s x86 architecture et similia
@

=

0000000

PC architecture

OS 2008-09

OS 2008-09

CPU & Memory

OS 2008-09

CPU & Memory

OS 2008-09

IP (program counter)

OS 2008-09

Want conditional jumps
FLAGS - various condition codes

whether last arithmetic operation overflowed
... Was positive/negative
... was [not] zero
... carry/borrow on add/subtract
... overflow
... etc.
whether interrupts are enabled
direction of data copy instructions

JP, JN, J[N]Z, J[N]C, J[N]O ...

» Still not interesting - need 1/0 to interact with
outside world

Original PC architecture: use dedicated 1/0 space

Works same as memory accesses but set 1/0 signal
Only 1024 1/0 addresses

Memory-Mapped 1/0

Use normal physical memory addresses

o Gets around limited size of 1/0 address space
o No need for special instructions

o System controller routes to appropriate device
Works like “magic” memory:

o Addressed and accessed like memory, but ...

o ... does not behave like memory!

o Reads and writes can have “side effects”

o Read results can change due to external events

Example: write a byte to line printer:
#define DATA_PORT 0x378
#define STATUS PORT 0x379
#define BUSY 0x80
#define CONTROL_PORT Ox37A
#define STROBE 0x01

void Ipt_putc(intc) {
/* wait for printer to consume previous byte */
while((inb(STATUS PORT) & BUSY) == 0);

/* put the byte on the parallel lines */
outb(DATA_PORT, ¢);

/* tell the printer to look at the data */
outb(CONTROL_PORT, STROBE);
outb(CONTROL_PORT, 0);

}

More memory

OS 2008-09

More memory Is needed

OS 2008-09

Memory map

OS 2008-09

32-bit memory mapped devices

Unused

Extended Memory

BIOS ROM

16-bit devices, expansion ROMs

VGA Display

Low Memory

4Gb

0x00100000 (1MB)

0x000F0000 (960KB)

0x000C0000 (768KB)

0x000A0000 (640KB)

Two-operand instruction set
Intel syntax: op dst, src

AT&T (gcc/gas) syntax: op src, dst
uses b, w, | suffix on instructions to specify size of operands
Operands are registers, constant, memory via register, memory via constant

Examples:
AT&T syntax "C"-ish equivalent
movl %eax, %edx edx = eax; register mode
movl $0x123, %edx edx = 0x123; Immediate
movl 0x123, %edx edx = *(int32__t*)0x123; direct
movl (%ebx), %edx edx = *(int32__t*)ebx; indirect

movl 4(%ebx), %edx edx = *(int32_t*)(ebx+4); displaced

Assembly (instr. classes)

OS 2008-09

GCC (a particular compiler)

OS 2008-09

GCC dictates how the stack is used. Contract between caller
and callee on x86:

after call instruction:
%eip points at first instruction of function
%esp+4 points at first argument
%esp points at return address
after ret instruction:
%eip contains return address
%esp points at arguments pushed by caller
called function may have trashed arguments
%eax contains return value (or trash if function is void)
%ecx, %edx may be trashed
%ebp, %ebx, %esi, %edi must contain contents from time of call
Terminology:
%eax, %ecx, %edx are "caller save" registers
%ebp, %ebx, %esi, %edi are "callee save" registers

GCC (cntd.)

OS 2008-09

OS 2008-09

OO0 00

Oo0o0Oo00CO0CO0OO00C0000000000CO0D00000C0000O000O0D00C0CO0O0CO0OO0O0

C code

assembler

int main(void) { return f£(8)+1;:
int f(int =) { return g(x):; }
int g(int =) { return x=+3; }

_main:

prologus
pushl %=bp
movl %esp, %=bp

body
pushl 358
call £
addl 51, %eax

spilogus
movl %ebp, %esp
popl %ebp
ret

prologus
pushl %=bp
movl %esp, %=bp

body
pushl 8 (%esp)
call g

spilogus
movl %ebp, %esp
popl %ebp
ret

prologus
pushl %=bp

movl %esp, %=bp
save webx
pushl %ebx
body
movl 8 (%ebp), %ebx
addl 53, %ebx
movl %ebx, %eax

restore %ebx

popl %ebx
spilogus
movl %ebp, %esp
popl %ebp
ret

Compilation

OS 2008-09

One way to think about an operating system interface is that it extends
the hardware instructions with a set of "instructions" that are
Implemented in software. These instructions are invoked using a
system call instruction (INT and RETI on the x86). In this view, a
task of the operating system is to provide each application with a
virtual version of the interface; that is, it provides each application with
a virtual computer.

One of the challenges in an operating system is multiplexing the
physical resources between the potentially many virtual computers.
What makes the multiplexing typically complicated is an additional
constraint: isolate the virtual computers well from each other.

To give each application its own set of virtual processor, we need to virtualize
the physical processors. One way to do is to multiplex the physical processor
over time: the operating system runs one application for a while, then runs
another application for while, etc. We can implement this solution as follows:
when an application has run for its share of the processor, unload the state of
the physical processor, save that state to be able to resume the application later,
load in the state for the next application, and resume it.

What needs to be saved and restored? That depends on the processor, but for
the x86:

IP

SP

The other processor registers (eax, etc.)

To enforce that a virtual processor doesn't keep a processor, the operating
system can arrange for a periodic interrupt, and switch the processor in the
interrupt routine.

Big picture: kernel is trusted third-party that runs the
machine. Only the kernel can execute privileged
Instructions (e.g., changing MMU state). The processor
enforces this protection through the ring bits in the code
segment. If a user application needs to carry out a
privileged operation or other kernel-only service, it must
ask the kernel nicely. How can a user program change to
the kernel address space? How can the kernel transfer to a
user address space? What happens when a device attached
to the computer needs attention? These are the topics for
today's lecture.

There are three kinds of events that must be handled by the
kernel, not user programs: (1) a system call invoked by a
user program, (2) an illegal instruction or other kind of bad
processor state (memory fault, etc.). and (3) an interrupt
from a hardware device.

Although these three events are different, they all use the
same mechanism to transfer control to the kernel. This
mechanism consists of three steps that execute as one
atomic unit. (a) change the processor to kernel mode; (b)
save the old processor somewhere (usually the kernel
stack); and (c) change the processor state to the values set
up as the “official kernel entry values.” The exact
Implementation of this mechanism differs from processor
to processor, but the idea is the same.

Mutual exclusion x86

OS 2008-09

OS 2008-09

