
x86 architecture et similia

F R E E L Y I N S P I R E D F R O M

1

x86 architecture et similia

F R E E L Y I N S P I R E D F R O M
C L A S S 6 . 8 2 8 , M I T

OS 2008-09

PC architecture
2

 A full PC has: A full PC has:
 an x86 CPU with registers, execution unit, and memory

management
 CPU chip pins include address and data signals
 memory

di k  disk
 keyboard
 display  display
 other resources: BIOS ROM, clock, ...

OS 2008-09

CPU
3

 CPU runs instructions:
for(;;) {

run next instruction
}}

 We will start with the original 16-bit 8086 CPU  We will start with the original 16-bit 8086 CPU
(1978)

OS 2008-09

CPU & Memory
4

 Needs work space: registers
 four 16-bit data registers: AX, CX, DX, BX
 each in two 8-bit halves, e.g. AH and AL
 very fast very few  very fast, very few

 More work space: memory
 CPU sends out address on address lines (wires, one bit per

i) wire)
 Data comes back on data lines
 or data is written to data lines

OS 2008-09

CPU & Memory
5

 Add address registers: pointers into memory g p y
 SP - stack pointer
 BP - frame base pointer

SI i d  SI - source index
 DI - destination index

OS 2008-09

IP (program counter)
6

 Instructions are in memory too! y
 IP - instruction pointer (PC on PDP-11, everything else)
 increment after running each instruction

 b difi d b CALL RET JMP di i l j  can be modified by CALL, RET, JMP, conditional jumps

OS 2008-09

Flags
7

 Want conditional jumps
 FLAGS - various condition codes

 whether last arithmetic operation overflowed
 i i / i  ... was positive/negative

 ... was [not] zero
 ... carry/borrow on add/subtract
 ... overflow
 ... etc.
 whether interrupts are enabled  whether interrupts are enabled
 direction of data copy instructions

 JP, JN, J[N]Z, J[N]C, J[N]O ...

OS 2008-09

I/O
8

 Still not interesting - need I/O to interact with
outside worldoutside world
 Original PC architecture: use dedicated I/O space

 Works same as memory accesses but set I/O signal
O l I/O dd  Only 1024 I/O addresses

 Memory-Mapped I/O
 Use normal physical memory addresses

G t d li it d i f I/O dd  Gets around limited size of I/O address space
 No need for special instructions
 System controller routes to appropriate device

 Works like “magic” memory: g y
 Addressed and accessed like memory, but ...
 ... does not behave like memory!
 Reads and writes can have “side effects”

R d lt h d t t l t

OS 2008-09

 Read results can change due to external events

Example
9

Example: write a byte to line printer:
 #define DATA_PORT 0x378

d fi S S O  #define STATUS_PORT 0x379
 #define BUSY 0x80
 #define CONTROL_PORT 0x37A
 #define STROBE 0x01

 void lpt_putc(int c) {
 /* wait for printer to consume previous byte */
 while((inb(STATUS_PORT) & BUSY) == 0);

 /* put the byte on the parallel lines */
 outb(DATA_PORT, c);

/* ll h i l k h d */  /* tell the printer to look at the data */
 outb(CONTROL_PORT, STROBE);
 outb(CONTROL_PORT, 0);
 }

OS 2008-09

More memory
10

 What if we want to use more than 2^16 bytes of memory?
8 86 h bit h i l dd h M RAM  8086 has 20-bit physical addresses, can have 1 Meg RAM

 each segment is a 2^16 byte window into physical memory
 virtual to physical translation: pa = va + seg*16

 the segment is usually implicit, from a segment register
 CS - code segment (for fetches via IP)
 SS stack segment (for load/store via SP and BP)  SS - stack segment (for load/store via SP and BP)
 DS - data segment (for load/store via other registers)
 ES - another data segment (destination for string operations)
 tricky: can't use the 16-bit address of a stack variable as a pointer  tricky: can t use the 16 bit address of a stack variable as a pointer

(still need 20 bits to identify an address in memory)
 but a far pointer includes full segment:offset (16 + 16 bits)

OS 2008-09

More memory is needed
11

 But 8086's 16-bit addresses and data were still
i f ll ll painfully small

 80386 added support for 32-bit data and addresses
(1985)

 boots in 16-bit mode, then switches to 32-bit mode
 registers are 32 bits wide, called EAX rather than AX
 operands and addresses are also 32 bits, e.g. ADD does  operands and addresses are also 32 bits, e.g. ADD does

32-bit arithmetic
 prefix 0x66 gets you 16-bit mode: MOVW is really 0x66

MOVW O
 80386 also changed segments and added paged

memory...

OS 2008-09

Memory map
12

 x86 Physical Memory Map y y p
 The physical address space mostly looks like ordinary RAM
 Except some low-memory addresses actually refer to other

things things
 Writes to VGA memory appear on the screen
 Reset or power-on jumps to ROM at 0x000ffff0p j p

OS 2008-09

32-bit memory mapped devices
4Gb

Unused

Extended Memory

0x00100000 (1MB)

BIOS ROM

0x000F0000 (960KB)

16-bit devices, expansion ROMs

0x000C0000 (768KB)

VGA Display

0x000A0000 (640KB)

OS 2008-09 13

Low Memory

Assembly
14

 Two-operand instruction set
 Intel syntax: op dst src  Intel syntax: op dst, src
 AT&T (gcc/gas) syntax: op src, dst

 uses b, w, l suffix on instructions to specify size of operands
 Operands are registers, constant, memory via register, memory via constant

l Examples:

AT&T syntax "C"-ish equivalent
movl %eax %edx edx = eax; register modemovl %eax, %edx edx = eax; register mode
movl $0x123, %edx edx = 0x123; immediate
movl 0x123, %edx edx = *(int32_t*)0x123; direct
movl (%ebx) %edx edx = *(int32 t*)ebx; indirectmovl (%ebx), %edx edx (int32_t)ebx; indirect
movl 4(%ebx), %edx edx = *(int32_t*)(ebx+4); displaced

OS 2008-09

Assembly (instr. classes)
15

 Instruction classes
 data movement: MOV, PUSH, POP, ...
 arithmetic: TEST, SHL, ADD, AND, ...

i/ IN OUT  i/o: IN, OUT, ...
 control: JMP, JZ, JNZ, CALL, RET
 string: REP MOVSB, ...  string: REP MOVSB, ...
 system: IRET, INT

OS 2008-09

GCC (a particular compiler)
16

 Example instruction What it does

 pushl %eax subl $4, %esp; movl %eax, (%esp)

 popl %eax movl (%esp), %eax; addl $4, %esp

 call $0x12345 pushl %eip; movl $0x12345, %eip

 ret popl %eipp p p

OS 2008-09

Examples
17

 GCC dictates how the stack is used. Contract between caller
and callee on x86: and callee on x86:
 after call instruction:

 %eip points at first instruction of function
 %esp+4 points at first argument

% i t t t dd  %esp points at return address
 after ret instruction:

 %eip contains return address
 %esp points at arguments pushed by caller

ll d f i h h d  called function may have trashed arguments
 %eax contains return value (or trash if function is void)
 %ecx, %edx may be trashed
 %ebp, %ebx, %esi, %edi must contain contents from time of call

i l Terminology:
 %eax, %ecx, %edx are "caller save" registers
 %ebp, %ebx, %esi, %edi are "callee save" registers

OS 2008-09

GCC (cntd.)
18

 Functions can do anything that doesn't violate y g
contract with the GCC

OS 2008-09

OS 2008-09 19

Compilation
20

 Compiling, linking, loading: p g, g, g
 Compiler takes C source code (ASCII text), produces

assembly language (also ASCII text)
 Assembler takes assembly language (ASCII text),

produces .o file (binary, machine-readable!)
 Linker takes multiple ' o's produces a single program  Linker takes multiple .o s, produces a single program

image (binary)
 Loader loads the program image into memory at run-

time and starts it executing

OS 2008-09

x86 & the OS
21

 One way to think about an operating system interface is that it extends
h h d i i i h f "i i " h the hardware instructions with a set of "instructions" that are

implemented in software. These instructions are invoked using a
system call instruction (INT and RETI on the x86). In this view, a
task of the operating system is to provide each application with a task of the operating system is to provide each application with a
virtual version of the interface; that is, it provides each application with
a virtual computer.

 One of the challenges in an operating system is multiplexing the
physical resources between the potentially many virtual computers.
What makes the multiplexing typically complicated is an additional
constraint: isolate the virtual computers well from each other.

OS 2008-09

Virtual x86 (the OS)
22

 To give each application its own set of virtual processor, we need to virtualize
the physical processors. One way to do is to multiplex the physical processor the physical processors. One way to do is to multiplex the physical processor
over time: the operating system runs one application for a while, then runs
another application for while, etc. We can implement this solution as follows:
when an application has run for its share of the processor, unload the state of
the physical processor, save that state to be able to resume the application later,
l d i th t t f th t li ti d it load in the state for the next application, and resume it.

 What needs to be saved and restored? That depends on the processor, but for
the x86:
 IP

SP  SP
 The other processor registers (eax, etc.)

 To enforce that a virtual processor doesn't keep a processor, the operating
 f i di i d i h h i h system can arrange for a periodic interrupt, and switch the processor in the

interrupt routine.

OS 2008-09

Interrupt
23

 Big picture: kernel is trusted third-party that runs the
hi O l h k l i il d machine. Only the kernel can execute privileged

instructions (e.g., changing MMU state). The processor
enforces this protection through the ring bits in the code

 If li i d segment. If a user application needs to carry out a
privileged operation or other kernel-only service, it must
ask the kernel nicely. How can a user program change to
h k l dd h k l fthe kernel address space? How can the kernel transfer to a

user address space? What happens when a device attached
to the computer needs attention? These are the topics for

d ' ltoday's lecture.

OS 2008-09

Continued…
24

 There are three kinds of events that must be handled by the
kernel not user programs: (1) a system call invoked by a kernel, not user programs: (1) a system call invoked by a
user program, (2) an illegal instruction or other kind of bad
processor state (memory fault, etc.). and (3) an interrupt
from a hardware device. from a hardware device.

 Although these three events are different, they all use the
same mechanism to transfer control to the kernel. This
mechanism consists of three steps that execute as one ec a s co s sts o t ee steps t at e ecute as o e
atomic unit. (a) change the processor to kernel mode; (b)
save the old processor somewhere (usually the kernel
stack); and (c) change the processor state to the values set

 th “ ffi i l k l t l ” Th t up as the “official kernel entry values.” The exact
implementation of this mechanism differs from processor
to processor, but the idea is the same.

OS 2008-09

Mutual exclusion x86
25

Here is one way we can implement acquire and release using the x86
xchgl instruction: xchgl instruction:

struct Lock {
unsigned int locked; g ;

};

acquire(Lock *lck) {
while(TSL(&(lck->locked)) != 0) ;

}

l (L k *l k) { release(Lock *lck) {
lck->locked = 0;

}

OS 2008-09

xchg
26

int
TSL(int *addr)
{ {

register int content = 1;
// xchgl content, *addr
// xchgl exchanges the values of its two operands, while
// locking the memory bus to exclude other operations.
asm volatile ("xchgl %0 %1" : asm volatile (xchgl %0,%1 :
"=r" (content),
"=m" (*addr) :
"0" (content),
"m" (*addr));
return(content);

}

the instruction "XCHG %eax, (content)" works as follows:

1. freeze other CPUs' memory activity
2 temp := content 2. temp := content
3. content := %eax
4. %eax := temp
5. un-freeze other CPUs

steps 1 and 5 make XCHG special: it is "locked" special signal lines on the inter-CPU bus, bus arbitration

OS 2008-09

