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Abstract

An approach bringing together space-variant vision through a simple color segmentation

technique and learning is presented. The proposed approach is employed to control the

movement of a 5 degree of freedom (d.o.f.) robotic head. Color information is used to

determine the position of the object of interest in the image plane and, consequently, to track it

during its motion. The distance of the target from the center of the image is used to feed both a

closed-loop and an open-loop controller. Most important, the parameters of the controllers

are learnt on-line in a self-supervised fashion. Experiments are presented to demonstrate

empirically the feasibility of the approach and its application to a real world control problem.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In human vision system color plays dominant role. It helps us to perform various

complex tasks such as to discriminate between objects with similar characteristics but

different color features, to track moving objects, as well as scene property analysis. In
artificial vision color is equally important. It has been used in a large number of
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applications such as: object classification and indexing [1–3], face recognition [4,5],

texture segmentation [6] and shape recognition [7], to mention a few. A very useful

tool in image analysis is the histogram [8]: the chart that shows the distribution of

intensities or colors in an image. Color histograms have been found useful in solving
several problems in color image analysis [3,5,6,9]. The wide use of histograms in

color image analysis is due to their rotation and scaling invariance and their rela-

tively moderate computation cost.

In active vision systems it is important to move the camera or the cameras

mounted usually on pan-tilt mechanisms, so to maintain the object of interest in the

field of view [10,11], or even better in the center of the image. Of special interest to us

here are techniques based on the so-called log-polar images [12,13]. The log-polar

transformation converts a standard rectangular image into a space-variant one
whose topology is advantageous particularly for tracking. Notably, the amount of

visual information to be processed is significantly reduced, without constraining

either the field of view, or the image resolution at the fixation point. Consequently,

this allows fixating and tracking in real-time, as it reduces the amount of data to be

processed, without resorting to any specialized hardware. Several paradigms of

utilization of log-polar images in active vision can be found in the literature [14–18].

In [19,20] the combination of log-polar images with information from inertial sen-

sors is used for gaze stabilization. Log-polar images have also been used for optical
flow computation [21,22], for the computation of time-to-impact [22,23], as well as,

for docking [24]. In [25] the combination of a log-polar camera with a panoramic

mirror, for omni-directional vision, is presented.

In this paper we are only concerned with object tracking using a 5 degree of

freedom (d.o.f.) binocular robot head. The experimental robotic setup employs a

color segmentation process based on hue (H ) and saturation (S) histograms com-

puted on log-polar images. The color segmentation procedure identifies the ‘‘prin-

cipal’’ color of a potentially interesting object and uses it subsequently to separate
the object (or a conspicuous part of it) from a possibly cluttered background. The

first step of the color processing is the conversion from the RGB color space to the

HSV (hue, saturation, and value) one. The HSV transform allows separating

brightness information, contained in the V component, from color related infor-

mation. The hue is the color impression (as described by painters for example); the

saturation is the relative content of white at a particular hue.

Clearly this implementation exhibits all the advantages of log-polar vision and

color-histogram based segmentation, which are real-time response, robust behavior
and independency from the shape and even to a certain extent from the color of the

object. More importantly for our goal of tracking, this information about the po-

sition of the object in the image plane can be used to learn, on a first instance how to

track smoothly the target’s motion, and subsequently to generate fast eye movements

to catch up with fast moving objects.

The rest of the paper is organized as follows: Section 2 describes briefly our

anthropomorphic robotic setup. The space-variant transformation inspired from the

human vision system and the resulting log-polar camera realization is presented in
Section 3. Image processing and the following learning of the head control strategy
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are discussed in Section 4. In Section 5 experimental results are given and, finally,

concluding remarks are made in Section 6.
2. The experimental setup [26]

The color based processing and the robotic setup was developed in the context of

a wider project devoted to the investigation of biologically inspired principles within
a robotic framework. The aim of the project was, and still it is, the realization of an

artificial agent with self-tuning and learning mechanisms similar to those of newborn

babies [27–30]. The whole design process of the hardware and the control archi-

tecture of the robot are biologically motivated. This justifies design choices, to be

explained later on this section, including the use inertial sensors (gyroscopes), sim-

ulating the vestibular apparatus and the use of space-variant vision (mimicking the

distribution of photoreceptors in the human retina). Following the general idea of

testing hypotheses about the acquisition of sensori-motor coordination, we devel-
oped the robot architecture shown in Fig. 1. This consists of a five d.o.f. robot head,

and an off-the-shelf six d.o.f. robot manipulator, both mounted on a rotating base.

The kinematics resembles that of the upper part of the human body although with

less d.o.f. The 12 d.o.f. of our setup are shown in Fig. 1b. The dashed lines indicate

joint’s axes numbered from q1 to q12, respectively. Lately, a 6 d.o.f. robotic hand has

been added to the experimental setup to allow exploration into aspects of the

acquisition of manipulation behaviors.

The reference task in this paper is the generation of appropriate eye movements
toward visually identified objects in extra-personal space. Consequently, only five

d.o.f. belonging to the robot head are considered throughout the paper, (numbered

from q1 to q5). Actuators are DC motors with harmonic drive gearbox. They have

been chosen according to their mechanical characteristics, which due to the har-

monic drive gearing provide high reduction ratios in a single stage, zero backlash,
Fig. 1. The experimental setup: (a) physical representation and (b) an abstract representation showing the

axes of rotation on each degree of freedom (dashed lines).
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and high precision. Furthermore, the head was designed in order to mimic the

human visual system in terms of speed and acceleration [31].

From the sensory point of view, the robot is equipped with a pair of color space-

variant cameras [32,33], whose sensor’s layout is analytically described in the next
section, inertial sensors simulating the vestibular system [20,21], microphones for

acoustic localization and proprioceptive information through motor encoders. The

robot is controlled by a set of PCs––ranging from Pentium III to Pentium IV pro-

cessors––each running Windows and connected by a fast Ethernet link (100 Mbit/s).

In order to provide the necessary interface with the hardware (i.e. sensors and

motors) some machines are equipped with motion control boards, frame grabbers,

AD converters, etc. In particular one machine controls the robot arm and the torso,

another one the head, and a third computer carries on the visual processing. Data
passing and synchronization of the different processes dealing with sensory and

motor information is based on a software standard called DCOM (Distributed

Component Object Model) [34]. This is a binary standard, which allows working

with components in an object-oriented framework and, further, allows running these

software objects across a computer network. From the software point of view, the

use of components allows layering the code, and creating a separation from the

‘‘low-level handling of hardware resources’’, such as frame-grabbers, control boards,

etc. and the ‘‘high-level implementation’’, i.e. control loops, learning, etc. In this
sense, once a component is designed, it may be reused throughout the system. We

designed a distributed system with a uniform programming environment.
3. The log-polar color camera

Studies on the primate visual pathways from the retina to the visual cortex have

shown that the geometrical layout follows an almost regular topographic arrange-

ment [35–38]. These results can be summarized as follows:

• The distribution of the cones, i.e. the photoreceptors of the retina involved in

diurnal vision, is not uniform. They lay more densely in the central region called

fovea (about 1/1000th of the total retinal area), while they are sparser in the
periphery. Consequently the resolution also decreases, moving away from the

fovea toward the periphery. The distribution has a radial symmetry, which can

be approximated by a polar distribution.

• The projection of the cones array to the primary visual cortex can be well approx-

imated by a logarithmic-polar (log-polar) distribution mapped onto a rect-

angular-like surface (the cortex). Here the representation of the fovea is

expanded several-fold, i.e. more neurons are devoted to the fovea while the

periphery is represented using a coarser resolution.

From the mathematical point of view the log-polar mapping can be expressed as a

transformation between the polar plane ðq; hÞ (retinal plane), the log–polar plane

ðn; gÞ (cortical plane) and the Cartesian plane ðx; yÞ (image plane), as follows [12,13]:
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g ¼ q � h
n ¼ loga

q
q0

(
ð1Þ
where q0 is the radius of the innermost circle, 1=q is the minimum angular resolution

of the log-polar layout and ðq; hÞ are the polar co-ordinates. These are related to the
conventional Cartesian reference system by:
x ¼ q cos h
y ¼ q sin h

�
ð2Þ
Fig. 2 illustrates the log-polar layout as derived from Eqs. (1) and (2). In par-
ticular, in Fig. 2a the grid on the left represents a standard Cartesian image mapped

according to Eq. (1). The plot on the right shows the corresponding log-polar

(cortical) image. Fig. 2b presents a Cartesian image and its log-polar counterpart. It

is worth noting that the flower petals, that have a polar structure, are mapped

horizontally in the log-polar image. Circles, on the other hand, are mapped verti-

cally. Furthermore, the stamens that lie in the center of the image of the flower,

occupy about half of the corresponding log-polar image.
g. 2. The log-polar transformation: (a) graphical illustration and (b) example of a real image.



Fig. 3. (a) The log-polar camera implementation and (b) Red, Green and Blue pixel arrangement.
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The cameras that were used in our setup are based on the above-described

topology, so that they provide directly the equivalent log-polar image at their output.

A photograph of the camera implementation is shown in Fig. 3a. The sensor was

realized using the Tower TS35, 0.35 lm, CMOS process. It is approximately com-

posed of 33,000 pixels with logarithmic response. Its smallest photosites are

6.8 · 6.45 lm2 while the largest in the periphery are 84 · 86 lm2. The overall size of

the chip is 84 · 86 mm2 and, due to the CMOS technology, each pixel is directly

accessible allowing a pixel rate of up to 2 Mpixels/s. The same CMOS design is used
to realize a color version of the chip. The latter is obtained by depositing RGB color

filters on the surface of the gray-level version of the chip, shown in Fig. 3b. Thus, the

total number of the color pixels of the sensor is reduced at 1/3, i.e. about 11,000

pixels. Due to the polar structure of the sensor, specific patterns of red, green and

blue pixel placement are used in a hexagonal-like grid. The color reconstruction is

symmetrical both in the radial and the angular direction.
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4. Color segmentation and head control

4.1. The segmentation procedure

Color segmentation allows extracting the position of the objects from visual

information. Though the technique might be considered simple, it offers several

advantages in terms of robustness. In general terms, a color segmentation procedure,

should identify the principal color of the object and separate it from the background.

An appropriate color representation provides a more efficient way of dealing with

color information. This is to say that the first step of the color processing is the

conversion from RGB information to HSV. The transformation of the crude RGB
data into the HSV space is performed according to the following equations:
HðR;G;BÞ ¼ a tan 2ð
ffiffiffi
3

p
ðG� BÞ; ðR� GÞ þ ðR� BÞÞ ð3Þ
and
SðR;G;BÞ ¼ 1�minðR;G;BÞ
Rþ Gþ B

ð4Þ
respectively. The V component is purposely not used for segmentation and, in fact,

our algorithm isolates the object almost irrespectively of its average intensity (within

certain limits).

A motion detection procedure is applied to initially locate the object of interest. In

practice, with the robot initially stationary, a temporal differencing processing de-

tects a potential target for tracking. The use of temporal differencing for motion
detection exhibits several drawbacks, with the most important one being the

dependency on the speed of the object, i.e. only ‘moving’ edges tend to be detected,

rather than the object itself. However, the goal of the procedure is that of identifying

‘something’ moving––even a small part of the object––in order to guess what the

color of the object is. The procedure performs well enough in practice. On sub-

sequent frames, if the color is guessed well, the color segmentation will succeed;

otherwise the object will be temporarily labeled as uninteresting. This might delay

the detection of the moving object but usually does not prevent tracking.
After the temporal differencing, a histogram of moving pixels in HS space is

constructed in order to group the pixels belonging to the object. That is, the region of

the histogram representing the moving object is located in a neighborhood of the

histogram maximum, and isolated by means of a region growing procedure. The idea

is basically that of identifying the histogram bin with the largest number of pixels,

and assuming that it represents the object average color. The surrounding of this

particular bin is also examined in order to see whether the object contains also other

similar colors. These are considered only if their number of pixels is a significant
fraction of the maximum. This procedure determines which part of the color space

represents the target, under the assumptions that the object has a dominant color,

with a sufficient number of pixels. All these conditions are checked at run time before

‘‘deciding’’ to actually start a tracking sequence. A second histogram representing

the background pixels is also built, and updated online. The histogram of the
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background is updated whenever the robot is stationary and, thus, no object is being

tracked. If the object and background histograms differ enough [3] and, therefore,

the object can be reliably distinguished from the background, then the color seg-

mentation procedure is initiated. This last stage is simply performed by standard
histogram back-projection. An example of this procedure is depicted in Fig. 4. In

order to achieve real-time performance, sub-sampled log-polar images (32 · 64¼
2048 pixel) are used. Fig. 4a presents the original image remapped into the Cartesian

space and Fig. 4b the segmented region. The corresponding HS histograms of the

background and of the object are shown in Fig. 4c and d, respectively. The histo-

gram intensity in Fig. 4c and d represents the number of pixels having certain hue

and saturation. As it can be seen in this Figure, both histograms have a fixed number

of bins (14 · 10), since there is no need to burden the procedure with dynamically
changing histograms and, furthermore, the results of the proposed segmentation

algorithm are adequate for tracking purposes. Moreover, the number of bins was

kept small, in order to avoid the problem of grouping perceptually similar colors into

different bins, which occurs when the number of bin is too big, i.e. when the size of a

bin is comparable to the quantization step in the color space.

Once the segmentation procedure has been performed, the position of the object is

extracted by estimating the center of mass of the pixels belonging to the object, i.e.
Fig. 4. Segmentation procedure. A typical image from the robot’s point of view: (a) original image and (b)

color segmented image. All the processing is carried out in the log-polar domain; the images have been

mapped back to the Cartesian space for visualization purposes. HS histograms: (c) background and (d)

object. Note that, as the histograms do not overlap, segmentation can be performed reliably. Hue values

range from 0 to 360. Saturation ranges from 0 to 1.
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those which result in a back-projection intensity higher than a threshold. The center

of mass ðxc; ycÞ of the segmented region is computed as:
1 Th

of the
xc ¼
1

A

X
x

X
y

xIðx; yÞ and yc ¼
1

A

X
y

X
x

yIðx; yÞ ð5Þ
where Iðx; yÞ is the binary image which results by setting the pixels of the segmented

region to ‘‘1’’ and ‘‘0’’ elsewhere and A is the image area, i.e. the sum of ‘‘1’’.

The centroid is estimated in both eyes and it is used to compute the retinal error

(position with respect to the image center), which is eventually used to learn a

suitable control policy and therefore to control the head motion.

4.2. The head control

The computed center of mass of the object is used as positional information to

drive a negative feedback loop. The fundamental problem in such a strategy is that

of converting the target position, which is expressed in retino-centric coordinates

into motor commands. The latter are expressed with respect to a motor coordinates

system. If this is the case the error is described by: 1
e ¼ C � sðtÞ ð6Þ

where e is the position error expressed in motor coordinates, sðtÞ the retinal error and
C a coordinate conversion matrix. The matrix C must be designed in order to sta-

bilize the closed-loop system. The generated motor command is:
_q ¼ �k � e ð7Þ

with _q being the speed of the joint, which is the control variable and k a positive

constant gain. A possible choice of C, as proposed in the visual serving literature
[39], is:
C ¼ os

oq

� ��1

ð8Þ
Learning of the matrix C is carried out by acquiring discrete samples of the

variation of the retinal error Ds due to a variation of the joint variable Dq. A least-

square approach is used to compute the components of C. Further, it is important to

define how to obtain the samples. Performing random movements according to the
following equation is a suitable strategy:
_q ¼ �kCsðtÞ þ gð0; rÞ ð9Þ

The first term is the closed-loop component described in Eq. (7); the second term g

represents a zero mean uniform noise with standard deviation r. It is worth noting

that at the beginning of learning the noise dominates (C ¼ 0, r 6¼ 0), whereas as
is description is actually a simplification, which does not take into account for instance the dynamic

robot head. More sophisticated techniques could be employed (see for example [16]).
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learning proceeds the closed-loop term takes over the control of movements. In

order to guarantee convergence the standard deviation r has to be reduced to zero

over a reasonable period of time.

Although the closed-loop approach described above is effective, it does not mean
it is also efficient. In fact, a closed-loop approach would always lag behind a moving

target. If the perceived target lies in the periphery of the visual field, the robot would

take several control steps to move the cameras toward it. In our artificial system, the

requirement for generating fast eye movements, emulating saccades, is to know as

precisely as possible the transformation between retinal error s and the corre-

sponding motor command Dq, that is:
Dq ¼ f̂ðsÞ ð10Þ

Under the hypothesis of a stationary target and the closed-loop control in place, the

gathering of training pairs, each one having the form ðDq; sÞ, is much simplified. The

retinal error s is acquired at the beginning of the motion, while the required motor

command can be measured when the retinal error is zeroed. In other words the whole

joint movement is the most appropriate one to generate the saccade. In order to relax
the stationary target hypothesis, it is possible to acquire a new training sample, as

soon as some control cycles have been performed. In this case, the motion of the

target would influence the measure of the motor command insignificantly and its

effect on average would be negligible. The output of the proposed mapping is then

used to generate saccades. Saccade initiation is controlled by another module, which

issues a saccade command each time either the retinal error is greater than a fixed

threshold (catch-up saccade) or a moving target is detected but a target is not cur-

rently being tracked. This fixed threshold is not learned, but it is estimated empiri-
cally in order to generate a reasonable amount of saccades and to avoid trying

saccades under small retinal errors. The overall loop controlling the eye motion is

shown in Fig. 5a. In this figure the primary closed-loop and the feed forward sec-

ondary loop are clearly depicted. The loop using the inverse Jacobian is derived from

a classical visual servoing approach. The secondary loop consists of an inverse

model, indicated as ‘‘Map’’. This is activated whenever the retinal error exceeds a

fixed threshold and generates a saccadic motion of the eyes, in order to foveate the

target.
Of course moving only the eyes is not enough in an articulated robotic head. The

robot could explore the whole visual space and, since our setup possesses more d.o.f.,

the neck pan and tilt are used. The head-eye system is kinematically redundant;

consequently, a further constraint has to be employed when programming coordi-

nated head-eye movements. In fact, the same fixation point in the 3D world can be

obtained using different configurations of the joint angles (infinite). It is important to

note that the various joints of the head/eye system have different physical charac-

teristics. In order not to overload the mechanics, it would be reasonable to respect
such constraints, and consequently, the eyes can move faster than the neck. Fur-

thermore, it seems a natural behavior to require the robot to achieve a symmetrical

vergence configuration: that is, the neck should move, in order to be approximately

heading toward the target. This position could be advantageous if several move-
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ments have to be generated sequentially. Even by enforcing such constraints the

trajectory of eyes and neck during a movement would be undetermined. Usually this

problem is solved in robotics by imposing a further constraint, such as the mini-

mization of some cost functional over the whole trajectory [40]. As described in our

previous works [20] we chose a different approach, where both neck and eyes are

roughly driven toward the target, as if they were two independent physical systems.

These two subsystems are actually decoupled, because whenever the neck is moving,
the eyes are counter-rotated at the same speed, by employing the information pro-

vided by the inertial sensor. The control system is greatly simplified, it is completely

reactive, and no optimization mechanism is involved, as it can be observed in Fig.

5b. It has already been shown that this strategy is an efficient image stabilization

mechanism. Concerning the actual neck motion controller, a two-loop system,

similar in principle to the one commanding the movement of the eyes, deals with the

situation. A PD controller governs the closed-loop module. Its goal is that of zeroing

the difference between the angles of the eyes:
_q1 ¼ PDðq4 � q5Þ ð11Þ
where _q1 is the neck pan velocity and q4, q5 the right and the left camera pan,

respectively.
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Also in this case an ‘‘inverse model’’ map can improve performances. It maps the

predicted eye positions to the proper neck motion. The control diagram is sketched

in Fig. 5b. Formally:
Dq1 ¼ f̂ ðpredq4; predq5Þ ð12Þ

where Dq1 is the neck motion command, predqð4;5Þ the predicted eye positions. These

are the current eye positions updated by the saccadic eye motion. The eye movement

can be recovered using the eye maps, even before any actual motion has been started.
In equation form:
predqð4;5Þ ¼ qð4;5Þ þ saccadeDqð4;5Þ ð13Þ
Eventually, both eye and neck commands are generated and fed into the low-level

controller at the same time.

The schema described above for the horizontal movement controls also the

common tilt of the eyes; two commands are computed independently (one for each

eye) and averaged. The control of the neck tilt movement is accomplished by using a

PD controller as in the case of joint 1, that is:
_q2 ¼ PDðq2 � q3Þ ð14Þ

The behavior is roughly the same as joint 1; in fact, the PD controller links the

two redundant degrees of freedom (eye tilt and neck tilt) as before.
5. Experimental results

The goal of our experiments was to evaluate how reliable it is the proposed

control system. Various experiments were conducted to verify the automatic

acquisition of the controller. Our aim was mostly to show how a suitable sequence of

learning events might lead to the unsupervised acquisition of such controller. The

system switches through several phases. Each phase naturally exploits earlier stages

by relying on their correct behavior. The first phase consists in acquiring the closed-

loop control of the eyes, trying to maintain the neck stationary. The construction of

the inverse model (phase two) clearly relies on having already the closed-loop
functional. Only at this point the proper control of the movement of the neck is

started. This third phase utilizes the eyes’ inverse model to predict the final position

of the eyes for better performance. Also in this last case, an additional inverse model

can eventually be acquired since a feedback loop is already functional. The following

set of experiments show this sequence and the performance of the overall system.

With regard of learning, parameters, as in the case of the Jacobian matrix, were

acquired by employing a very standard recursive least square procedure. Maps, on

the other hand, are obtained by training a suitable neural network. This is a neural-
gas type as described in [41].

A first qualitative demonstration of the performance of the algorithm is shown in

Fig. 6a. A green toy gun was passing back and forth a still camera. During this

experiment the head control was off, whilst the color segmentation was on. The



Fig. 6. A sequence of images and the results of the segmentation procedure: (a) Selected images of

the sequence; from top to bottom are presented the reconstructed Cartesian image, the cortical image, the

segmented image and the frame number of the sequence; (b) the trajectory of the target recorded for the

above sequence.
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complete sequence consists of 26 events acquired at frame rate (25 Hz). In Fig. 6a

only a sequence of eight representative images is presented together with the results

of the segmentation. As one may see in this figure many object pixels are not selected

as such. This is because the threshold, above which the pixels are considered
belonging to the object, was set too high, without affecting the tracking performance

though. The target position as recorded during the sequence is presented in Fig. 6b.

A simple way to analyze the behavior of the whole system, both image processing

and control, is by displaying the motion of the target in the image plane when the

control is active. If this is done during different stages of learning we are also able to

assess, though qualitatively, the improvement through time of the controller effi-

ciency. In this respect Fig. 7a and b show some exemplar trajectories recorded during

the acquisition of the closed-loop controller and the open-loop one, respectively. The
results from the first stage are plotted in Fig. 7a, where abscissa and ordinates

represent the image plane, and different graphical signs mark different trajectories

(the target position at each control step )40 ms period). As expected all the trajec-

tories are converging to the fovea. This plot was obtained after the closed-loop

control has been learned as described in Section 4. In this case the movements are

still quite slow, and the number of ‘‘points per trajectory’’ is high meaning that is

takes a long time to complete a foveation.

Conversely, Fig. 7b has been obtained after learning of the closed-loop controller
was completed and the saccade maps almost converged to a stable configuration.

Note as the first few steps are enough to reduce the retinal error to less than five

pixels, the target afterwards remains in the fovea.
Target trajectories Target trajectories

(a) (b)

Fig. 7. Trajectories of the target in the image plane recorded in: (a) closed-loop only control. Abscissa and

ordinates are measured in pixels, (0,0) represents the image center. (b) Open-loop and closed-loop control

operating together after learning.
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Another experiment aimed at showing that the color segmentation process pro-

vides a reliable source of information, which allows the system to learn the con-

troller. As described in the previous section the learning process could be divided in
two parts. During the first stage only the closed-loop gain, i.e. the Jacobian matrix, is

tuned. This is obtained by measuring the displacement of the object as a function of

the displacement of the joint position. A recursive least square procedure is em-

ployed. An exemplar trace of this process is shown in Fig. 8. Note that stable values

are already available after about ten steps. Precise convergence is obtained after

about 200 steps. Each step lasts 40 ms.

In a second stage the open-loop controller is tuned. A map regarding the left eye is

shown in Fig. 9 where the cross marks (+) represent the most recent 300 samples of
the training set, and the circles the position of the center of each unit. The plot has

been obtained after about 90,000 steps, using the most recent 300 samples from the

training set. The input space ðx; yÞ is the image plane in Cartesian coordinates. This is

done for presentation clarity only, as the actual data are acquired in the space-

variant log-polar plane, as described in Section 3. The output (the height of the

surface plot) is the angle required to foveate a target appearing in the corresponding

ðx; yÞ image position. Similar results were obtained for the other maps controlling the

other joints (eyes’ tilt and neck). It has also been shown [41] that the neural network
is actually improving the robot performance, during the training procedure, in terms

of the average positioning error.

Videos demonstrating the system and the proposed technique can be retrieved on-

line at the following URL: http://www.lira.dist.unige.it/babybotvideos.htm.
Fig. 8. The learning process: Acquisition of the closed-loop Jacobian matrix C. Note that stable values are

already available after about ten steps. Precise convergence is obtained after about 200 steps. Each step

lasts 40 ms.

http://www.lira.dist.unige.it/babybotvideos.htm


Fig. 9. The learning process: The open-loop tuning map. Abscissa and ordinates represent the image plane

in Cartesian coordinates. The Z-axis stands for the control surface. The cross marks are the most recent

300 training samples.
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6. Discussion

This paper presented a complete system including vision, control, and learning

instantiated in a real robotic platform. Clearly, there is still much to be done since

pretty much every module could be further optimized. At this stage, what was

important in our view was the complete integration in an on-line behaving system. In

addition almost any module exploited learning to tune its performance to the physics

of the robot. The proposed approach brings together space-variant images, a color
segmentation technique, and learning (or parameter automatic tuning) of the con-

troller. The long-term objective of the work presented in this paper is the realization

of a biologically inspired artificial agent via learning and adaptation mimicking the

early stages of biological development. It is fair to say, though, that in a few cases the

robot might fail. These include for example the change of apparent color due to a

change in illumination (unless the size of the histogram bins is very large in HS

space), and the confusion due to a colored illuminant, especially in artificial light

conditions. Of course a color-cluttered background can influence performances as
well. However, we are well aware of these limitations and consequently our efforts

are directed also toward the integration of many different visual cues.
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