
1

OS 2003 1

Multiprocessor

OS 2003 2

Multiple processor systems

• Why? Clock speed limit:
– 10GHz → 2cm chip size
– 100GHz → 2mm chip size
– 1THz → <100µm chip size

• In practice, we could put many 
processors together



2

OS 2003 3

Architectures

Shared
memory

c

c

c

cc

c

cc

Interconnect

c

c

c

cc

c

cc

M

M

M

M

M

M

MM

Internet

c

c

c

cc

c

cc

M

M

M

M

M

M

MM

Shared memory Tightly coupled Loosely coupled

OS 2003 4

What does each process sees

• A process running on a CPU sees:
– Usual virtual memory (paged)
– Can write in memory and read back a 

different value (another process changed it)
• IPC

– Organize shared memory (OS)



3

OS 2003 5

BUS based MP architecture

Bus

CPU CPU Mem

2 CPUs is fine, 64 is not
bus contention

Bus

CPU CPU Mem

cache

Bus

CPU CPU Mem

cache
private memory

OS 2003 6

Cache

• Try to keep most used pages (lines usually) in 
cache

• When memory in changed (written), other 
caches need to be notified of the change

• There are specific cache transfer protocols
• If local memory is present the compiler should 

do a good job at separating what goes in main 
memory versus what stays in local memory



4

OS 2003 7

Crossbar switches

M M M M M M

P
P

P
P

P
P

Processor n connects to memory q

1

N

1 Q

No conflicts
(if memory is available)

OS 2003 8

UMA, NUMA classes

• UMA (uniform memory access):
– Uniform access, read/write
– Memory accesses have all the same characteristics

• NUMA (non-uniform):
– Single address space visible to all CPUs
– Access to remote memory is slower than local
– E.g. 100 processors, difficult, then something has to 

give, in practice the uniform access time is the 
tradeoff



5

OS 2003 9

How it works

• The memory is split between nodes
• Clearly the access to a remote node’s 

local memory is slower
• A request from one of the nodes has to 

either go to the bus, possibly cached, or 
to the local memory

• Caches need to be up-to-date all the time

OS 2003 10

OS types
• One OS in each CPU, N CPUs operate as N 

independent computes
– What happens in loosely coupled MP systems
– No much sharing of memory, CPU cycles, etc. between 

processes (e.g. a CPU loaded while others idle)
• Master-slave

– Single OS, allocating CPUs and memory
– Single data structures (memory page tables, process tables, 

etc.)
– Only the master runs the OS

• Symmetric multiprocessing (e.g. Windows, Linux)
– SMP, each CPU can run the OS
– Make sure updates of e.g. page tables are done consistently 

(mutexes, different parts and different critical regions within 
the OS)



6

OS 2003 11

MP synchronization

• Appropriate synchronization procedure are 
needed
– Disabling interrupt doesn’t work

• TSL instruction, locking also the BUS while 
reading/writing atomically
– Lock_bus
– Read, Write
– Unlock_bus

• Otherwise, if the bus doesn’t support TSL, 
there’s always Peterson’s solution

OS 2003 12

MP scheduling

• 2-D problem
– Multiplexing in time (time sharing)
– Multiplexing in space (space sharing)

• Multiple threads in parallel on different CPUs

• Take decisions also on how much processes and 
groups are related
– Different users might start different processes
– Same user starting a group of processes

• The scheduler should avoid blocking CPUs simply 
because a process is holding a lock

• Also, it might make sense to keep the same process 
recurrently running on the same processor



7

OS 2003 13

Scheduling (for time-sharing)

• Give additional quanta to processes 
holding (global) locks to avoid blocking 
other CPUs
– Smart scheduling

• CPU affinity
– Keep the same process on the same CPU to 

exploit cache at best

OS 2003 14

Scheduling (for space sharing)

• Schedule multiple threads (of a single 
process) in parallel to many CPUs at 
once

• In pure space-sharing there’s no 
multiprogramming on the CPUs
– E.g. if we have 64K processors there’s no 

much need of multiprogramming

• Mix of space and time sharing



8

OS 2003 15

Hyper-threading

• PIV processors
• Execute 2 threads at once
• Since many instructions do different 

things they also use different subset of 
the CPU

• Idea! Why not keep most of the CPU 
always busy by allowing the execution of 
another thread

• This is clearly all done in hardware

OS 2003 16

Software

• Send/receive model
– Two blocking calls – send/receive messages

• Asynchronous
– The send returns immediately
– The message buffer of course cannot be 

modified until the message is actually sent
– Buffering issues (double, triple buffering)

• Copy on write: only copy the buffer if the code 
tries to write on it



9

OS 2003 17

RPC

• Remote procedure call

client stub

OS

network

server stub

OS

OS 2003 18

Complications

• Based on RPC
– DCOM (Microsoft)
– Corba (Open standard)

• Same as RPC but object oriented
• Language to describe parameters, functions 

and objects
• The marshaling of parameters is simpler

– Parameters need to be packed in a uniform format 
to be shipped across network and possibly different 
architectures


