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Abstract—

We propose a general architecture for action (mimicking)
and program (gesture) level visual imitation. Action-level
imitation involves two modules. The View-Point Transfor-
mation(VPT) performs a “rotation” to align the demon-
strator’s body to that of the learner. The Visuo-Motor
Map(VMM) maps this visual information to motor data.

For program-level (gesture) imitation, there is an addi-
tional module that allows the system to recognize and gen-
erate its own interpretation of observed gestures, so as to
produce similar gestures/goals at a later stage.

Besides the holistic approach to the problem, our ap-
proach differs from traditional work in (i) the use of mo-
tor information for gesture recognition; (ii) usage of context
(e.g. object affordances) to focus the attention of the recog-
nition system and reduce ambiguities and (iii) use iconic
image representations for the hand, as opposed to fitting
kinematic models to the video sequence.

This approach is motivated by the finding of visuomotor
neurons in the F5 area of the macaque brain that suggest
that gesture recognition/imitation is performed in motor
terms (mirror) and rely on the use of object affordances
(canonical) to handle ambiguous actions.

QOur results show that this approach can outperform more

conventional (e.g pure visual) methods.

I. INTRODUCTION

The impressive advance of research and development in
robotics and autonomous systems in the past years has led
to the development of robotic systems of increasing motor,
perceptual and cognitive capabilities.

These achievements are opening the way for new appli-
cation opportunities that will require these systems to in-
teract with other robots or non technical users during ex-
tended periods of time. Traditional programming method-
ologies and robot interfaces will no longer suffice, as the
system needs to learn to execute complex tasks and im-
prove its performance throughout its lifetime.

Similarly to the ability of human infants to learn through
(extensive) imitation, an artificial system can retrieve a
large amount of knowledge, simply by looking at other in-
dividuals, humans or robots working in the same area.

The long-term goal of our work is two-fold. On one hand,
we want to develop methodologies whereby a system can
learn how to perform complex tasks through imitation. On
the other hand, our approach relies on recent findings in
neuroscience and developmental psychology, aiming to con-
tribute to a better understanding of the fundamental prob-
lem of how humans imitate each other and how they rec-

ognize and understand the observed behavior and actions.

A. Learning by imitation

Learning by imitation has been addressed before in the
fields of e.g. humanoid robots [1], where the number of de-
grees of freedom is very large, tele-operation [2] or assembly
tasks [3]. However, most published works only focus on spe-
cific components of an imitation system. Instead, we take
an holistic approach to describe a complete architecture for
arm-hand gesture imitation and recognition, following bi-
ologically plausible methodologies. In the work described
in [4], the imitator can replicate both the demonstrator’s
gestures and dynamics. Nevertheless, it requires the usage
of an exoskeleton to sense the demonstrator’s behavior. In-
stead, our approach is exclusively based on vision.

We will distinguish two forms of imitation: action-level
and program-level imitation. Action-level imitation (or
mimicking) consists in replicating the gestures or move-
ments of a demonstrator, without seeking to understand
those gestures or the action’s goal. Instead, program-
level imitation (or gesture imitation) involves recognizing
the performed gesture/goal so that the learner can pro-
duce its own interpretation of the gesture or action effect.
Our overall approach to the problem of learning through
(action-level or gesture) imitation is illustrated in Fig. 1
and considers a system composed by an anthropomorphic
arm-hand and monocular vision.
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Fig. 1. The combination of the Sensory-Motor Map and the View-
Point Transformation allows the robot to mimic the arm movements
executed by another robot or human. The recognition module endows
the robot to interpret and imitate gestures or goal-directed actions.
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It contains three main modules. The View-Point Trans-
formation (VPT) maps observed gestures to a canonical
point-of-view, that corresponds to the visual appearance
of a gesture, as if it were performed by the system itself.
The Visuo-Motor Map (VMM) maps these visual features
to motor data directly. The execution of these motor com-
mands produces a gesture that mimics the one performed
by the demonstrator, i.e. action-level imitation. The fi-
nal recognition module endows the system with the ability
to recognize goal-directed actions (gestures) executed by
a demonstrator. Since the recognition is done in motor
terms, the system can then reproduce its own interpreta-
tion of the observed gestures: program-level imitation.

B. View-Point Transformation

For action-level imitation, the learner has not only to vi-
sually detect the demonstrators arm (or hand) but also to
conceive a “mental rotation” that will place the demonstra-
tor’s arm (allo-image) in correspondence with the learner’s
own body (ego-image). This spatial transformation is
named the View-Point Transformation (VPT), illustrated
in Figure 2. The VPT is needed because the image ap-
pearance of an object may change quite dramatically, as a
function of the view-point. If we could find image descrip-
tors invariant to view-point changes, then the VPT would
no longer be needed.

The VPT maps the gestures of a demonstrator to the
(ego-)image, that would be obtained if those same gestures
were performed by the system itself. Surprisingly, in spite
of the importance given to the VPT in psychology [5], it
has received very little attention from other researchers in
the field of visual imitation.

'

Fig. 2. Similar gestures can be seen from very distinct perspectives.
The image shows one’s own arm performing a gesture (ego-image) and
that of the demonstrator performing a similar gesture (allo-image).

One of the few works that deals explicitly with the VPT
is described in [6]. However, instead of considering the
complete arm posture, only the mapping of the end-effector
position is done. The VPT is performed using epipolar
geometry, based on a stereo camera pair.

Other studies address this problem only in an implicit or
more superficial way. A mobile robot, capable of learning
the policy followed by another mobile vehicle, is described
in [7]. Since the system kinematics is very simple, the VPT

corresponds to a transformation between views of the two
mobile robots. In practice, this is achieved by delaying the
imitator’s perception, until it reaches the same place as the
demonstrator, without explicitly addressing the process of
VPT. The work described in [8] has similar objectives to
our own research, and allows a robot to mimic the “dance”
of an Avatar. However, it does not address the VPT at
all, and a special invasive hardware is used to perform this
transformation.

If a system is able to handle the view-point correspon-
dence, action-level imitation requires mapping the visual
features expressed in the ego-image to the corresponding
motor commands, through the Visuo-Motor Map.

C. Visuo-Motor Map (VMM)

The VMM can be computed explicitly if the parameters
of the arm-hand-eye configuration are known a priori but—
more interestingly—it can be learned from observations of
arm/hand motions.

Again, biology can provide relevant analogies. The
Asymmetric Tonic Neck reflex [9] forces newborns to look
at their hands, allowing them to learn the relationship be-
tween motor actions and the corresponding visual stim-
uli. Similarly, in our work the robot learns the VMM dur-
ing an initial period of self-observation, while performing
hand/arm movements, as both visual and motor (proprio-
ceptive) data are available.

Once the VMM has been estimated, the robot can ob-
serve a demonstrator, use the VPT to transform the image
features to a canonical reference frame and map these fea-
tures to motor commands through the VMM. The final
result will be a posture similar to that observed.

The VMM can be learnt sequentially, thus decreasing the
complexity at each step. The system can start to map the
shoulder /elbow joints of the arm. Once this is done, it sim-
plifies the learning of the VMM for the wrist configuration.
Finally, once the arm VMM is available, it can provide in-
formation for learning the hand VMM. In this paper, all
these VMMs are estimated using neural networks.

This sequential strategy for learning the different com-
ponents of the VMM resembles human development stages
[10], [11]. During the first months of life, infants have lim-
ited visual and motor capabilities. Both systems evolve
side by side, with the visual system feeding information
to “calibrate” hand/arm movements and arm movements
providing stimuli to train and improve visual acuity [12].
Similarly, in our work, the sensory-motor map is learned in
a sequential (developmental) process.

The VPT and VMM allow the system to perform action-
level imitation. For program-level imitation, we need
to provide the means for recognizing the gestures per-
formed by someone, or their produced effect (goal). Then,
an equivalent (but not necessarily equal) gesture can be
elicited by the learner. One example could be producing
the same effect on a certain object, even if the gesture is
(from a kinematic point of view) different.



D. Program-level (gesture) imitation

Our work on program-level (gesture) imitation is
strongly motivated by the recent discovery of visuomotor
(mirror and canonical) neurons [13], [14] in the F5 area of
the macaque’s brain. These neurons discharge during the
execution of hand/mouth movements. In this paper we
will focus on arm-hand gestures, often referred to as grasp
actions or grasps.

In spite of their localization in a pre-motor area of the
brain, mirror neurons fire both when the animal performs
a specific goal-oriented grasping task, and when it sees
that same action being performed by another individual.
This observation suggests that the motor system responsi-
ble for triggering an action is also involved when recogniz-
ing that same action. In other words, recognition would
be performed in motor terms, rather than in a purely vi-
sual space. By establishing a direct connection between
gestures performed by a subject and similar gestures per-
formed by others, mirror neurons may be connected to the
ability to imitate found in some species [14], establishing
an implicit level of communication between individuals.

Canonical neurons [15] have the intriguing characteristic
of responding when objects, that afford a specific type of
grasp, are present in the scene, even if the grasp action is
not performed or observed. Thus, canonical neurons may
encode object affordances and help distinguishing ambigu-
ous gestures during the process of recognition.

Many objects are grasped in very precise ways, since they
allow the object to be used for some specific purpose. A
pen is usually grasped in a way that affords writing and
a glass is hold in such a way that we can use it to drink.
Hence, if we recognize an object that is being manipulated,
it immediately tells us some information about the most
likely grasping possibilities (expectations) and hand motor
programs, simplifying the task of gesture recognition.

Our work has three main distinctive aspects when com-
pared to traditional approaches: (i) the use of motor infor-
mation for gesture recognition; (ii) the use of context (e.g.
object affordances) to focus the attention of the recognition
system and reduce ambiguities and (iii) the use of iconic
image representations for the hand, as opposed to fitting
kinematic models to the video sequence.

In contrast with the approaches that perform gesture
recognition in pure visual terms, we rely on motor infor-
mation for (program-level) gesture imitation or recognition.
We show that this approach leads to considerable simplifi-
cation of the problem since the motor representations offer
a (much) larger degree of invariance to view-point modifica-
tions. The work described in [16] is closely related to ours
and proposes a model for mirror neurons. However, the
visual features they use are very difficult to extract from a
video sequence, which makes the approach unreliable.

Another important aspect in our work is the use of con-
text information or object affordances [17] for recognition.
If an object is more likely to be grasped in some specific
way, then the observation of this object in the scene intro-
duces prior knowledge that will bias the gesture classifica-
tion process. Similarly, certain arm-gestures can be more

likely in certain contexts than others. This methodology
is in accordance with the observation of canonical neurons
discharges, when a graspable object is present in the scene.
We blend prior information and observations in a Bayesian
framework that achieves high classification rates.

For program-level (gesture) imitation, we will concen-
trate on grasping actions. Grasp actions are usually parti-
tioned into the transport and grasp phases [18]. Exper-
iments in neurophysiology indicate that only the grasp
phase is relevant for the process of gesture recognition. Fig-
ure 3 illustrates the hand appearance during the approach
phase, together with the final phase of two broad classes of
grasps that we used: precision grip and power grasp.

gy
Fig. 3. Hand appearance during the approach phase (left), power
grasp (center) and precision grip (right).

Gesture recognition has been addressed in the computer
vision community in many different ways [19]- [24]. The
difficulty of hand tracking/recognition arises from the fact
that the hand is a deformable, articulated object, that may
display many different appearances depending on its config-
uration, view-point or illumination. In addition, there are
frequent occlusions between hand parts (e.g. fingers). Due
to the extreme difficulty in extracting/tracking finger-tips
or other notable points in the image, under varying view-
points, we exploit more iconic, appearance based, represen-
tations for the hand shape, that are commonly believed to
be used by humans when recognizing (known) gestures.

E. The role of observation in learning

A final aspect worth mentioning is the role of obser-

vation for the overall system we propose here, both self-
observation or looking at other individuals. Observation is
involved in different types of learning objectives:
(i) By manipulating objects, one can learn which grasp
types are successful for a certain class of objects. Also,
if we observe other people manipulating objects, we can
learn the most likely grasps or functions, for a given class of
objects, the affordances [17] associated to a certain object.
(ii) When observing one’s own gestures, the hand appear-
ance can be estimated and directly related with the corre-
sponding motor commands. Hence, proprioceptive (motor)
and visual information can be used to determine the Visuo-
Motor Map in a natural way.

F. Structure of the paper

The structure of the paper is as follows. In Section II, we
present the models used throughout this work, namely the
arm/hand kinematics, the hand appearance model and the
camera/eye geometry. Section III is devoted to the def-
inition and estimation of the Visuo-Motor Map and how
to learn this map from observations. In Section IV, we



describe how the system performs the View-Point Trans-
formation. Section V describes our Bayesian framework
for program-level (gesture) imitation/recognition. Recog-
nition is done in the motor space (mirror neurons) and
relies on prior knowledge provided by context or object af-
fordances (canonical neurons). In Section VI we present
results obtained using our approach, both for action and
program-level imitation. In Section VII, we draw some
conclusions and establish directions for future work.

II. MODELING

Our robotic system consisting of an anthropomorphic
arm/hand, equipped with a single camera. While the robot
arm/hand is simulated, we use a real camera and performed
extensive experiments with real data. This section presents
the models used for the camera and robot body.

A. Body/arm kinematics

The anthropomorphic arm is modeled as an articulated
link system. Fig. 4 shows the four arm links: L; - forearm,
Lo - upper arm, L3 - shoulder width and L, - body height.
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Fig. 4. Kinematic model of the human arm.

It is further assumed that the relative sizes of these links
are known, e.g. from biometric measurements: L; = Lo =
1, L3 = 1.25 and Ly = 2.5.

B. Camera/eye geometry

An image is a 2D projection of the 3D world whereby
depth information is lost. In our case, we will retrieve depth
information from a single image using knowledge about the
body links and a simplified, orthographic camera model.

We use the scaled orthographic projection model that
assumes that the image is obtained by projecting all points
along parallel lines plus a scale factor. Interestingly, such
approximation may have some biological grounding taking
into account the scale-compensation effect in human vision
[25] whereby we normalize the sizes of known objects irre-
spective to their distances to the eye.

Let M = [X Y Z]T denote a 3D point expressed in
the camera coordinate frame. Then, with an orthographic
camera, M is projected onto m = [u v]T, according to:
PM

m =

Les][E] e

where s is a scale factor that can be estimated placing
a segment with size L fronto-parallel to the camera and
measuring the image size (s =1/L).

For simplification, we assume that the camera axis is
positioned in the imitator’s right shoulder with the optical
axis pointing forward horizontally. With this specification
of the camera pose, there is no need for an additional arm-
eye coordinate transformation in Equation (1).

C. Hand

Figure 5 shows the large variance of an human hand’s
appearance, observed under a variety of view-points. It
consists of a complex, multi-link system, prone to generate
numerous self-occlusions, which hardens feature extraction
or model-based tracking. To avoid this problem and to en-
hance robustness, we rely on global features, obtained by
projecting the hand images onto a lower dimension sub-
space, using Principal Component Analysis (PCA).

Fig. 5. The hand appearance changes dramatically as a function of
its configuration and view-point.

While the system performs arm/hand movements, self-
observation is a powerful means to gather a vast set of vi-
sual stimuli, corresponding to many distinct hand postures,
view-points and appearances. The hand is segmented us-
ing colour information and size/orientation are normalized.
These images form the database for the PCA. The number
of components used for recognition purposes is 5 and 15 for
the visuo-motor transformations.

It is not possible to use the same idea to create a set
of images showing the arm in a sufficiently large variety
of configurations and view-points. Therefore, we have to
model the arm geometrically and explicitly handle view-
point changes.

In the motor space, the hand configuration can be ex-
pressed by its several degrees of freedom. Figure 6 shows
the kinematic model used. This simplified structure has
15 degrees of freedom, 3 for each finger. Finger abduction
could be added to increase the model quality.

To perform experiments with motor and visual informa-
tion, a data-glove system [26], capable of recording 22 val-
ues of the hand configuration, was used. It consists of a
glove with strain gauges to measure joint angles. In a real



Fig. 6. Kinematic model of an human hand

(robotic or living) system, motor features would correspond
to the hand/arm pose/motion proprioceptive information.

III. Visuo-MOTOR MAP

The Visuo-Motor Map (VMM) defines a correspondence
between perception and action. In our approach, the VMM
is structured in two different ways, depending on whether
the arm or the hand are being considered. Since the arm
has a relatively simple kinematic model, we assume that the
arm joints can be tracked and the VMM will thus relate the
(ego-)image coordinates of those joints to the actual joint
angles. Instead, the hand has a rather complex kinematic
structure and tracking fingertips can be quite difficult. To
overcome this problem, we rely on appearance based meth-
ods to visually represent the hand, in its various possible
configurations. The VMM can be interpreted in terms of
forward/inverse kinematics for the case of robot-eye sys-
tem:

VMM : FV «—— FM

where FV and FM denote some visual (motor) features.
The VMM can be used to predict the image resulting
from moving one’s arm (or hand) to a certain posture (FM
to FY), or to infer the motor command used to achieve the
observed posture (FV to F). This last capability will be
used to make recognition in motor space and to imitate.

A. The arm Visuo-Motor Map

In the context of imitation, the VMM can be used with
different levels of ambiguity /completeness. In some cases,
one wants to replicate exactly someone else’s arm gestures,
considering all the joint angles. In some other cases, how-
ever, we may want to imitate arm poses only, while the
position of the elbow or the rest of the arm configuration is
irrelevant. For the arm case, and to encompass these pos-
sibilities, we have considered two cases: the full arm VMM
and the free-elbow VMM.

A.1 Full-Arm VMM

We denote the elbow and wrist image coordinates by me
and my,, the forearm and upper arm image lengths by [y
and [o and the various joint angles by 6;—1. 4. We have:

[917 e )64] - fl(me7mW)117127L17L27S)
where Fi(.) is the VMM, Ly/L; represents the (known)
length of the upper/forearm and s is the camera scale fac-
tor.

The computation of this function can be done in suc-
cessive steps, where the angles of the shoulder joint are

determined first and used in a later stage to simplify the
calculation of the elbow joint’s angles.

The inputs to the VMM consist of features extracted
from the image points of the shoulder, elbow and wrist;
the outputs are the angular positions of every joint. The
shoulder pan and elevation angles, 6; and 6, can be readily
obtained from image data as:

01 = fi(me) = arctan(ve/ue)
0o = fa(la, Lo, s) = arccos(la/sL2)

After extracting the shoulder angles, the process is re-
peated for the elbow. Before computing this second set of
joint angles, the image features undergo a set of transfor-
mations so as to compensate the rotation of the shoulder:

] momn(| i ]

where ¢ is not used in the remaining computations and
R.y(61,02) denotes a rotation of ¢y around the z axis fol-
lowed by a rotation of f; around the y axis.

With the transformed coordinates of the wrist we can
finally extract the remaining joint angles, 63 and 64:

05 = f3(ml,) = arctan(v,/ul,)
0, = fi(ml,,L1,s) = arccos(l]/sL1)

The approach just described allows the system to deter-
mine the joint angles corresponding to a certain image con-
figuration of the arm. In the next section, we will address
the case where the elbow joint is allowed to vary freely.

A.2 Free-Elbow VMM

The free-elbow VMM is used to generate a given hand
position, while the elbow is left free to reach different con-
figurations. The input features consist of the hand image
coordinates and the shoulder-hand distance.

[917927 94] = f2(mW7rdZW7 Llu L27 S)

The elbow joint, 3, is set to a comfortable position.
This is done in an iterative process aiming at maintaining
the joint positions as far as possible from their limit values.
The optimal elbow angle position, 05 is chosen to maximize:

. limi
05 = arg rréz:x zl:(@l — glimits)2

while the other angles can be calculated from the arm fea-
tures. Again, the estimation process can be done sequen-
tially, each joint being used to estimate the next one:

T2 r,,2 r .2
04 = arcsin (—xh+yh+zh—1)
2
by — /b2 2 2
0 = 2arctan ! T + 7
a1 + ¢
by — /b2 2 2
0 = 2arctan<2 2 ta3— G
ao + C2



where the following constants have been used:

ap = sinfs+1

by = cosbscosly

a1 = —'yn

az = cosfycosbscosls —sinby(1+ sinby)
by = —cosfysinbs

ca = "z

A.3 Learning the Arm VMM

In the previous sections we have derived the expres-
sions of the full-arm and free-elbow VMMs. We could
thus use these expressions directly to predict the visual
consequences of some arm motion. Instead, we adopted
a learning approach whereby the system learns the VMM
by performing arm movements and observing the effect on
the image plane. In this way, the system will not depend
explicitly on the knowledge of some design parameters and
can adapt automatically to any changes or deviations from
such theoretical model.

From the derivation of the analytical expressions, we see
that the VMM can be computed sequentially: estimating
the first angle, which is then used in the computation of the
following angle and so forth. This fact allows the system to
learn the VMM as a sequence of smaller learning problems.

This approach strongly resembles the development of
sensory-motor coordination in newborns and young infants,
which starts by simple motions that get more and more
elaborate, as infants acquire a better control over motor
coordination.

In all cases, we use a Multi-Layer Perceptron (MLP) to
learn the VMM, i.e. to approximate functions f;—1 4. Ta-
ble T presents the learning error and illustrates the good
performance of our approach for estimating the VMM. The
value 3.6 corresponds to the threshold for the training al-
gorithm. The order of magnitude is 100x bigger in the last
2 degrees of freedom because they depend on the previous
ones in a non-linear way.

0, 02 O3 | 64
3.6e72 | 3.6e72 [ 3.6 | 3.6
TABLE 1

MEAN SQUARED ERROR (IN DEG.2) FOR THE EACH JOINT IN THE
full-arm VMM

Ideas about development can be further exploited in this
construction. Starting from simpler cases, de-coupling sev-
eral degrees of freedom, interleaving perception with action
learning cycles are developmental “techniques” found in bi-
ological systems.

B. Hand Visuo-Motor Map

During self-observation, the system can generate a large
variety of hand visual stimuli, for the construction of the
VMM. The learning consists in estimating a subspace,

spanning hand images taken from a variety of view-points.
The hand VMM relates the hand image (normalized for
orientation and scale) directly to the finger joint angles.

As the transformation from the visual space to the motor
space is quite complex, it was learned with a Multi-Layer
Perceptron, for each joint angle. For each network, i, the
input consists of a 15-dimensional vector FV, which are
the PCA components of the imaged hand appearance. The
output consists of a single unit, coding the corresponding
joint angle, Ffw . There are 5 neurons in the hidden layer.

We assume that FY is captured across many differ-
ent view-points. This is possible to generate during self-
observation since a huge variety of hand configurations can
be easily displayed. Otherwise, a view-point transforma-
tion is needed to pre-align the visual data [27].

The VMM can lead to impossible (temporal) trajecto-
ries, as errors in input frames can cause discontinuities in
the motor space. To overcome this problem, continuity is
imposed in the motor data through a first-order dynamic
filter.

Each neural network was trained with momentum and
adaptive back-propagation with the data pre-processed to
have zero mean and unitary variance. It converges to an
error of 0.01 in less than 1000 epochs.

Figure 7 shows trajectories (solid-line) for a joint angle
of the little finger when performing several precision grips.
It is noticeable that, even inside each grasp class, the vari-

- [ Z‘D 4‘0 6‘0 S‘D 1(‘]0 1‘20 1/‘10 12‘50 1{"30 200
Fig. 7. Several trials of precision grip experiment. Solid line: original
motor information. Dotted Line: reconstructed motor information
using the Visual-Motor Map (VMM)

ability is very large. This is due to the differences between
the grasped objects, and illustrates how the observed fea-
tures depend not only on the “grasp” type but also on
the manipulated object (see Section V-B for discussion).
The dashed-line in the figure shows that the trajectory re-
constructed through the neural-VMM is remarkably close
to the "true” values. The accuracy of the VMM may de-
grade when more complex gestures are included, but then
the type objects in the scene or overall context will play a
more important role.

A final aspect worth mentioning is that the hand-VMM
can also be learned during an initial phase, when the sys-
tem (natural or artificial) performs hand gestures and ob-
serves the (visual) consequences of such gestures. Both
proprioceptive (motor) and visual data are present and the



association can be established. An additional comment is
that self-observation may allow the system to search and
tune the most interesting visuo-motor features, such that
a more compact representation could be used.

IV. VIEW-POINT TRANSFORMATION

A certain arm gesture can be seen from very different per-
spectives, depending on whether the gesture is performed
by the robot (self-observation) or by the demonstrator.

One can thus consider two distinct images: the ego-
centric image, I., during self-observation and the allo-
centric image, I,, when looking at other robots/people.
The View-Point Transformation (VPT) has to align the
allo-centric image of the demonstrator’s arm, with the ego-
centric image, as if the system were observing its own arm.

In our work, we model the arm as a kinematic chain,
whose image projection greatly depends on the observa-
tion view-point. For that reason, we explicitly develop a
procedure to determine the VPT [27] for the arm.

Instead, the hand is treated in a different manner. To
avoid the difficulty of fitting a kinematic model of the hand
to the images, we chose to use the hands image appearance,
directly as representations. Since different view-points and
the resultant appearance changes are already taken into
account, there is no need to explicitly define a VPT for
the hand. Hence, from this point on, we only consider the
VPT for the arm configuration.

The precise structure of the VPT is related to the ul-
timate meaning of imitation. Experiments in psychology
show that imitation tasks can be ambiguous. In some cases,
humans imitate only partially the gestures of a demonstra-
tor (e.g. replicating the hand pose but having a different
arm configuration, as in sign language), use a different arm
or execute gestures with distinct absolute orientations [28].
In some other cases, the goal consists in mimicking someone
else’s gestures as completely as possible, as when perform-
ing dancing or dismounting a complex mechanical part.

According to the structure of the chosen VPT, a class of
imitation behaviors can be generated. We consider two dif-
ferent cases. In the first case - 3D VPT - a complete three-
dimensional imitation is intended. In the second case - 2D
VPT - the goal consists in achieving coherence only in the
image, even if the arm pose might be different. Depending
on the desired level of coherence (2D/3D) the correspond-
ing (2D/3D) VPT allows the robot to transform the image
of an observed gesture to an equivalent image as if the ges-
ture were executed by the robot itself.

A. 8D View-Point Transformation

In this approach we explicitly reconstruct the posture of
the observed arm in 3D and use fixed points (shoulders and
hip) to determine the rigid transformation that aligns the
allo-centric and ego-centric image features: We then have:

I. =P T Rec(l,) = VPT(I,)

where P is a orthographic projection matrix, 7" is a 3D rigid
transformation and Rec(I,) stands for the 3D reconstruc-
tion of the arm posture from allo-centric image features.

Posture reconstruction and the computation of T" are pre-
sented in the following sections.

A.1 Posture reconstruction

To reconstruct the 3D posture of the observed arm, we
will follow the approach in [29], based on the orthographic
camera and articulated arm models presented in Section 2.

Let M, and M5 be the 3D endpoints of an arm-link whose
image projections are denoted by mj; and mgy. Under
orthography, the X,Y coordinates are readily computed
from image coordinates (simple scale). The depth varia-
tion, dZ = Z1 — Z5, can be determined as:

2
dZ = +/ L% — 5_2
S

where L = ||[M; — Ms|| and I = |jm1 — mg||. If the camera
scale factor s is not known beforehand, one can use a differ-
ent value provided that the following constraint, involving
the relative sizes of the arm links, is met:

L.
s> max o~ 1= 1.4 (3)

? %

Fig. 8 illustrates results of the reconstruction procedure.
It shows an image of an arm gesture and the corresponding
3D reconstruction, achieved with a single view and consid-
ering that s and the arm links proportions were known.

Fig. 8. Left: Reconstructed arm posture. Right: Original view.

With this method there is an ambiguity in the sign of
dZ. We overcome this problem by restricting the working
volume of the arm. In the future, we will further address
this problem and several approaches may be used: (i) opti-
mization techniques to fit the arm kinematic model to the
image; (ii) explore occlusions to determine which link is in
the foreground; or (iii) use kinematics constraints to prune
possible arm configurations.

A.2 Rigid Transformation (T')

A 3D rigid transformation is defined by three angles for
the rotation and a translation vector. Since the arm joints
are moving, they cannot be used as reference points. In-
stead, we consider the three points in Fig. 4: left and right
shoulders, (Ms, M, ) and hip, Mp,,, with image projec-
tions denoted by (mys, Mys, Mpip). The transformation T'
is determined to translate and rotate these points until they
coincide with those of the system’s own body.

The translational component must place the demonstra-
tors right shoulder at the image origin (which coincide’s



with the system’s right shoulder) and can be defined di-
rectly in image coordinates:

_ _a
t—_mrs

After translating the image features directly, the remain-
ing steps consist in determining the rotation angles to align
the shoulder line and the shoulder-hip contour. The angles
of rotation along the z,y and x axes, denoted by ¢, 6 and
1 are given by:

¢ = arctan (vs/ugs)
6 = arccos (Unip/La)
¥ = arccos (Vnip/L3)

Hence, by performing the image translation first and the
3D rotation described in this section, we complete the pro-
cess of aligning the image projections of the shoulders and
hip to the ego-centric image coordinates.

B. 2D View-Point Transformation

The 2D VPT is used when one is not interested in imitat-
ing the depth variations of a certain movement, alleviating
the need for a full 3D transformation. It can also be seen
as a simplification of the 3D VPT if one assumes that the
observed arm describes a fronto-parallel movement with
respect to the camera.

The 2D VPT performs an image translation to align the
shoulder of the demonstrator (“ms) and that of the sys-
tem (at the image origin, by definition). The VPT can be
written as:

VPT(“m) = [ -0 } [“m —m] (4)

0 1

and is applied to the image projection of the demonstrator’s
hand or elbow, “mj, or “me.

Notice that when the arm used to imitate is the same as
the demonstrator, the imitated movement is a mirror image
of the original. If we use a identity matrix in Equation (4)
then the movement will be correct. At the image level
both the 2D and 3D VPTs have the same result but the
3D posture of the arm is different in the two cases.

From the biological standpoint, the 2D VPT is more
plausible than the 3D version. In [28] several imitation
behaviors are presented which are not always faithful to
the demonstrated gesture: sometimes, people do imitate
with the contra-lateral hand, depth is irrelevant in some
other cases, movements can be reflections of the original
ones, etc. The 3D VPT might be more useful in industrial
facilities where gestures should be exactly reproduced.

V. A BAYESIAN MODEL FOR PROGRAM-LEVEL
(GESTURE) IMITATION

We model gesture recognition in a Bayesian framework,
which allows to naturally combine a priori information and
knowledge derived from observations (likelihood). The role
played by canonical and mirror neurons will be interpreted
within this setting.

Let us assume that we want to recognize (or imitate) a
set of gestures, G;, using a set of observed features, F. For
the time being, these features can either be represented in
the motor space (as mirror neurons seem to do) or in the
visual space (directly extracted from images). Let us also
define a set of contexts, Cf, related to the scene. Contexts
represent the situations that influence the actions or ges-
tures that may occur. Typical examples would be a tennis
or golf match (where only some sets of movements are nor-
mally executed) or the presence of specific objects in the
scene (which tend to be grasped in specific ways).

The prior information is modeled as a probability den-
sity function, p(G;|C%), describing the probability of each
gesture, given a certain context. The observation model is
captured in the likelihood function, p(F|G;, Cy), describing
the probability of observing a set of (motor or visual) fea-
tures, conditioned to an instance of the pair gesture and
context. The posterior density can be directly obtained
through Bayesian inference:

p(F|Gi, Cr)p(Gi| C)
p(F|Cy)

p(Gi|F, Cr)

GMAP = arg r%axp(Gi|F7 Clc) (5)

where p(F'|Cy) is just a scaling factor that will not influence
the classification.

The M AP estimate, Gpasap, is the gesture that maxi-
mizes the posterior density in Equation (5). In order to
introduce some temporal filtering, features of several im-
ages can be considered:

p(G2|F7 Ck‘) = p(Giththl) '-'7Ft7N7Ck:))

where F}; are the features corresponding to the image at
time instant j. The posterior probability distribution can
be estimated using a naive approach, assuming indepen-
dence between the observations at different time instants.
The justification for this assumption is that, recognition
does not necessarily require the accurate modeling of the
density functions. Therefore, the the temporal relationship
between the different frames can be ignored. We then have:

Fy_;|Gi, Cy)p(Gi|Cy)
p(Fi—;|C)

N
p(Gi|Ft, Ft—l, . Ft—N, Ck) — H p(
7=0

In the future, we plan to use the information related to
the temporal dependency of the different frames to further
improve our results and — above all — to allows us to do
time predictions.

A. Estimating the prior and the likelihood function

The prior density function, p(G;|Cy) is blended together
with evidence from the observations, to shape the final de-
cision. This density can be estimated by the relative fre-
quency of gestures in the training set for each context.

Computing the likelihood function, p(F|G;, Cy), is more
elaborated. As it may correspond to a complex distribu-
tion, it will be modeled by a Gaussian mixture, which is



fitted to data points. In what follows we will describe the
process of fitting a mixture model to a density, p(x):

K
p(z) = Z?Tj p(x]7),

where p(x|j) ~ N(u;,0;) is a Gaussian distribution. For a
proper probability density function, we need to ensure that
Zfil T = 1, iy > 0.

The Expectation-Maximization (EM) algorithm is used
to estimate the parameters p;, o;, m; that best fit the data.
The main problem with this solution is the necessity of
knowing in advance the number of kernels, K. In [30], [31]
there is the option of modifying the number of Gaussian
kernels used to best fit the data. The number of kernels
can be increased during the learning process, based on a
new measure designated as the total kurtosis, K:

K2 /O; <m)4 PUI) oy — 3

9j Ty

The kurtosis measures how far a distribution is from a
Gaussian and it is zero for a Gaussian function. If the
kurtosis is not close to zero for a given kernel, it means that
the data are not Gaussian and this kernel must be split. On
the other hand, the number of kernels can sometimes be
reduced (merged) in order to reduce the model complexity.
A “closeness” metric between two kernels, can be defined
as follows:

[L.,ex, p2(@i) [1,,ex, P1()
Hwiexl p1(;) Hwiexz pa(xi)

d(p17p2) =

where X; are the data points used for the estimation of
pi().

Two different kernels can be merged if the distance be-
tween them is sufficiently small. At the end of this process,
we have an estimate of the likelihood function directly from
the data, without imposing a particular structure for the
underlying distribution. An important point worth men-
tioning is that this method can cope with clusters that with
very irregular shapes and that it automatically adapts to
the shape of such clusters..

B. The role of canonical and mirror neurons

The role of canonical neurons in the overall classifica-
tion system lies essentially in providing the affordances or
prior knowledge. In the specific case of grasp actions, af-
fordances are related to graspable objects in the scene and,
the various possible ways in which they can be grasped.
Canonical neurons are also somewhat involved in the com-
putation of the likelihood function, since it depends both
on the gesture and context/object, thus implicitly defining
another level of association between these.

Mirror neurons are also represented in our methodology
by the fact that the recognition takes place in the motor
space as opposed to visual terms. Also, in the same way
as mirror neurons respond to specific grasp actions, each

recognized gesture constitutes a symbolic motor represen-
tation to be used later on, when eliciting more complex
composed gestures. Noteworthily, the ability of recogniz-
ing someone’s gestures is facilitated by the fact that the
system knows how to perform those same gestures.

VI. EXPERIMENTS

We have implemented the modules discussed in the pre-
vious sections to build a system able to imitate and recog-
nize gestures.

The following sections present results of hand segmenta-
tion, action-level and program-level(gesture) imitation.

A. Automatic body segmentation

For visual segmentation of hand/body we have three
steps: background, person and hand segmentation.

The background is estimated, during an initial period
of 100 frames, by considering the intensity of each pixel,
as a gaussian random variable. After this process, we can
estimate the probability of each pixel being part of the
background. People are detected, after background sub-
traction, by template matching. The template consists of
two rectangular areas shown in Figure 9. By scaling the
template we can estimate the size of the person and the
scale parameter, s, of the camera model. In addition, if we
need to detect if the person is rotated with respect to the
camera, we can scale the template independently in each
direction, and estimate this rotation by the ratio between
the head height and shoulder width. To detect the hand
position we use skin color segmentation, based on the RGB
color scheme normalized with the blue channel. The clas-
sification of skin pixels was implemented by a feed-forward
neural network with three neurons in the hidden layer. The
training data were obtained by selecting skin color and the
background in sample images. After color classification a
magjority morphological operator is used. The hand is iden-
tified as the largest blob found and its position is estimated
over time with a Kalman filter. Figure 9 shows the result
of this process.

Fig. 9. Vision system. From left to right: original image, background
segmentation with human (the frame corresponds to the template
matching) and hand detection.



B. Action-Level Imitation

The first step for action-level imitation consists in train-
ing the system to learn the Visuo-Motor Map, as described
in Section III. This is accomplished by a neural network
that estimates the VMM while the system performs a large
number of arm movements.

The imitation process consists of the following steps: (i)
the system observes the demonstrator’s arm movements;
(ii) the VPT is used to transform these image coordinates
to the ego-image, as proposed in Section IV and (iii) the
VMM generates the adequate joint angle references to ex-
ecute the same arm movements.

Figure 10 shows experimental results obtained with the
3D-VPT with the learned VMM (full-arm). To assess the
quality of the results, we overlaid the images of the exe-
cuted arm gestures (wire frame) on those of the demon-
strator. The quality of imitation is very good.

Fig. 10. The quality of the results can be assessed by the coincidence
of the demonstrator gestures and the result of imitation.

Figure 11 shows results obtained in real-time (about 5
Hz) when using the 2D VPT and the free-elbow VMM. The
goal of imitating the hand gesture is well achieved but, as
expected, there are differences in the configuration of the
elbow, particularly at more extreme positions.

Figure 12 shows a result of hand imitation using the
hand-VMM. This imitation was done after detecting the
hand, projecting the image in the PCA base and then us-
ing as motor commands the result of the VMM. Visually,
is possible to see the quality of reconstruction. For quan-
titative quality evaluation we see the results in Section III.

These tests show that encouraging results can be ob-
tained with our framework, in realistic conditions.

C. Program-Level (gesture) Imitation

To collect experimental data, we asked several subjects
to perform three grasps on different objects [32]. The ex-
periment begins with the subject sitting in a chair with his
hand on the table. Finally, the subject is told to grasp the
object that is in front of him.

Fig. 11. Family of solutions with different elbow angles, while the
hand position is faithfully imitated.

Fig. 12. Action-Level Hand Imitation

The experiments include two types of grasp: power grasp
and precision grip. Power grasp is defined when all the
hand fingers and palm are in contact with the object. In-
stead, in precision grip, only the fingertips touch the object.

We considered three different objects: a small sphere, a
large sphere and a box. The small sphere is sufficiently
small so that only precision grip is allowed. The big sphere
allows only power grasps. The box is ambiguous because
it allows all possible grasps with different orientations.

Every experiment was repeated several times under vary-
ing conditions. The subject and the camera go around the
table to cover a large variation of view-points. To record
the sequences we use a stereo-pair. In total, we record the
experiments from 6 different azimuths (12 if we consider
the stereo-pair). In order to record the motor information
we used a data-glove [26]. Altogether the data-set contains
sixty grasp sequences with three objects, two grasps with
six different azimuths.

Figure 13 shows sample images of the data set acquired
according to process just described. Notice the multiplicity
of grasps, hand appearance and view-points.

Table II shows the obtained classification rates. It al-
lows us to compare the benefits of using motor representa-
tions for recognition as opposed to visual information only.
The results shown correspond to the use of the ambigu-
ous objects only, when the recognition is more challenging.
We varied the number of view-points included in both the
training and test sets, so as to assess the degree of view



Fig. 13. Data set illustrating some of the used grasp types: power
(left) and precision (right). Altogether the tests were conducted using
60 sequences, from which a total of about 900 images were processed.

invariance attained by the different methods.

In the first experiment, both the training and test sets
correspond to one single view-point. Training was based
on 16 grasp sequences, while test was done in 8 (different)
sequences. The achieved classification rate was 100%. The
number of visual features (number of PC'A components)
was also tuned and the value of 5 provided good results.
The number of modes (gaussians in the mixture) were typ-
ically from 5 to 7.

The second experiment shows that this classifier is not
able to generalizes to other view-points / camera positions.
We used the same training-set as in Fxp.I, but the test-set
is formed with image sequences acquired with 4 different
camera positions. In this case, the classification rate is
worse than random (30%).

In the third experiment, we added view-point variabil-
ity in the training set. When sequences from all camera
positions are included in the training-set, the classification
rate in the test-set drops to 80%. While this is a more
acceptable value, it is nevertheless a significant drop from
the desired 100%. This result shows that the view-point
variation introduces such challenging modifications in the
hand appearance that classification errors occur.

The final experiment corresponds to the main approach
proposed in this paper. The system learns a visuo-motor
map during an initial period of self-observation. Then, the
VMM is used to transform the (segmented) hand images
to motor information, where classification is conducted. A
very high degree of classification was achieved (97 %). In-
terestingly, the number of modes need for the learning is
between 1-2 in this case as opposed to 5-7, when recog-
nition takes place in the visual domain. This also shows
that mapping visual data to motor representations, helps
clustering the data, as it is now view-point invariant.

Notice that view-point invariance is achieved when the
training set only contains sequences from one single view-
poinlgese experiments show that motor representations de-
scribe the hand better. As only visual information is avail-
able during recognition, the process greatly depends on the
VMDM. The results also validate that our approach to esti-
mate the VMM allows recognition to be performed. For the
case of only one camera position the quality obtained was

Exp. I Exp. IT | Exp. IIT | Exp. IV
(visual) | (visual) (visual) (motor)
Training
# Sequences 16 24 64 24
View-points 1 1 4 1
Classif. Rate 100% 100% 97% 98%
# Features 5 5 5 15
# Modes 5-7 5-7 5-7 1-2
Test
# Sequences 8 96 32 96
View-points 1 4 4 4
Classif. Rate 100% 30% 80% 97%
TABLE II

GESTURE RECOGNITION RESULTS. THE USE OF MOTOR
REPRESENTATIONS GREATLY IMPROVES THE RECOGNITION RATE AND
VIEW-POINT INVARIANCE (SEE TEXT FOR DETAILS).

very good, if the number of visual features used were 15.
As the grasp recognition is done in motor space, our system
has the capability of doing program-level imitation.

VII. CONCLUSIONS AND FUTURE WORK

We presented a general approach for action and program
level learning by imitation. Action-level (mimic) imitation
involved the View-Point Transformation and the Visuo-
Motor Map, which led to encouraging results. These mod-
ules were developed with several properties in mind. Prop-
erties of 3D or 2D imitation for the case of the arm-VPT.
View-point invariant properties for the case of the hand-
VMM, or rigid vs free elbow for the case of the arm-VMM.

For program-level (gesture) imitation an additional mod-
ule was necessary. The interpretation of observed gestures
allows to produce similar gestures/goals, at a later stage.
This is similar to the Mirror System, where a classification
of the observed action’s goal is done. Our approach for
action level and gesture imitation, draws inspiration from
the role that canonical and mirror neurons seem to play
for grasp recognition or imitation in primates. We adopt
a Bayesian formulation, where all these observations are
taken into account. We describe how to estimate the prior
density and likelihood functions directly from the data.

Our approach dealt explicitly with the sensing problems
involved in imitation. Although we relied exclusively in a
single camera good results were possible due to:

1. the use of motor information for gesture recognition,
inspired by studies on mirror neurons;

2. the use of context (e.g. object affordances) to focus the
attention of the recognition system and reduce ambiguities,
suggested by canonical neurons;

3. the use of iconic image representations for the hand, as
opposed to fitting kinematic models to the video sequence;
4. temporal integration of information;

5. use of self-observation information in order to under-
stand others;

In our opinion, the results obtained are an encourag-
ing step in the endeavor of understanding the biological
grounding of imitation and, at the same time, develop the



principles to build more performing and robust machines,
able to cope with complex tasks and to interact with hu-
mans. The results obtained illustrate the benefits of de-
signing intelligent machines inspired on biological findings
and hypotheses, while at the same time, offering robotics
technologies as a testbed for such hypotheses.

In the future work, we will test this methodology on an
anthropomorphic robot, composed of an arm, articulated
hand and binocular head (Figure 14). The robot has been
built and the first tests are currently ongoing. In addition,
we plan to address more complex tasks where the temporal
chaining of elementary gestures must be taken into account.
In addition, the goal of the action is expected to become
more and more important as the actions themselves become
richer.

i B

Fig. 14. Baltazar Robot Platform that will be used in future exper-
iments
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