
OS 2005-06 1

Introduction



OS 2005-06 2

Useful information

• My name: Giorgio Metta
• My email: pasa@liralab.it
• Office/Lab: 010 353 2946
• Where: LIRA-Lab, Villa Bonino, Ground Floor

• Web site: http://www.liralab.it/os
• Mailing list: os@liralab.it



OS 2005-06 3

Outline of the course

• Processes, threads, 
scheduling

• IPC
• Memory 

management
• I/O
• Filesystem
• Embedded systems

• The exam consists of:
– 1 problem set

• C++ programming 1/3

– 1 written test:
• Theory and short 

exercises 2/3



OS 2005-06 4

Background

• Required
– Programming C/C++

• Helpful
– Linux/Unix, Windows

• Main idea is to learn, so, don’t freak out 
even if it might seem hard!



OS 2005-06 5

References

• Andrew S. Tanenbaum, Modern 
operating systems, Prentice Hall 
International 2001. ISBN: 0-13-092641-8



OS 2005-06 6

This slide is intentionally left blank



OS 2005-06 7

Operating system

• What’s inside the computer?
– Layers:

Physical devices
Microarchitecture
Machine language
Operating system

Command 
interpreter 

(shell)

EditorsCompilers

Airline 
reservation

Banking 
system

Web browser
} application programs

} system programs

} hardware



OS 2005-06 8

Meaning of the layers

• Physical devices: self explaining
• Microarchitecture: define data path 

within the microprocessor (using 
registers) sometimes using a 
microprogram

• Machine language/Assembly language: 
instruction set (e.g. 50-300 instructions)



OS 2005-06 9

Where does the OS start?

Compiler, editor, web 
browser

Timer interrupt handler

Certain instructions not 
allowed

All instructions allowed

Hardware protection (on 
modern microprocessors)

User modeKernel mode
Supervisor mode



OS 2005-06 10

Example: microkernel OS

Microkernel RTOS. In 
QNX Neutrino, only the 

most fundamental OS 
primitives (e.g. signals, 
timers, scheduling) are 

handled in the kernel 
itself. All other 

components – drivers, file 
systems, protocol stacks, 

user applications – run 
outside the kernel as 

separate, memory-
protected processes.



OS 2005-06 11

Operating system’s job

• Manage the hardware (all the devices)
• Provide user programs with simpler interface 

to the hardware (extended machine)



OS 2005-06 12

Example: floppy drive
• Specific chip (NEC PD765)
• 16 different commands
• Load between 1 and 9 bytes into a device 

register
• Read/Write require 13 parameters 

packed into 9 bytes
• Reply from the device consists of 7 bytes 

(23 parameters)
• Control of the motor (on/off)



OS 2005-06 13

Abstraction
• Better to think in terms of files with 

names rather than specific floppy drive 
commands

• Other unpleasant hardware:
– Interrupts
– Timers
– Memory management
– …

• Extended or virtual machine



OS 2005-06 14

OS as resource manager

• Allocation of resources:
– Processors, memory, I/O devices among a 

set of programs competing for them

• Example: allocating the printer
– Buffering output rather than just print at 

random

• Multiple users: sharing of resources and 
avoid conflicts (share vs. security)



OS 2005-06 15

Sharing

• Time and space multiplexing
• Multiplexing in time: e.g. printer, processor

– Print one job at a time

• Multiplexing in space: e.g. memory, disks
– Divide memory among many processes



OS 2005-06 16

Computer hardware

• Processors
• Memory
• I/O devices
• Buses

CPU Mem Video

Buses

Floppy

…
Controllers

…



OS 2005-06 17

Processors

Complexity of the CPU HW
•Pipeline architecture
•Superscalar

System call
•SW interrupt
•From User to Kernel mode

} Context switch

Registers
•Program counter (PC): next instruction
•Stack pointer (SP): stack in memory
•Program Status Word (PSW): condition bits (e.g. 
kernel vs. user mode)
•Base register: relocation of executables

Fetch Decode Execute



OS 2005-06 18

Memory

• Ideally…
– Extremely fast (faster than the CPU in 

executing an instruction)
– Abundantly large
– Dirt cheap



OS 2005-06 19

Memory (for real)

Registers

Cache

Main memory

Magnetic disk

Magnetic tape

< 1K

~ 1M

~ 1-4G

~ 5-100G
> 20G

Size

1 nsec

2 nsec

10 nsec

10 msec
100 sec

Typical access time



OS 2005-06 20

Memory cntd.

• Registers: typical 32 in a 32 bit CPU
• Cache: divided into cache lines (64 bytes each)

– Cache hit – no main memory access, no bus 
involvement

– Cache miss – costly

• Main memory
• Disk (multiple plates, heads, arms)

– Logical structure: sectors, tracks, cylinders

• Magnetic tape: backup, cheap, removable



OS 2005-06 21

Multiple programs in memory
• Base and Limit register
• Hardware support for relocation and multiple 

programs in memory

Operating system
0x00000000

User program and data
Limit

Base

User program and data

0xFFFFFFFF

Data
if (Addr<Limit) Fetch(Addr+Base)
else Troubles(SigFault)

Instruction 
if (PC<Limit) Fetch(PC+Base)
else Troubles(SigFault)

Fetch:



OS 2005-06 22

DLL’s (in principle)
• Requires an MMU 

with multiple 
Base/Limit register 
pairs

Data 2

Data 1

Operating system

0x00000000

User program
Limit

Base

DLL

0xFFFFFFFF



OS 2005-06 23

Memory Management Unit

• Managing the MMU is one of the OS 
tasks:
– Balancing context switches since they 

impact on performances: e.g. MMU 
registers have to be saved, cache emptied, 
etc.



OS 2005-06 24

I/O devices

• Usually a controller + the actual device
– For example: a disk controller may hide the details of driving 

the arm and heads to the appropriate location to read a 
certain piece of data

– Sometimes the controller is a small embedded microprocessor 
in itself

• The interface to the OS is somewhat standardized:
– IDE disk drives conform to a standard

• Device driver: a piece of the OS. Device drivers run in 
kernel mode since they have to access I/O instructions 
and device registers



OS 2005-06 25

Device drivers

1. Unix. Compiled and linked with the 
kernel (although Linux supports 
dynamic loading of DD)

2. Windows. An entry into an OS table. 
Loaded at boot

3. Dynamic. USB, IEEE1394 (firewire). 
At boot time the OS detects the 
hardware, finds the DD, and loads 
them



OS 2005-06 26

I/O registers

• E.g. small number of registers used to 
communicate

• Memory mapped: the registers appear at 
particular locations within the OS 
address space

• I/O instructions: some CPUs have 
special privileged (kernel mode) I/O 
instructions (IN/OUT). Registers are 
mapped to special locations in I/O space



OS 2005-06 27

Ways of doing I/O

1. Polling
2. Interrupt based
3. DMA



OS 2005-06 28

Polling

• User makes a system call
• OS calls DD
• DD talks to device, prepares I/O, starts 

I/O and sits waiting (busy waiting) for 
I/O completion

• Busy waiting means that the CPU is 
busy polling a flag



OS 2005-06 29

Interrupt
• A piece of hardware called “interrupt 

controller”
Disk drive

ControllerInterrupt
controllerCPU

1

2

3

4

1. CPU issues the I/O request
via the device driver

2. On termination the device signals
the CPU’s interrupt controller (if
the interrupt controller is not busy
servicing another higher priority
interrupt)

3. If the interrupt can be handled
then the controller asserts a pin
on the CPU.

4. The interrupt controller puts the 
address of the device into the bus



OS 2005-06 30

Interrupt (cntd.)

• When the CPU decides to take the interrupt:
– Stores registers (push them into the stack)
– Switches into kernel mode
– Uses the device’s address to index a table (interrupt 

vector)
– Calls the handler contained at the location located 

in the interrupt vector
– Once the handler is executed it returns from the 

handler by popping the registers from the stack



OS 2005-06 31

Direct Memory Access DMA

• Yet another piece of hardware: DMA 
controller
– Communication between memory and 

device can be carried out by the DMA 
controller with little CPU intervention

– When the DMA is completed the controller 
asserts an interrupt as before



OS 2005-06 32

Buses

• Multiple buses (cache, local, memory, 
PCI, USB, IDE…)

• OS must be aware of all of them to 
manage things appropriately

• Plug&Play – dynamic allocation of I/O 
and memory addresses (BIOS code)



OS 2005-06 33

This slide is intentionally left blank



OS 2005-06 34

Concepts

• Processes
• Deadlocks
• Memory management
• I/O
• Files
• Security
• …



OS 2005-06 35

The Shell
• Unix command interpreter (or similarly the 

“command” in windows)
• Clearly, it’s not part of the OS

prompt



OS 2005-06 36

Processes
• Associated with each process:

– Address space (program + data + stack)
– Entry into the process table (a list of processes)

• Set of registers (e.g. PC, PSW, etc.)
• MMU status, registers

• Processes can be created, terminated, signaled (SW 
interrupt)

• They form a tree (a hierarchy) on some systems
• Process cooperation is obtained by means of IPC 

(inter-process communication) mechanisms
• Processes start with the privileges of the user who 

starts them



OS 2005-06 37

ps (process status) command

Process ID
Parent ID Owner UID

Starting time
Name



OS 2005-06 38

Deadlocks
• Two or more processes mutually 

requesting the same set of resources
• Example: two processes trying to use 

simultaneously a tape and CD burner in 
reverse order

1

tape

CD burner

?
2

?



OS 2005-06 39

Memory management

• Virtual memory
– Allowing processes requesting more 

memory than the computer main memory to 
run

– Swap space/swapping. Storing some of the 
process’ memory in the disk



OS 2005-06 40

Files
• Concept of directory (group files together)
• A tree-like structure similar to the process 

hierarchy
• A file is specified by its path name

– E.g. /usr/bin/ps
• In UNIX there’s a root directory (/)

– Windows has a root for each drive: A:, B:, C:, etc.
• Working directory (a process property)

– Where path not beginning with slash are looked for
• Interface between OS and program code is 

through a small integer called file descriptor



OS 2005-06 41

mount

Root

a b

c d

Floppy

x y

Before mount

Root

a b

c d

x y

After mount



OS 2005-06 42

Special file

• A device driver gets a special entry into 
the file system (usually under /dev)

• Block special files
– Randomly addressable blocks: a disk

• Character special files
– A stream of character data: modem, printer



OS 2005-06 43

Special file (ctnd.)

character

block



OS 2005-06 44

Security

-rwxrwxrwx



OS 2005-06 45

Pipe
• It’s a sort of pseudofile
• Allows connecting two processes as they were 

issuing read/write system calls to a regular 
file

pipe

Process 1 Process 2



OS 2005-06 46

Pipe example



OS 2005-06 47

This slide is intentionally left empty



OS 2005-06 48

System calls
count = read(fd, buffer, nbytes);

Put code for read in register

Trap to kernel

Return to caller

Push nbytes

Push &buffer

Push fd

Call read

Increment SP

Dispatch Sys call
handler

1
2
3

4

5

6

7 8

9

10

11

0x00000000

0xFFFFFFFF

kernel

user space



OS 2005-06 49

System calls

1. Push nbytes into the stack
2. Push buffer into the stack
3. Push fd into the stack
4. Library calls read
5. Put sys call code into register
6. Trap to kernel
7. Examines the call code, query table
8. Call handler, execute read code
9. Return to caller (maybe)
10. Pop stack (i.e. increment SP)
11. Continue execution

count = read(fd, buffer, nbytes);



OS 2005-06 50



OS 2005-06 51



OS 2005-06 52

System call interface (part of)

Unmount a file systems = umount(special)

Mount a file systems = mount(special, name, flag)

Remove a directory entrys = ulink(name)

Create a new entry, name2 pointing to name1s = link(name1, name2)

Remove an empty directorys = rmdir(name)

Create a new directorys = mkdir(name, mode)

Get a file’s status informations = stat(name, &buf)

Move the file pointerposition = lseek(fd, offset, whence)

Write data from a buffer into a filen = write(fd, buffer, nbytes)

Read data from a file into a buffern = read(fd, buffer, nbytes)

Close an open files = close(fd)

Open a file for reading, writing or bothfd = fopen(file, how, ...)

Terminate process execution and return statusexit(status)

Replace a process’ core images = execve(name, argv, environp)

Wait for a child to terminatepid = waitpid(pid, &statloc, options)

Create a child process identical to the parentpid = fork()

DescriptionCall



OS 2005-06 53

System call interface (cntd.)

Get elapsed time in seconds since Jan 1st, 1970seconds = time(&seconds)

Send a signal to a processs = kill(pid, signal)

Change a file’s protection bitss = chmod(name, mode)

Change the working directorys = chdir(dirname)

DescriptionCall



OS 2005-06 54

Process management
while (1)
{

type_prompt();
read_command(command, parameters);

if (fork() != 0)
{

waitpid(-1, &status, 0);
}
else
{

execve(command, parameters, 0);
}

}



OS 2005-06 55

lseek

• Random access to a file
• Imagine the file as accessed through a 

pointer
• lseek moves the pointer

position = lseek(fd, offset, whence)



OS 2005-06 56

Directory (in UNIX)

• Each file is identified by an i-number
• The i-number is an index into a table of 

i-nodes
• A directory is a file containing a list of 

i-number – ASCII name



OS 2005-06 57

Link
• Called a shortcut in some versions of 

Windows

test40

mail16

/usr/ast

games81

prog138

bin31

/usr/jim

memo70

link(“/usr/jim/memo”, “usr/ast/note”)

note70

test40

mail16

/usr/ast

games81

prog138

bin31

/usr/jim

memo70



OS 2005-06 58

Win32 API

• Different philosophy
• Many calls (API – Application Program 

Interface), not all of them are actually 
system calls

• GUI included into the API (in 
comparison X-Windows is all user level 
code)



OS 2005-06 59

Example of Win32

Get the current timeGetLocalTimetime

Nonekill

Nonechmod

Change the current working directorySetCurrentDirectorychdir

Noneumount

Nonemount

Destroy an existing fileDeleteFileunlink

Nonelink

Remove an empty directoryRemoveDirectoryrmdir

Create a new directoryCreateDirectorymkdir

Get various file attributesGetFileAttributeExstat

Move the file pointerSetFilePointerlseek

Write data to a fileWriteFilewrite

Read data from a fileReadFileread

Close a fileCloseHandleclose

Create a file or open an existing fileCreateFileopen

Terminate executionExitProcessexit

CreateProcess does the jobNoneexecve

Can wait for a process to exitWaitForSingleObjectwaitpid

Create a new processCreateProcessfork



OS 2005-06 60

Operating system structure

• Monolithic systems
• Layered systems
• Virtual machines
• Exokernels
• Client-Server model



OS 2005-06 61

Monolithic systems

• The “big mess”
• No organized structure
• A bit of structure anyway:

– System calls requires parameters in a well 
defined place (e.g. the stack)

– Three layers:
• Application program
• Service procedures
• Helper procedures



OS 2005-06 62

Layered systems
• Each layer relies only on services 

provided by lower level layers

Processor allocation and multiprogramming0

Memory and disk management1

Operator-process communication2

I/O management3

User programs4

User/operator5

FunctionLayer



OS 2005-06 63

Virtual machines
• Timesharing provides:

– Multiprogramming
– Extended machine

• Decouple the two functions:
– Virtual machine monitor (a SW layer)
– It does the multiprogramming providing a 

“simulation” of the bare HW
• On top of the monitor any compatible OS could 

be run
• Also the Pentium (8086 mode, running DOS 

applications) and Java VM provide a similar 
mechanism (slightly different though)



OS 2005-06 64

Virtual machines

370 Bare Hardware

VM/370

CMSCMSCMS

Applications
syscall

I/O instruction



OS 2005-06 65

Exokernel

• Each process is given a subset of the 
resources (at any given moment) and 
NOT a simulation of the whole machine

• Simpler
• Saves a layer of mapping
• Each VM in this case is given a subset of 

memory, disk space, etc.
• The OS checks for conflicts



OS 2005-06 66

Client-Server model
• Microkernel
• Services are moved into user-space processes (e.g. the 

filesystem)
• The kernel handles message passing mechanisms to 

make communication possible between user code and 
services

• Easy to “remote” the message passing (distributed 
system)

• Resilient: a crash in one module doesn’t compromise 
the whole system (which can then recover from the 
crash)

• I/O and HW access must be done into the kernel 
(spoils a bit the nice client-server model) for example 
in device drivers



OS 2005-06 67

Example: microkernel OS

Microkernel RTOS. In 
QNX Neutrino, only the 

most fundamental OS 
primitives (e.g. signals, 
timers, scheduling) are 

handled in the kernel 
itself. All other 

components – drivers, file 
systems, protocol stacks, 

user applications – run 
outside the kernel as 

separate, memory-
protected processes.


