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Abstract. In biological systems vision is always in the context of a
particular body and tightly coupled to action. Therefore it is natural
to consider visuo-motor methods (rather than vision alone) for learning
about objects in the world. Indeed, initially it may be necessary to act on
something to learn that it is an object! Learning to act involves not only
learning the visual consequences of performing a motor action, but also
the other direction, i.e. using the learned mapping to determine which
motor action will bring about a desired visual condition. Learning to act
may be an important precursor to “event-interpretation”, even when the
events are object-object events that don’t involve the motor system in
any way.

In this paper we show how a humanoid robot uses its arm to try some
simple pushing actions on an object, while using vision and propriocep-
tion to learn the effects of its actions. We show how the robot learns
a mapping between the initial position of its arm and the direction the
object moves in when pushed, and then how this learned mapping is
used to successfully position the arm to push/pull the target object in a
desired direction.

1 Introduction

All biological systems are embodied systems, and an important way they have
for recognizing and differentiating between objects in the environment is by sim-
ply acting on them. Only repeated interactions (play!) with objects can reveal
how they move when pushed (eg sliding vs rolling), how the size of the ob-
ject correlates with how much force is required to move it, e.t.c. In a discovery
mode, the visual system learns about the consequences of motor acts in terms
of such features, and in planning mode the mapping may be inverted to select
the motor act that causes a particular change. These two modes of learning the
consequences of a motor act, and selecting a motor act to achieve a certain re-
sult, are obviously intertwined, and together are what we mean by “learning to
act”.

Learning to act is important not only to guide motor behavior but may also
be a necessary step for event-interpretation in general, even if the motor system is
not involved in any way. For instance, by the age of 6 months children can predict
that in a collision with a stationery object, the size of a moving object is related
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to how far the stationary object moves [1]. This is just one of several things that
children appear to learn from experience about their physical environment [2]
[3]. What is the source of this knowledge? and how can we build systems that
learn to interpret events in the physical world? Computer vision approaches to
“event-interpretation” have naturally tried to solve this problem in the domain
of vision alone. However given that vision does not exist independently of other
modalities in biological systems, and knowledge about the world is acquired
incrementaly in a developmental process we are taking a somewhat different
approach. We assume that it may be necessary to learn to act on objects first
before we can learn to interpret more complicated events involving object-object
interactions. One source of evidence in support for this approach comes from the
body of work about mirror neurons [4]. These are neurons in motor area F5 of
the rhesus monkey that fire when the monkey performs a particular goal-directed
action, but which also fire if it just sees another agent perform a similar action.
While the mechanisms of this mapping are still far from clear the fact that the
events are mapped to the monkey’s existing motor repertoire gives a strong hint
that the ability to visually interpret the motor-goal or behavioral/purpose of
the action may be helped by the monkey’s ability to perform that action (and
achieve a similar motor goal) itself.

The focus of this paper, therefore is on learning to act on objects, not only
because in itself it’s a vital skill to understand the consequences of actions, and
plan future actions, but also because it could be a necessary precursor to event-
interpretation of other object-object interactions.

2 Learning the effect of pushing/pulling actions

We show how a humanoid robot [5] that has already learned to saccade, and
reach towards points in space with its arm, now pushes/pulls an object around
in front of it, and learns the effect of its actions on the object, and thereafter
uses this knowledge to drive motor-planning.

It is important to note that by “effect” we mean not only the effect on the
object, but also the effect on the robot - the force felt by the robot, or the
amount it had to move its head to continue tracking, for example. In this initial
experiment we consider only one effect - the direction the object moves as a re-
sult of the action. There are naturally many other effects that one could also pay
attention to: how far the object moves, how long the object continued moving
after the initial touch, e.t.c. These are on the agenda for continuing experiments.
However, in the experiment described here the robot attends only to the instan-
taneous direction of motion of the target just after it has been pushed/pulled
by the robot. The goal of the experiment is to learn the instantaneous direction
of motion of the target object for each of several different approach motions of
the hand from different directions. This learned knowledge is then later used by
the robot to select the appropriate motor action to move an object in a desired
direction.
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3 Description of the experiment

(a) initial  arm- (b) At the beginning (c) At the end of the
positions for target of a pushing move- movement
approach ment

Fig. 1. The experimental setup

Figure 1 A Shows the experimental setup. The humanoid robot “Babybot”
has a 5 DOF head, and a 6 DOF arm, and 2 cameras whose cartesian images
are mapped to a log-polar format [6]. The robot also has a force sensitive wrist,
and a simple piece of metal for a hand. The target is placed directly in front of
the robot on the play-table. The robot starts from any of four different starting
positions (shown in the figure) at the beginning of a trial run.

3.1 A single trial

In a typical trial run the robot continuously tracks the target while reaching for
it. The target (even if it is moving) is thus ideally always centered on the fovea,
while the moving hand is tracked in peripheral vision. Figure 1 (B) shows the
arm at one of its initial positions and (C) shows the end of the trial with the
target having been pushed to one side.

The moment of impact - when the hand first touches the object is an im-
portant event and its localization in time is critical. A sharp increase in the
magnitude of retinal target position (caused by the instantaneous error in track-
ing) is used to localize the instant, and the direction of the displacement vector
is extracted®

3 Another source of information that also carries information about the moment of
impact are the force values - a sharp discontinuity in the force profiles marks the
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After the initial impact the system continues to try to reach for the centroid
of the target and therefore ends up smoothly pushing the target in a particular
direction. This continues until it either loses track of the target, which may fall
off the table for example, or go outside the workspace. During each such trial
run, the time evolution of several state variables are continuously monitored:

1. Vision: Position of the hand in Retinal coordinates - extracted from color
segmentation of the hand.

2. Vision: Position of the target object in Retinal coordinates - extracted from
color segmentation of the object.

3. Proprioception: 3 Joint coordinates of the arm (we fix the wrist for this
experiment..thus eliminating 3 other degrees of freedom)

4. Proprioception: 5 Joint coordinates of the head

. Proprioception: 3 Force components [F, F}, F,] at the wrist.

6. Proprioception: 3 Torque components [T,T,T.] at the wrist

(@28

For the purpose of this experiment however we extract only two instantaneous
values from this wealth of available data: one is the initial joint position of the
arm (only the initial position, not the entire trajectory!), and the other is the
instantaneous direction of target displacement at the moment of impact.

3.2 The target for learning

The goal of this experiment is to learn the effect of a set of simple pushing/pulling
actions from different directions on a toy object. As we mentioned earlier in 1
there are many effects, both on the object and the robot, that could be attended
to. But here we focus on only one effect, namely the direction of motion of the
target. This is an effect to learn because, as we show, it can be used in motor-
planning to move an object in a goal-directed mode. The target for learning
(given a fixed target position directly in front of the robot) is a mapping from the
initial position of the hand to the direction of target motion. Note that the initial
hand-position uniquely determines the trajectory to the target. This trajectory
could be different in different parts of the workspace, and is dependent on the
kind of control used, (e.g. equilibrium point control) to generate the dynamics.
However, because it is unique given the initial position of the hand and the (fixed)
end position of the target, there is no need to remember the entire trajectory -
the initial hand-position is sufficient.

The target for learning therefore is a mapping from initial hand position
to direction of target movement. So, Associated with each initial hand position
is a direction map (a circular histogram) that summarizes the directions that
the target moved in when approached from that position. After each trial the
appropriate direction map is updated with the target motion for that particular
trial.

moment of impact. This information is not used at the moment but could be used to
make the localization more robust, when the target is being obscured by the hand
for instance.
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Why map initial arm-position to target motion direction rather than say
angle of approach of the hand at the moment of impact? The angle of approach
of the hand would certainly correlate well with the direction of motion of the
target. The reason we prefer the arm position instead is that the association
lets us easily look up the answer to the inverse problem of motor planning,
namely given a desired direction of motion of the target we can just lookup the
position(s) where the arm should be initially positioned.

4 Results

Figure 2 shows the four direction maps learned, one for each initial arm position
considered. The maps plot the frequency with which the target moved in a
particular direction at the moment of impact. Therefore longer radial lines in
the plot point towards the most common direction of movement. As we can see,
the maps are sharply tuned towards a dominant direction.
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Fig. 2. The learned target-motion direction maps, one for each initial hand-position
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These maps are used to drive motor planning in a straightforward manner;

— The system is presented with the usual target as before, but this time also
with another toy nearby. The goal is to push the target towards the new toy.
The system first foveates on the target, while also locating the new toy in
its peripheral vision. The retinal displacement of the toy is used as the the
desired position rq,

— the direction of this displacement vector @, is taken to be the direction of
desired motion of the target and is used to find the direction map Mg with
the closest matching dominant direction.

— The robot first moves its hand to the hand-position associated with map Mg
and then begins its motion towards the target. The dynamics takes care of
the rest, resulting in the motion of the target towards the desired direction.

Figure 3 shows one example of the learned maps being used to drive goal-
directed action. The round toy is the new desired position towards which the
target must be pushed. Note that initially in (A) the arm is in an inconvenient
position to achieve the goal of pushing the target in the desired direction, but
the prior learning selects a better starting position (B), leading to a successful
action (C).

A quantitative measure of the improvement brought about by learning is
to look at the error of target motion (towards a goal) when the hand-position
is randomly chooses among the 4 starting points (Figure 3(C)) and compare
it to the error after learning (Figure 3(D)) when the initial hand position is
picked based on the learning. The Figure shows that the error drops from about
90deg to about 35deg. The error would be even lower if more than four starting
hand-positions were considered, as would be the case if we were running the
experiment in continuous mode where we would uniformly sample the space of
all hand-positions.

5 Discussion

The experiment discussed here is just the very first step towards “learning to
act”. It makes several simplifying assumptions to test the basic idea of learning
the effects of motor acts, and then driving motor-planning with the learned
knowledge. There are therefore several directions for improvement, of which the
major ones are:

— Moving to a continuous space of hand-positions: We have considered only
four initial hand-positions in this experiment. To cover the whole space of
initial hand positions however, a more natural approach is to pick hand-
positions randomly during trials while building up a table with the hand-
positions actually visited..and learning a target motion map for each those
hand-positions. Another approach is of course to train a neural network with
the target motion directions as inputs and the hand-positions as outputs.
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Fig. 3. The learned direction maps are used to drive goal-directed action
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— Interleaving the learning with the planning: At present for simplicity we first
have the learning/discovery phase and then the motor planning phase. But
in principle there is no need for this separation and we intend to move to
a more continuous mode where both learning and planning are happening
continuously.

— Increasing the number of visual variables: In this particular experiment the
same target and hand speed were used throughout and the only variable
varied was initial-hand position. However the speed of the hand and the
type of target could be varied too in future experiments. This would require
paying attention to a much larger set of event features: the size of the target,
the distance moved, the force profile on the hand, for instance to discover
useful regularity.

6 Conclusion

We have shown a system that “learns to act” on a target object. In a play/discovery
phase it pushes/pulls the target from several different directions while learning
about the effect of the action. In another goal-directed play phase it uses its
learned maps to select the initial arm position that will enable it to push a
target toy towards another toy.

The work described here makes a novel contribution towards the area of
“event-interpretation” because the constraints imposed by the combined modal-
ities of vison, motor, and proprioception may make it easier to interpret cer-
tain self-generated events than with vision alone. Furthermore, interpreting self-
generated events may be a necessary first step to interpret more complex object-
object events.
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