Storing some of the
process’ memory in the disk

Files

* Concept of directory (group files together)

* A tree-like structure similar to the process
hierarchy

o A file is specified by its path name

— E.g. /usr/bin/ps

In UNIX there’s a root directory (/)

— Windows has a root for each drive: A:, B:, C:, etc.

* Working directory (a process property)
— Where path not beginning with slash are looked for

* Interface between OS and program code is
through a small integer called file descriptor

0S 2007-08 40

08 2007-08 39
mount
Root Floppy ﬁt\
a b X DQDy a b
HE W
c d ¢ d
After mount

Before mount

0S 2007-08 41

Special file

* A device driver gets a special entry into
the file system (usually under /dev)

® Block special files
— Randomly addressable blocks: a disk

® Character special files
— A stream of character data: modem, printer

0S 2007-08 42

Special file (ctnd.)

block

character

crv-rv-rv- 1 root 1 sapris
suno Lizaspases |

5-none 8024 | | g 43

Insert

Security

Motorola

My Bibliography
My Chat
@ My Music

Hy Pictures

My Received Files
My Uideos

Hy Uebs

2 My eBooks

7 OutlookMail
PUTTY.RND
Paper revieus

Papers
Repository
Rt0S
Thunbs .db
Trash
UINDOUS
desktop.in

index
index.pdx

—IrwXIrwXIrwx

0S 2007-08

44

Pipe

* It’s a sort of pseudofile

¢ Allows connecting two processes as they were
islsuing read/write system calls to a regular
file

pipe
Process 1 Process 2

0S 2007-08 45

Pipe example

19:42 My Received Files
B9:04 Hy Uideos
2003 Hy Vebs
2002 My cBooks
37 OutlookMail
52 PUTTY.RND
14
47
25 Repository
2082 Re0S
23 Thunbs.db
6 2083 Trash
pasa 2882 WINDOWS
D 2003 desktop.ini
pasa 203 e
pasa Hope 89:16 index.pdx

index
P

index
index.pdx

0S 2007-08

46

This slide is intentionally left empty

0S 2007-08 47

System calls

count = read(fd, buffer, nbytes);

OxFFFFFFFF

Put code for read in register

user space <:

IncrementSP_11

Call read

Push fd
Push &buffer

= b o

Push nbytes

kernel

0x0000000
0S 2007-08

48

co

01O TR W

©

System calls

unt = read(fd, buffer, nbytes);

Push nbytes into the stack

Push buffer into the stack

Push fd into the stack

Library calls read

Put sys call code into register

Trap to kernel

Examines the call code, query table
Call handler, execute read code
Return to caller (maybe)

10 Pop stack (i.e. increment SP)
11. Continue execution

0S8 2007-08 49

read(2) - Linux man page
NAME

SYNOPSIS

Mactute st

T T B
DESCRIPTION

read() attempts to read up to count bytes from file descriptor fd into the buffer starting at buf.

If count is zero, read() retums zero and has no other results. If count is greater than SSIZE_MAX, the result is
unspecified.

RETURN VALUE

On succsss, the number of bytes read is returmed (zero indicates end of file), and the file position is advanced by this
number. It is nat an error i this number s smaller than the number of bytes requested; this may happen far example
because fewer bytes are actually available right now (maybe because we were close m snd-offle or becauss we
are reading from a pipe, o from a terminal), or because read() was interrupted by a signal. On error, -1 is retumed,
S b1 13 5o SDpropfstely. I ths ace 1 16 umspeciied whether the fe postion (f sny) chandes

ERRORS

EINTR

The call was interrupted by a signal before any data was read.
EAGAIN
Hon-slocking 1/0 has been selected using O_NONBLOCK and no data was immediatsly available for reading.
EIO 1/0 error. This will happen for example wher the process is in a background process aroup, tries to read from

0S 2007-08 50

EAGAIN
Non-blacking 1/ has been selected using O_NONBLOCK and no data was immediately available for reading
EIO 10 error. This will happen for example when the process is in a background process group, tries o reat
its controlling tty, and either it is ignoring or blocking SIGTTIN or its process group is orphaned. It may also
occur when there is a low-level 1/0 error while reading from a disk or tape
EISDIR
fi refers to a directory.
EBADF
fd'is not 2 valid file descriptor or is not open for reading,
EINVAL
£ is attached to an object which is unsuitable for reading.
EFAULT
bufis outside your accessible address space.

Other errors may occur, depending on the obiect connected to fd. POSIX allows 3 read that is interrupted after
reading some data to return -1 (with ermo set to EINTR) or to return the number of bytes already read

CONFORMING TO

5r4, SVID, ATAT, POSIX, X/OPEN, BSD 4.3

RESTRICTIONS

On FS file systems, reading small amounts of data will only update the time stamp the first time, subsequent calls
This is caused by dient side attributs caching, because most if not all NFS clients lsave atime updates

to the server and dient side reads satisfied from the cients cache will not cause atime updates on the server as

there are no server side reads. UNIX semantics can be obtained by disabling client side attribute caching, but in most

situations this will substantially increase server load and decrease performance;

Many flesystems and disks were considered to be fast enough that the implsmentation of O_NONBLOCK was
med unneccesary. 5o, O_NONBLOCK may nat be available on files and/or dis

SEE ALSO

close(2), fentl(2), ioctl(2), Iseek(2), readdir(2), readlink(2), select(2), write(2), fread(3), readv(3)

08 2007-08 51

System call interface (part of)

Call Description

pid = fork) Create a child process identical to the parent

pid - waicpid(pid, 4s:

Wait for a child to terminate

execve (name, ar Replace a process’ core image

oxit (status) Terminate process execution and return status

£d = fopen(file, how,

Open a file for reading, writing or both

close(za Close an open file

) Read data from a file into a buffer

n - write(fa, buffer, nby ‘Write data from a buffer into a file
position = lseex(fd, offset, whence) Move the file pointer

information

©(name, cout Get a file’s statu

= - mkdir(nane, mode) Create a new directory

ndiz (nane) Remove an empty directory

Link (namel, name2) Create a new entry, name2 pointing to namel

ulink (nane) Remove a directory entry

= Mount a file system

= = umount (special) Unmount a file system

08 2007-08 52

System call interface (cntd.)

Call Deseription
B irnane) Change the working directory
chmod (name, mods) Change a file's protection bits
& = KLLL(pid, signall Send a signal to a process
- tine (sseconds) Get elapsed time in seconds since Jan 1+, 1970

0S 2007-08 53

Process management

while (1)
{
type_prompt () ;
read_command (command, parameters);

if (fork() 0)

waitpid(-1, &status, 0);

execve (command, parameters, 0);

0S 2007-08 54

position = lseek (fd,

Iseek

e Random access to a file

* Imagine the file as accessed through a

pointer

offset, whence)

- 1seek moves the pointer

Directory (in UNIX)

® Each file is identified by an i-number

e The i-number is an index into a table of
i-nodes

® A directory is a file containing a list of
i-number — ASCII name

08 2007-08 56

0S8 2007-08 55
¢ Called a shortcut in some versions of
Windows
/usr/ast /usr/3im
16 mail 31 bin
81 games 70 memo
40 test 38 progl
link (“/usr/jim/memo”, “usr/ast/note”)
/usr/ast /usr/jim
16 mail 31 bin
81 games 70 memo
40 test 38 progl
70 note
08 2007-08 57

Win32 API

¢ Different philosophy

* Many calls (API — Application Program
Interface), not all of them are actually
system calls

* GUI included into the API (in
comparison X-Windows is all user level
code)

08 2007-08 58

Example of Win32

o
2
[E

™

open CreateFile

Create a file or open an existing file

close CloseHandle

Close a file

read ReadFile

Read data from a file

write WriteFile

Write data to a file

Iseek SetFilePointer

Move the file pointer

Destroy an existing file

Nor

chdir SetCurrentDirectory

Change the current working directory
chmod None.
Kill None
time GetLocalTime. Get the current time.
08 2007-08

59

Operating system structure

® Monolithic systems
* Layered systems

¢ Virtual machines

¢ Exokernels

® Client-Server model

0S 2007-08 60

10

Monolithic systems

® The “big mess”
® No organized structure

® A bit of structure anyway:
— System calls requires parameters in a well
defined place (e.g. the stack)
— Three layers:
* Application program
® Service procedures
* Helper procedures

0S8 2007-08 61

Layered systems

® Each layer relies only on services
provided by lower level layers

Layer Function
5 User/operator
4 User programs
3 I/0 management
2 Operator-process communication
1 Memory and disk management
0 Processor allocation and multiprogramming

0S 2007-08 62

Virtual machines

* Timesharing provides:
— Multiprogramming
— Extended machine

® Decouple the two functions:
— Virtual machine monitor (a SW layer)
— It does the multiprogramming providing a

“simulation” of the bare HW

* On top of the monitor any compatible OS could
be run

* Also the Pentium (8086 mode, running DOS
applications) and Java VM provide a similar
mechanism (slightly different though)

08 2007-08 63

Virtual machines

Applications
CMS CMS CMS
VM/370
370 Bare Hardware

syscall 1

I/0 instrugtion

08 2007-08 64

Exokernel

® Each process is given a subset of the
resources (at any given moment) and
NOT a simulation of the whole machine

* Simpler
* Saves a layer of mapping

e Each VM in this case is given a subset of
memory, disk space, etc.

e The OS checks for conflicts

0S 2007-08 65

Client-Server model

Microkernel

Services are moved into user-space processes (e.g. the
filesystem)

The kernel handles message passing mechanisms to
make communication possible between user code and
services

¢ Easy to “remote” the message passing (distributed
system)

Resilient: a crash in one module doesn’t compromise
the whole system (which can then recover from the
crash)

I/0 and HW access must be done into the kernel
(spoils a bit the nice client-server model) for example
in device drivers

0S 2007-08 66

11

Example: microkernel OS

Microkernel RTOS. In
QNX Neutrino, only the
most fundamental OS
primitives (e.g. signals,
timers, scheduling) are
handled in the kernel
itself. All other
components — drivers, file
systems, protocol stacks,
user applications — run
outside the kernel as
separate, memory-
protected processes.

ETHERNET, SERIAL

¢ HENORY PROTECTED
(I 5l 2 O E
¥ v ¥ ¥

(e — T T—
+ 1+ 1T 1T 1
Weromn n“:uuzu

&

BEMORY PROTECTED

QWX Neutrino message passing forms & virtual software bus that fefs you
in—0r plug ouf - whataver companents your

A 4
{ ARM, MIPS, PremePt, SH-4, StroaghR, IScas, 116 }
0S 2007-08 67

12

