
OS 2007-08 1

File system



OS 2007-08 2

Goal of the file system

• Uniform naming
• Directories (containing files)
• File extension (e.g. .c, .h, .cpp) logically 

enforcing file using
– Windows is aware of extension creating 

associations between applications and extensions
• File structure

– Blocks: 
• 1 byte (sequence of bytes, not blocks for real)
• Records (blocks for real)
• Sometimes, tree-like organization of records



OS 2007-08 3

Types

• Regular files
– Our data

• Directories
– System files for maintaining group of files

• Character/block special files
• Pipes

– Special files

• ASCII/binary differences



OS 2007-08 4

Example (Unix executable)

Symbol table

Relocation bits

Data

Text

Flags

Entry point

Symbol table size

BSS size

Data size

Text size

Magic number

header



OS 2007-08 5

About files

• We’ve already seen this:
– File access: random, sequential

• Seek operation

– Attributes:
• Read/write permission
• Owner
• Time of creation, last access, etc.
• Archive (for backups)

– Operations:
• Read, write, open, close, creation, deletion, get/set 

attributes, rename (w/out copy)



OS 2007-08 6

Memory mapped files

• Map a file into a part of the process address 
space that opens it
– Convenient:

• I/O becomes memory access
• Paging becomes the read/write mechanism

– Troubles:
• How big is the file?

– How to deal with a file w/ holes (should the OS map all 
addresses?)

• Need a mechanism to ask for frequent “real” write to disk, 
otherwise the file is not written until a page is evicted

– Imagine that your word processor crashes and the page 
hasn’t been saved in the last couple of hours!



OS 2007-08 7

Directories

• Single level directory
– Usually on embedded systems

• Two-level directory system
– Old

• Hierarchical directory system
– The usual thing everyone is familiar with
– Multiple/single root (Windows/Unix)



OS 2007-08 8

Path names

• Already seen:
– Delimiters / or \ (win)
– Current directory (relative path names)

• Directory operations
– Create, delete, opendir/closedir, readdir, 

rename, link/unlink
• “Link” as seen earlier

• Mount (Unix)
– It exists a similar concept in Win2K server



OS 2007-08 9

Implementation



OS 2007-08 10

Layout
• Stored on disk, how the file system is organized
• Partitions

– Disks are divided into partitions w/ independent file system 
in each

• MBR →Sector 0, where the computer boots from
– The end of the MBR contains the partition table

• One of the partition is marked as active
• When the computer is booted, the BIOS loads and 

execute the MBR. The program (MBR) locates the 
active partition, reads the first block (called boot 
block) and executes it. The program in the boot block 
is the OS loader, knows where the kernel image is and 
how to run it appropriately.



OS 2007-08 11

Idealized

Partition 2Partition 1MBR

disk

Files and 
directories

Root dirI-nodesFree space 
mgmt

Super blockBoot block

within a partition



OS 2007-08 12

Implementing files

• Approximately as tracking and allocating 
memory
– Same spatial organization
– Disk divided in blocks (similar to the concept of 

pages)
– Blocks do not need to be the same size as physical 

sectors (they’re the abstraction of the OS)
• As for memory

– Internal fragmentation (as for memory)
– External fragmentation (if we try to allocated 

blocks contiguously)



OS 2007-08 13

Contiguous allocation

• Fragmentation
– Files and holes

• Read time excellent:
– Single seek operation (beginning of file)
– Then read contiguously

• Disk compaction is very slow
– It can be done but it takes ages (in 

computer terms)



OS 2007-08 14

Imagine the consequences…

• You start preparing the file for your thesis and 
the word processor asks for the final size in 
bytes!
– You choose 100Mbytes, maybe there’s no such hole 

in the disk. No thesis
– You ask for 1Mbyte. You write up to page 10 and 

“save as…” fails (the hole was too small)

• Contiguous allocation is used though
– CD-ROMs, because we know the size of files in 

advance



OS 2007-08 15

Linked list allocation

• Linked list:
– Each block contains also the pointer to the 

next block (or -1 if last block of file)
– Sequential read is fine if starting from block 

1 of the file
– Random access painful
– Also, the room for the pointer changes the 

size of blocks. The amount of storage is no 
longer a power of two (can slow down 
things)



OS 2007-08 16

Linked list w/ table in mem

Block 0 Block 1 Block 2 Block 3

7 4 9 5

X10

59

X8

47

X6

-15

94

X3

X2

X1

File starts here

In main memory



OS 2007-08 17

FAT in memory?

• 20GB disk, 1Kbyte block size
• 20M entries
• 3bytes each, 4 for efficiency (32bit 

processor)
• 80Mbytes of RAM
• If paged, still 80Mbytes of virtual 

memory + the bus traffic due to paging



OS 2007-08 18

I-node solution

7

6

5

4

Address of disk block 3

Address of disk block 2

Address of disk block 1

Address of disk block 0

File attributes

F
or

 e
ac

h 
fi

le



OS 2007-08 19

I-nodes

• Size of table
– FAT: proportional to N, if disk has N blocks
– I-nodes: proportional to the number of files 

open simultaneously

• Additionally
– If the I-node is filled the last pointer is 

reserved for holding the address of the next 
block of I-nodes (another table similar to the 
first one)



OS 2007-08 20

Directories
• The directory entry contains the information 

about the files
– E.g. where I-nodes are stored

• Where are attributes stored (creation times, 
permission, etc.)
– In the directory itself (MSDOS)
– In the I-node (Unix)

• Issues with:
– Storing long file names
– Searching large directories (over 1000 of files)

• Linear search
• Hash table based search



OS 2007-08 21

Shared files
• To show the same file as appearing in multiple 

directories
– Note! The same file, not a copy

• If the directory structure contains only the 
pointer to the I-node (together with the file 
name)
– Sharing means setting the pointer to the correct I-

node
• Second solution. Having a special file of type 

LINK (symbolic linking)
– In practice a redirection of the access to the shared 

file



OS 2007-08 22

Issues with shared files

• Accounting appropriately
– What if the owner of the file deletes it but a 

link is still active on the file
– Owner doesn’t own a file but he/she’s still 

charged for it

• LINK approach is a bit slower
– The path must be followed and the correct I-

node found



OS 2007-08 23

Disk space management

• As for memory
– External vs. internal fragmentation

• Example:
– Average seek time 10ms
– Rotation time 8.33ms
– Bytes per track 131072
– Reading k bytes:

10 + (8.33/2) + (8.33/131072)*k



OS 2007-08 24

Choosing block size

data rate

disk utilization100% 1000K/s

4K 8K block size



OS 2007-08 25

Keeping track of free blocks
• As for memory

– Linked list of free blocks
• 16Gb disk → 16K pointers for a 1Kb block and 32bit block 

numbers
– 16G = 2^34, 1K block size means 2^24 blocks. Each block 

contains 255 ~2^8 pointers (32bit each). 2^16 blocks are 
required

– Bitmap
• Same disk, 2^24 bits which requires:

– 2^(24 - 4 – 10) = 2^10
– The bitmap is much smaller than the linked list

• Usually the bitmap can be in main memory (at least a 
page)

• Also for the linked list, for speeding up access part of it 
should be in main memory



OS 2007-08 26

Quotas

• Limit the disk space used by a single 
user

• Keep track of what files belong to each 
user

• …just to know that it exists!



OS 2007-08 27

Backups

• Recover from
– Stupidity
– Disaster

• Physical dump
– Sector by sector copy of the disk

• Logical dump
– Backup software parser the directory tree 

and copies files (excluding /dev, pipes, etc.)



OS 2007-08 28

Backups

• Full or incremental
– Full: copy everything (directories and files)
– Incremental: copy only modified files + part 

of the directory hierarchy containing them

• Costly operations
• People are not aware of the full value of 

their data until they lose them



OS 2007-08 29

File system consistency

• Check whether the list of free blocks and 
files are mutually consistent

• Reliability
– RAID (we’ve seen it)
– Stable storage (algorithmically safe)

• Safety
– What, where, and how often to backup files



OS 2007-08 30

Performance
• Caching

– How to choose what to evict from cache
• Similar to memory: FIFO, second chance, LRU can be 

used
– ...but unfortunately, we shouldn’t be caching 

forever. Avoid data not written for long time, just in 
case of a crash

– Unix has a daemon saving to disk every 30 seconds 
or so (update)

– MSDOS uses a write-through cache, “write” are 
scheduled as soon as possible (always consistent)

– Windows started to use the first strategy too (more 
efficient)



OS 2007-08 31

Performance

• Block read ahead
– Try to guess what’s needed next
– Try to estimate how sequential a file is 

accessed
– If sequential, try reading ahead before 

blocks are needed
• Reducing arm motion

– Where to put I-nodes
– Try to do block clustering


