Introduction

OS 2005-06

Useful information

* My name: Giorgio Metta

* My email: pasa@liralab.it

e Office/Lab: 010 353 2946

e Where: LIRA-Lab, Villa Bonino, Ground Floor
* Web site: http:/www.liralab.it/os

* Mailing list: os@liralab.it

OS 2005-06

Outline of the course

* Processes, threads, * The exam consists of:
scheduling — 1 problem set
e TPC * C++ programming 1/3
e Memory — 1 written test:
* Theory and short
management exercises 2/3
* 1/0O

* Filesystem
* Embedded systems

OS 2005-06 3

Background

* Required
— Programming C/C++

e Helpful
— Linux/Unix, Windows

e Main idea is to learn, so, don’t freak out
even if it might seem hard!

OS 2005-06

References

e Andrew S. Tanenbaum, Modern

operating systems, Prentice Hall
International 2001. ISBN: 0-13-092641-8

OS 2005-06 5

This slide is intentionally left blank

OS 2005-06

Operating system

* What'’s inside the computer?

— Layers:
Web browser Banking Airline
system reservation
Compilers Editors Command
interpreter
(shell)
Operating system
Machine language
Microarchitecture
Physical devices

OS 2005-06

} application programs

} system programs

} hardware

Meaning of the layers

* Physical devices: self explaining

* Microarchitecture: define data path
within the microprocessor (using
registers) sometimes using a
microprogram

* Machine language/Assembly language:
instruction set (e.g. 50-300 instructions)

OS 2005-06

Where does the OS start?
\

Kernel mode User mode
Supervisor mode

Hardware protection (on
modern microprocessors)

allowed

Compiler, editor, web
browser

Timer interrupt handler

All instructions allowed >Certain instructions not

OS 2005-06

Example: microkernel OS

Microkernel RTOS. In
QNX Neutrino, only the
most fundamental OS
primitives (e.g. signals,
timers, scheduling) are
handled in the kernel
itself. All other
components — drivers, file
systems, protocol stacks,
user applications — run
outside the kernel as
separate, memory-
protected processes.

ETHERNET, SERIAL

l MEMORY PROTECTED
sk B30 Jwee Juer Joeeuemo
N ' ' % %

[MIMROKERNEL

S S S S

MEMORY PROTECTED

ONX Neutrino message passing forms a vitual soffware bus that lefs wu
dynamically plug in —or plug out — whataver componants your system requies.

ARM, MIPS, PownePE, SH-A, StronghRS, IScale, x8§

[_}

OS 2005-06 10

Operating system’s job

* Manage the hardware (all the devices)

* Provide user programs with simpler interface
to the hardware (extended machine)

OS 2005-06

11

Example: floppy drive

e Specific chip (NEC PD765)
¢ 16 different commands

* Load between 1 and 9 bytes into a device
register

* Read/Write require 13 parameters
packed into 9 bytes

* Reply from the device consists of 7 bytes
(23 parameters)

e Control of the motor (on/off)

OS 2005-06 12

Abstraction

e Better to think in terms of files with
names rather than specific floppy drive
commands

* Other unpleasant hardware:

— Interrupts
— Timers
— Memory management

e Extended or virtual machine

OS 2005-06

13

OS as resource manager

e Allocation of resources:

— Processors, memory, I/O devices among a
set of programs competing for them

* Kxample: allocating the printer

— Buffering output rather than just print at
random

* Multiple users: sharing of resources and
avoid conflicts (share vs. security)

OS 2005-06 14

Sharing

* Time and space multiplexing

* Multiplexing in time: e.g. printer, processor
— Print one job at a time

* Multiplexing in space: e.g. memory, disks

— Divide memory among many processes

OS 2005-06

15

Computer hardware

* Processors
* Memory

e [/O devices
e Buses

1

{ -

CPU Mem

Video

Floppy

1117 -

Controllers

OS 2005-06

Buses

16

Processors

Registers

*Program counter (PC): next instruction
*Stack pointer (SP): stack in memory

*Program Status Word (PSW): condition bits (e.g.
kernel vs. user mode)

*Base register: relocation of executables

} Context switch

System call

*SW interrupt
eFrom User to Kernel mode

Complexity of the CPU HW

*Pipeline architecture
*Superscalar

Fetch

>

Decode

>

Execute

OS 2005-06

17

Memory

* [deally...

— Extremely fast (faster than the CPU in
executing an instruction)

— Abundantly large
— Dirt cheap

OS 2005-06

18

Memory (for real)

Typical access time

Size
1 nsec Registers <1K
2 nsec i ~ 1M
10 nsec Main memory ~ 1-4G
10 msec Magnetic disk ~ 5-100G
100 sec Magnetic tape > 20G

OS 2005-06 19

Memory cntd.

* Registers: typical 32 in a 32 bit CPU
* Cache: divided into cache lines (64 bytes each)

— Cache hit — no main memory access, no bus
involvement

— Cache miss — costly
* Main memory
* Disk (multiple plates, heads, arms)

— Logical structure: sectors, tracks, cylinders

* Magnetic tape: backup, cheap, removable

OS 2005-06 20

Multiple programs in memory

* Base and Limit register

e Hardware support for relocation and multiple
programs in memory

OxFFFFFFFF

Fetch: User program and data
Instruction
if (PC<Limit) Fetch(PC+Base) Lo
else Troubles(SigFault) User program and data
Data Base @——,

if (Addr<Limit) Fetch(Addr+Base)

else Troubles(SigFault)

Operating system

0x00000000

OS 2005-06 21

DLL’s (in principle)

OxFFFFFFFF .
* Requires an MMU
DLL . .
with multiple
Base/Limit register
Limit — .
User program p alrsS
Base
Data 1
Data 2
Operating system
0x00000000

OS 2005-06 22

Memory Management Unit

* Managing the MMU is one of the OS
tasks:

— Balancing context switches since they
impact on performances: e.g. MMU
registers have to be saved, cache emptied,
etc.

OS 2005-06 23

I/O devices

 Usually a controller + the actual device

— For example: a disk controller may hide the details of driving
the arm and heads to the appropriate location to read a
certain piece of data

— Sometimes the controller is a small embedded microprocessor
in itself

e The interface to the OS is somewhat standardized:
— IDE disk drives conform to a standard

* Device driver: a piece of the OS. Device drivers run in
kernel mode since they have to access I/0 instructions
and device registers

OS 2005-06 24

Device drivers

1. Unix. Compiled and linked with the
kernel (although Linux supports
dynamic loading of DD)

2. Windows. An entry into an OS table.
Loaded at boot

3. Dynamic. USB, IEEE1394 (firewire).
At boot time the OS detects the
hardware, finds the DD, and loads
them

OS 2005-06 25

I/0 registers

* E.g. small number of registers used to
communicate

* Memory mapped: the registers appear at
particular locations within the OS
address space

¢ [/O instructions: some CPUs have
special privileged (kernel mode) I/0

instructions (IN/OUT). Registers are
mapped to special locations in I/O space

OS 2005-06 26

Ways of doing 1/0

1. Polling
2. Interrupt based
3. DMA

OS 2005-06

27

Polling

* User makes a system call
* OS calls DD

DD talks to device, prepares 1/0, starts
I/0 and sits waiting (busy waiting) for
I/O completion

* Busy waiting means that the CPU is
busy polling a flag

OS 2005-06

28

Interrupt

* A piece of hardware called “interrupt
controller”

1. CPU issues the I/O request Disk drive
via the device driver
2. On termination the device signals S

the CPU’s interrupt controller (if :

the interrupt controller is not busy 5

servicing another higher priority Interrupt
interrupt) CPU controller i

A

3. If the interrupt can be handled
then the controller asserts a pin
on the CPU.

4. The interrupt controller puts the 1
address of the device into the bus

OS 2005-06 29

Interrupt (cntd.)

* When the CPU decides to take the interrupt:

— Stores registers (push them into the stack)
— Switches into kernel mode

— Uses the device’s address to index a table (interrupt
vector)

— Calls the handler contained at the location located
in the interrupt vector

— Once the handler is executed it returns from the
handler by popping the registers from the stack

OS 2005-06 30

Direct Memory Access DMA

* Yet another piece of hardware: DMA
controller

— Communication between memory and
device can be carried out by the DMA
controller with little CPU intervention

— When the DMA is completed the controller
asserts an interrupt as before

OS 2005-06

31

Buses

* Multiple buses (cache, local, memory,
PCI, USB, IDE...)

* OS must be aware of all of them to
manage things appropriately

* Plug&Play — dynamic allocation of I/0
and memory addresses (BIOS code)

OS 2005-06 32

This slide is intentionally left blank

OS 2005-06

33

Concepts

* Processes

* Deadlocks

* Memory management
e [/O

e Files

* Security

OS 2005-06

34

The Shell

* Unix command interpreter (or similarly the
“command” in windows)

* Clearly, it’s not part of the OS

prompt

35

Processes

Associated with each process:
— Address space (program + data + stack)

— Entry into the process table (a list of processes)
e Set of registers (e.g. PC, PSW, etc.)
e MMU status, registers

Processes can be created, terminated, signaled (SW
interrupt)

They form a tree (a hierarchy) on some systems

Process cooperation is obtained by means of IPC
(inter-process communication) mechanisms

Processes start with the privileges of the user who
starts them

OS 2005-06

36

PS (process status) command

Aug My Uideos
Mar My Uehs
Mar My eBooks
Aug DutlookMail
Jul PUTTY . RND
Sep Paper revieus
Aug Papers
Apr Repository
Mar Rt 0S5
Jul su
Jul Thumhbhs .db
B Jan Trash
A Sep LI NDOWS
75 Jan deszktop.ini
B Apr index
254 Sep index. pdx

dr—xpP—Xpr—Xx
dPuxPr—xr—x
AdruxP—XPr—x
dPuxr—xr—x
—pP—p——p——
druxE—Xr—x
dPuxEr—XPr—Xx
druxPr—xr—x
AdruxP—XPr—x
druxPr—xr—x
—P—p——p——
druxr—xr—x
dPuxPE—XPr—x
— P —p——P——
AdruxP—XPr—x
—P—p——P——

= o
DRI

[y

[y

[
ol el TE R - AL R g - N o -

S ps —a
PID PGID WINPID TTY UID STIME COMMAMD
J4R4 J4R4 3484 con 1803 18:33:5? Ausrsbin-sbash
1176 1176 1628 con 1883 18:44:5%9 Ausr-shinsps

Name

Process ID Starting time

Parent ID 500506 Owner UID 37

Deadlocks

* Two or more processes mutually
requesting the same set of resources

* Eixample: two processes trying to use
simultaneously a tape and CD burner in
reverse order

tape
CD burner

38

Memory management

* Virtual memory

— Allowing processes requesting more
memory than the computer main memory to
run

— Swap space/swapping. Storing some of the
process’ memory in the disk

OS 2005-06 39

Files

* Concept of directory (group files together)

o A tree-like structure similar to the process
hierarchy

o A file is specified by its path name
— E.g. /usr/bin/ps
* In UNIX there’s a root directory (/)

— Windows has a root for each drive: A:, B:, C:, etc.

* Working directory (a process property)
— Where path not beginning with slash are looked for

* Interface between OS and program code is
through a small integer called file descriptor

OS 2005-06 40

mount

Root

Root Floppy

// \ // \

: E x [¥ r‘* y
\ b

d

N

~

Before mount

OS 2005-06

/
/
¥
\
VRl
< [¥
d

After mount

41

Special file

* A device driver gets a special entry into
the file system (usually under /dev)

* Block special files
— Randomly addressable blocks: a disk

* Character special files
— A stream of character data: modem, printer

OS 2005-06 42

Special file (ctnd.)

" iuno.lira.dist.unige.it - Iuno - 55H Secure Shell o =] 5
Fil=: Edit Yiew 'Window Help
i T
H Sk 22 2ef | #4 d0% &8
&1 Quick Connect] Profiles J.PEStE (Shift +Insert)|
brw------- 1l root 1] 13, T Apr 15 1993 :I
bry--—---- 1 root 0 13 8 Apr 15 1959
bry--—--—-- 1l root 0 13, 9 Apr 15 1999
bry--——---—- 1l root 1] 13, &4 apr 15 1993
bry--—--—- 1 root 1] 13, &4 apr 15 1993
bry----———- 1l root 1] 13, &5 Apr 15 1999
brw------- 1l root 1] 13, 74 Apr 15 1999
bru--——----- 1 root 0 13, 75 Apr 15 1999
bru--———--- 1 root 0 13, 76 Apr 15 199859
bru--——--- 1 root 0 13, 77 Apr 15 1999
bry---—---- 1l root 1] 13, 75 apr 15 1999
bry--—--—- 1l root 1] 13, 79 apr 15 1993
brw------- 1l root 1] 13, 66 Apr 15 1999
blOCk bryg-—-——---—- 1 root 0 13, 67 apr 15 1933
bry--————- 1l root 0 13, 685 Apr 15 1999
S‘hrm ——————— 1 root 0 13, 69 Apr 15 1999
bry--—----- 1 root 1] 13, 70 apr 15 1999
bry--—---- 1 root 1] 13, 71 apr 15 1999
bry------—- 1l root 1] 13, 72 Apr 15 1999
bru--———-—-- 1l root 0 13, 73 Apr 15 195995
character CEW——————— 1 root 0 41, 0 &pr 15 19599
bry--————- 1 root 0 37, 0 apr 15 1999
——y cru-rw-rw- 1 root 0 1, 5 apr 15 1999
iumc liraspasas I EI
b

Insert Clipboard contents

|55HzZ - 3des-cbe - hmac-mds - none

| 80x24

43

Security

druxr—xpr—x
dr—xr—xr—x
druwxr—xp—x
dr—xpr—xpr—x
dr—xr—xpr—x
druxpr—xpr—x
dr—xpr—xp—x
druxr—xr—x
druxr—xr—x
druwxr—xp—Xx
—pPu—p——p—
druxr—xr—x
druxr—xr—x
dPuxpPr—xp—Xx
druxPr—xpPr—x
druxr—xr—x
—p—p——p——
APUWKP—XP—X
druxr—xr—x
— L= ——pa——
AP PE— NP
‘—Pw—r——r——

Motorola
Bibliography
Chat
Mu=zic
Pictures
Received Files
Uideos
Wehbs

My eBooks

OutlookMail

PUITY . RMD

Paper reviews

Papers

Repozitory

Rt0O5

sU

Thumbs .dhb

Trash

HINDOWS

dezktop.ini

index
index . pdx

o) b

i ek
AN AGMREREEREERE

- ek

[y
ol el e BT R = o W g = B ol G PN R = H ol L = g N 9
(=
=

—IWXITWXITWX
OS 2005-06 44

Pipe

* It’s a sort of pseudofile
* Allows connecting two processes as they were

15

suing read/write system calls to a regular

fil

e

Process 1 Process 2

OS 2005-06 45

druxr—xr—x
dr—xpr—xr—x
druxr—xr—x
druxr—xr—x
druxr—xr—x
—P U —p——F——
druxr—xr—x
druxr—xr—x
druxr—xr—x
druxr—xr—x
druxr—xr—x
—P U —p——F——
druxr—xr—x
druxpr—xr—Xx
—PU—p——F——
dPruxr—xr—x
—PU—Pp——F—

S 1s —1a !
druxr—xr—x
—P U —p——F——

ok b

[y

[y
ke ek ke G m] b B0 D GF 00 (D) Pk D) D s D e

Pipe example

=3
&=
SR EREAEERE

[
(=3
=]

=J W

SR EE S

My Received Files o |
My Uideos

My Wehs

My eBooks
OutlookMail
FUTTY . RND
Paper reviews
Papers
Repository
Rt0S

su

Thumbs .db
Trazh

WINDOWS
desktop.ini
index

index. pdx

index
index. pdx

OS 2005-06

46

This slide is intentionally left empty

OS 2005-06

47

System calls

count = read(fd, buffer, nbytes);

OXFFFFFFFF

user space <

kernel <

0x00000000

OS 2005-06

System calls

count = read(fd, buffer, nbytes);

Push nbytes into the stack
Push buffer into the stack

Push fd into the stack

Library calls read

Put sys call code into register
Trap to kernel

Examines the call code, query table
Call handler, execute read code
9. Return to caller (maybe)

10. Pop stack (i.e. increment SP)
11. Continue execution

e B

OS 2005-06

49

read(2) - Linux man page

MAME
read - read from a file descriptor

SYNOPSIS

#Hinclude <unistd.h-

ggize t read{int 7d, woid *buf, gize t coumi):
DESCRIPTION

read() attempts to read up to cownd bytes from file descriptor /4 into the buffer starting at buf,

If count is zero, read{) returns zero and has no other results, If count is greater than SSIZE_MAE, the result is
unspecified,

RETURN VYALUE

O success, the number of bytes read is returned (zero indicates end of file), and the file position is advanced by this
number. It is not an error if this number is smaller than the number of bytes requested; this may happen for example
because fewer bytes are actually available right now (maybe because we were close to end-of-file, or because we
are reading from a pipe, or from a terminal), or because read() was interrupted by a signal, On error, -1 is returned,
and errno is set appropriately. In this case it is left unspecified whether the file position (if any) changes.,

ERRORS

EINTR

The call was interrupted by a signal before any data was read.
EAGAIMN

Mon-blocking IO has been selected using O_MNOMBLOCK and no data was immediately available for reading.
EIO I/0 errar. This will happen for example when the process is in a background process group, tries to read from

OS 2005-06

50

EAGAIMN
Mon-blocking IO has been selected using O__MNOMBLOCK and no data was immediately available for reading.
EIO I/0 error, This will happen for example when the process is in a background process group, tries to read from
its controlling tty, and either it is ignoaring or blocking SIGTTIM or its process group is orphaned. It may also
ocour when there is a low-level IO error while reading from a disk ar tape,
EISDIR
fd refers to a directory,
EBADF
fd i= not a valid file descriptor or is not open for reading,
EIMWAL
fd is attached to an object which is unsuitable for reading.
EFAULT
bufis outside your accessible address space,

Other errars may occur, depending on the object connected to f7, POSIX allows a read that is interrupted after
reading some data to return -1 (with errno set to EINTR) or to return the number of bytes already read,

CONFORMING TO
Shvird, SWID, ATRT, POSIK, x/OPEM, BSD 4.3
RESTRICTIOMNS

O MFS file systems, reading small amounts of data will only update the time stamp the first time, subsequent calls
may not do so. This is caused by client side attribute caching, because most if not all MFS clients leave atime updates
to the server and client side reads satisfied from the client’'s cache will not cause atime updates on the server as
there are no server side reads, UNIX semantics can be obtained by disabling client side attribute caching, but in most
situations this will substantially increase server load and decrease performance,

Many filesystems and disks were considered to be fast enough that the implementation of O_NONBLOCEK was
deemed unneccesary, 5o, O_MOMBLOCK may not be available on files andfor disks.

SEE ALSQO

close(2), fontl(2), ioctl(2), Iseek(2), readdir(2), readlink(Z), select(2), write(Z2), fread(3), readv(3)

OS 2005-06

51

System call interface (part of)

Call

Description

pid

= fork ()

Create a child process identical to the parent

pid

= waitpid(pid, &statloc, options)

Wait for a child to terminate

s =

execve (name, argv, environp)

Replace a process’ core image

exit

(status)

Terminate process execution and return status

fd =

fopen(file, how, ...)

Open a file for reading, writing or both

0]
Il

close (fd)

Close an open file

=}
I

read (fd, buffer, nbytes)

Read data from a file into a buffer

write (fd, buffer, nbytes)

Write data from a buffer into a file

posi

tion = lseek (fd, offset, whence)

Move the file pointer

stat (name, &buf)

Get a file’s status information

mkdir (name, mode)

Create a new directory

rmdir (name)

Remove an empty directory

link (namel, name?2)

Create a new entry, name2 pointing to namel

ulink (name)

Remove a directory entry

mount (special, name, flag)

Mount a file system

umount (special)

Unmount a file system

OS 2005-06 52

System call interface (cntd.

Call Description
s = chdir (dirname) Change the working directory
s = chmod (name, mode) Change a file’s protection bits
s = kill(pid, signal) Send a signal to a process
seconds = time (&seconds) Get elapsed time in seconds since Jan 15t, 1970

OS 2005-06

Process management

while (1)
{
type_prompt () ;

read_command (command, parameters);

1f (fork() != 0)
{

waltpid (-1, &status, 0);

execve (command, parameters, 0);

OS 2005-06 54

Iseek

position = lseek(fd, offset, whence)

e Random access to a file

* Imagine the file as accessed through a
pointer

. 1seek moves the pointer

OS 2005-06

55

Directory (in UNIX)

e Each file is identified by an i-number

e The i-number 1s an index into a table of
1-nodes

* A directory is a file containing a list of
i-number — ASCII name

OS 2005-06 56

Link

e Called a shortcut in some versions of

Windows
/usr/ast /usr/jim
16 mail 31 bin
81 games 70 memo
40 test 38 progl

link (“/usr/jim/memo”,

“usr/ast/note’”)

OS 2005-06

/usr/ast /usr/jim
16 mail 31 bin
81 games 70 memo
40 test 38 progl
70 note

57

Win32 API

* Different philosophy

* Many calls (API — Application Program
Interface), not all of them are actually
system calls

* GUI included into the API (in
comparison X-Windows is all user level
code)

OS 2005-06 58

Example of Win32

fork CreateProcess Create a new process
waitpid WaitForSingleObject Can wait for a process to exit
execve None CreateProcess does the job
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close a file
read ReadFile Read data from a file
write WriteFile Write data to a file
Iseek SetFilePointer Move the file pointer
stat GetFileAttributeEx Get various file attributes
mkdir CreateDirectory Create a new directory
rmdir RemoveDirectory Remove an empty directory
link None
unlink DeleteFile Destroy an existing file
mount None
umount None
chdir SetCurrentDirectory Change the current working directory
chmod None
kill None
time GetLocalTime Get the current time

OS 2005-06

59

Operating system structure

* Monolithic systems
* Layered systems

e Virtual machines
 Exokernels

e Client-Server model

OS 2005-06

60

Monolithic systems

* The “big mess”
* No organized structure

* A bit of structure anyway:

— System calls requires parameters in a well
defined place (e.g. the stack)

— Three layers:
* Application program
* Service procedures
* Helper procedures

OS 2005-06

61

Layered systems

* Kach layer relies only on services
provided by lower level layers

Layer

Function

5

User/operator

4

User programs

I/0 management

Operator-process communication

Memory and disk management

Processor allocation and multiprogramming

OS 2005-06

62

Virtual machines

* Timesharing provides:
— Multiprogramming
— Extended machine
* Decouple the two functions:
— Virtual machine monitor (a SW layer)

— It does the multiprogramming providing a
“simulation” of the bare HW

* On top of the monitor any compatible OS could
be run

* Also the Pentium (8086 mode, running DOS
applications) and Java VM provide a similar
mechanism (slightly different though)

OS 2005-06 63

Virtual machines

| Applications
syscall[— CMS oy Ve
I/0 instruc tioml VM/370
370 Bare Hardware

OS 2005-06

64

Exokernel

e Fach process is given a subset of the
resources (at any given moment) and
NOT a simulation of the whole machine

* Simpler
* Saves a layer of mapping

* Kach VM in this case is given a subset of
memory, disk space, etc.

e The OS checks for conflicts

OS 2005-06 65

Client-Server model

Microkernel

Services are moved into user-space processes (e.g. the
filesystem)

The kernel handles message passing mechanisms to
make communication possible between user code and
services

Easy to “remote” the message passing (distributed
system)

Resilient: a crash in one module doesn’t compromise
the v}sglole system (which can then recover from the
cras

I/0 and HW access must be done into the kernel
(spoils a bit the nice client-server model) for example
in device drivers

OS 2005-06 66

Example: microkernel OS

Microkernel RTOS. In
QNX Neutrino, only the
most fundamental OS
primitives (e.g. signals,
timers, scheduling) are
handled in the kernel
itself. All other
components — drivers, file
systems, protocol stacks,
user applications — run
outside the kernel as
separate, memory-
protected processes.

ETHERNET, SERIAL

l MEMORY PROTECTED
sk B30 Jwee Juer Joeeuemo
N ' ' % %

[MIMROKERNEL

S S S S

MEMORY PROTECTED

ONX Neutrino message passing forms a vitual soffware bus that lefs wu
dynamically plug in —or plug out — whataver componants your system requies.

ARM, MIPS, PownePE, SH-A, StronghRS, IScale, x8§

[_}

OS 2005-06 67

