Input/Output
Disks

• Plates of magnetic material, organized in cylinders, divided in tracks, divided in sectors. Sectors go up to several hundreds. Heads vary from 1 to 16

• Some have little electronics, IDE drives have a microcontroller in the disk itself

• Controller: some can do overlapped seeks that is, while waiting for one seek to complete on one disk it can start another one on another disk
Example of the numbers

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IBM 360Kb floppy</th>
<th>WD 18300 HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cylinders</td>
<td>40</td>
<td>10601</td>
</tr>
<tr>
<td>Tracks per cylinder</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Sectors per track</td>
<td>9</td>
<td>281 (average)</td>
</tr>
<tr>
<td>Sectors per disk</td>
<td>720</td>
<td>35742000</td>
</tr>
<tr>
<td>Bytes per sector</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>Disk capacity</td>
<td>360K</td>
<td>18.3G</td>
</tr>
<tr>
<td>Seek time</td>
<td>6ms</td>
<td>0.8ms</td>
</tr>
<tr>
<td>Seek time (average)</td>
<td>77ms</td>
<td>6.9ms</td>
</tr>
<tr>
<td>Rotation time</td>
<td>200ms</td>
<td>8.33ms</td>
</tr>
<tr>
<td>Motor start/stop</td>
<td>250ms</td>
<td>20s</td>
</tr>
<tr>
<td>Time to transfer 1 sector</td>
<td>22ms</td>
<td>17μs</td>
</tr>
</tbody>
</table>
Organization of the disk

• To simplify searching for sectors on the disk most disk presents:
 – A virtual organization in (c, t, s) that are mapped to the physical one
 – The number of sector per track changes as we move along the disk (minimum size of the magnetic site)

• On modern disks there’s something called LBA (logical block addressing) where sectors are numbered sequentially without considering cylinder, track, or sector
Disk formatting

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Data</th>
<th>ECC</th>
<th>16 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>512 bytes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Cylinder skew**
 - Start cylinders at different points to give the head time to jump from one to the next

- **Interleaving**
 - To give the controller time to transfer to main memory

- **Scheduling of head movements**
 - Controllers can schedule the movements of the head
Error handling

• The controller can transparently take care of replacing a *bad* sector with a *spare* sector

• Bad sectors are due to wear and tear of the magnetic medium or construction defects (technology is always pushed to the extreme)
Stable storing

- Two identical disks
 - Probability of same block spontaneously go bad on two disk is negligible
- Stable write:
 - Write block on disk 1, read it back (re-read until it works up to N times). This would eventually work. Write on disk 2. Same procedure. In absence of CPU crashes the block is written twice
- Stable read:
 - Read from block 1. Read up to N times. If disk 1 went bad for any reason, read from disk 2. Since a stable write always succeeds also the read succeeds
- Crash recovery:
 - See next slide
Crash recovery

- The recovery program scans both disks. If a pair is good nothing is done, it one has an error (ECC) copy the good one into the bad one. If a pair has both block good but different, write 1 onto 2.
A “strip” is K sectors

RAID

Raid 0
Strip 0
Strip 4
Strip 8
Strip 1
Strip 5
Strip 9
Strip 2
Strip 6
Strip 10
Strip 3
Strip 7
Strip 11

Raid 1
Strip 0
Strip 4
Strip 8
Strip 1
Strip 5
Strip 9
Strip 2
Strip 6
Strip 10
Strip 3
Strip 7
Strip 11

Raid 2
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6

Raid 3
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4

Raid 4
Strip 0
Strip 4
Strip 8
Strip 1
Strip 5
Strip 9
Strip 2
Strip 6
Strip 10
Strip 3
Strip 7
Strip 11
Parity 0-3
Parity 4-7
Parity 8-11

Raid 5
Strip 0
Strip 4
Strip 8
Parity 0-3
Strip 1
Strip 5
Parity 4-7
Strip 9
Strip 2
Parity 8-11
Strip 6
Parity 12-15
Strip 3
Strip 7
Strip 11

OS 2007-08
CD technology

• Pits and lands:
 – Pit: depression in the plastic
 – Land: unburned area
• Different reflectance of the pits
 – It can be identified as a 1 or 0
• Recording follows a spiral
• Various materials for CD-R and CD-RW
• Improvement for DVD (also changed the laser wavelength)
Clocks

• Preventing one process to monopolize the CPU
• Maintaining the time of the day
• Accounting for CPU usage
• Handling ALARM signals
 – A device driver considers all the events (e.g. alarms) within the system (not a timer for every process/thread)
• Providing watchdog timers for part of the OS
 – e.g. timeouts – stop rotation of disk if not used
• Doing profiling, monitoring, statistics
Soft timers

• Handling an interrupt at each clock time would be too much
 – Interrupts involve delays
 – Can only be serviced with certain rates

• Idea! Why not calling the timer handling whenever in kernel mode
 – Occurrence of system calls, TLB misses, page faults, I/O interrupts, CPU idle, etc.
 – Experimentally
 • Going in kernel mode on average between 2 and 18μs

• Combine soft timer with a lower frequency one
More...

- Terminals
 - Character oriented
 - Over a serial line

- GUIs
 - MS Windows (GUI into the kernel)
 - X-Windows (GUI as a user process, native networking)
 - X-server: does the display
 - X-client: an application

- In practice the controller is seen by the OS as a buffer (the video buffer) mapped in memory
Last but not least

• Since batteries are big, expensive, and not particularly efficient
• Need to save power
• Power management (on laptops)...
• ...but also on desktop computers
 – For fun. Each desktop has 200W power supply, 85% efficient. 100000 PCs consume 20MW equivalent to 20 average-size nuclear power plants