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Instituto de Sistemas e Robótica
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Abstract— We present an approach for grasp recognition
and imitation based on models for canonical and mirror
neurons, recently found in neurophysiological experiments.
Canonical Neurons seem to code object affordances, e.g.
possible ways of grasping. Mirror Neurons code goal directed
tasks, like precision or power grasping of an object. The
major feature of this neuron population is the use of motor
information in the recognition step.

We propose a Bayesian approach that encompasses all
these aspects. Recognition is performed in the motor space
and we solve the problem of getting motor information while
observing another person. Our approach avoids the complex-
ity of other approaches based on the 3D reconstruction of
the hand from images, considering that the hand is a multi-
articulated object subject to frequent occlusions.

The results obtained illustrate the benefits of designing ar-
tificial machines inspired on biological findings and hypothe-
ses, while at the same time, offering robotics technologies as
a testbed for such hypotheses.

I. INTRODUCTION

Despite being often ignored, an artificial system can
retrieve a large amount of knowledge, simply by looking
at other individuals, humans or robots working in the same
area. In fact, similarly to human infants, a robot could
learn significant information if it were able to recognize
and imitate what the others are doing.

The long-term goal of our work is two-fold. On one
hand, we want to develop methodologies whereby a sys-
tem can learn how to perform complex tasks through
imitation. On the other hand, our approach relies on recent
findings in neuroscience and developmental psychology,
hoping to contribute to a better understanding of the
fundamental problem of how humans imitate each other
and how they recognize and understand the observed
behavior and actions.

This work is motivated by the recent discovery of
mirror and canonical neurons [1], [2] in the F5 area of
the macaque’s brain. These neurons discharge during the
execution of hand/mouth movements. In this paper we will
focus on hand gestures, often referred to as grasp actions
or grasps.

In spite of their localization in a pre-motor area of
the brain, mirror neurons fire not only when the animal
performs a specific goal-oriented grasping task, but also

when observing that same action being performed by an-
other individual. Canonical neurons [3] have the intriguing
characteristic of responding when objects, that afford a
specific type of grasp, are present in the scene, even if the
grasp action is not performed or observed.

By establishing a direct connection between gestures
performed by a subject and similar gestures performed
by others, mirror neurons may be intimately connected to
the ability to imitate found in some animal species [2],
establishing an implicit level of communication between
individuals.

The discovery of mirror neurons raises the fundamental
question of understanding the role of motor information
for “visual” gesture recognition, and how can it be fa-
cilitated by the fact that we know how to perform those
gestures. This is clearly distinct from most approaches
for gesture recognition, where only visual information is
involved. In our paper, instead, recognition is performed
in the motor space and we show that it really simplifies
the problem by affording a larger degree of invariance to
viewpoint modifications.

Visuo-motor representations can be acquired during
extensive periods of self-observation, as well as from
observing other individuals. The subject can learn how
to perform various gestures and what effect they produce
on the visual space and on world objects. Observation can
be useful in different ways:
(i) By manipulating objects, one can learn which grasp

types are successful for a certain class of objects.
Also, if we observe other people manipulating ob-
jects, we can learn the most likely grasps or func-
tions, for a given class of objects. We will refer to
these grasp types or functions as a particular type
of affordances [4] associated to a certain object.
For recognizing gestures, affordances provide prior
information as to which gestures are more likely,
when acting upon a certain object class. This is a
possible interpretation of the role played by canonical
neurons in the overall process of gesture recognition
and imitation.

(ii) When observing one’s own gestures, the hand appear-
ance can be estimated and directly related with the
corresponding motor commands. We will refer to this

José Santos-Victor
IROS Workshop on Robot Programming by Demonstration, Las Vegas, SA, Oct. 31st, 2003.



association as the Visuo-Motor Map (VMM). Once
the VMM has been estimated, one can transform
views of observed gestures to motor descriptions that
can either be used for recognition or to elicit the
corresponding (imitated) gesture.

Grasp actions are usually partitioned into the transport
and grasp phases [5]. During the transport phase, the hand
moves towards the target and the grasp phase corresponds
to the final segment, immediately before and after touch.
It has been shown that the transport phase can change
significantly, according to the particular grasp type that is
performed in the end of the movement. However, it seems
that this information is not used by humans for gesture
recognition. Mathematically, this can be interpreted as
poor (uncertain) predictive capabilities, as it is only in
the final (grasp) part of the gesture that recognition takes
place.

Similarly, in our work, recognition will only be based
on the grasp phase of the gesture. Figure 1 illustrates the
hand appearance during the approach phase, together with
the final phase of two broad classes of grasps that will be
used in this work: precision grip and power grasp.

Fig. 1. Hand appearance during the approach phase (left), power grasp
(center) and precision grip (right).

Gesture recognition has been addressed in the computer
vision community in many different ways [6]- [11]. The
difficulty of hand tracking and recognition arises from the
fact that the hand is a deformable, articulated object, that
may display many different appearances depending on its
configuration, viewpoint or illumination. In addition, there
are frequent occlusions between hand parts (e.g. fingers).

Modeling the hand as an articulated object in the 3D
space implies extracting and tracking finger-tips, fingers,
and other notable points in the image. This is in general
quite difficult, depending on the taken viewpoints and
image acquisition conditions. To overcome this difficulty,
we exploit more iconic representations for the hand shape,
that are commonly believed to be used by humans when
recognizing (known) gestures. Also, our approach will

make use of motor information, since it is invariant to
the viewpoint, as suggested by the existence of mirror
neurons.

The recognition of other individuals and imitation are
always intertwined and imitation mechanisms can allow
better recognition. Several works suggest imitation as a
very important paradigm for programming robots [12].
The imitation mechanism can be better understood if
some computational models are developed that emulate
the brain. An important work [13] modeled several com-
ponents of the brain, presumably involved in imitation.
This work was extended for the case of grasp recognition
(mirror neurons) [14] and an implementation with video
data was used. Although good results were obtained, the
visual features used are very difficult to extract, which
makes it difficult to use in real world conditions. For the
case of learning motor skills, [15] presents a biologically
motivated architecture. This systems works with real data
and allows learning of repetitive patterns and precise
movements for grasp and reaching. Several other works
used biological principles in order to achieve imitation
[16] - [19]. Instead of mapping different brain regions and
modeling the way they function, our goal in this work is
to investigate the mathematical properties of some mech-
anisms, hypothetically developed through evolution, that
allow to recognize and imitate others. Most of the cited
works, although recognizing the complexity, simplified the
perception either using markers or reducing the possible
postures of the demonstrator.

Imitation can be done with simple mechanisms. If the
motor system is activated in order to reduce some error
function derived from the visual perception, imitation
emerges. This homeostatic behavior was used in [20], [21]
in order to imitate hand trajectories.

A discussion between passive and active imitation is
present in [22]. The first case relies on a perceive-
recognize-reproduce sequence, while the second uses a
map from perception to a set of behaviors. In the case
of gesture imitation the traditional way would be to have
a visual gesture classifier and then generate a similar prob-
lem. Active imitation needs a direct link from perception
to action. In the cited work this two modules are mixed
allowing imitation of known and unknown actions. In
our work, for the case of visual features, some action
generation would be necessary after the classification
(passive imitation), for the case of motor features the
action generation is temporally mixed with recognition
(active imitation). We show, in this work, that the use of
motor features allows better and more robust classification
and imitation. Although for low-level imitation the map
allows for imitation of unknown sequences, for grasp
actions only known gestures can be imitated.

As a final comment, we would like to remark that, to
consider gestures performed by the entire arm, we would



need to include some sort of visual transformation to deal
with the problem of viewpoint shape variance [23]. For
hand movements, our approach is invariant to large variety
of view points. Also, during self-observation, the system
can generate a large variety of hand visual stimuli that will
be used for the construction of visuo-motor maps. The
viewpoint transformation for arm gestures is specifically
addressed in [24].

In the next section, we will detail the main structure of
our approach. In Section III we describe our Bayesian
framework for grasp actions recognition and imitation,
that involves models of canonical and mirror neurons.
We detail how to learn the prior densities and likelihood
function from data and how to estimate a visuo-motor
map (VMM), using data acquired during self-observation.
As suggested by studies of mirror neurons, recognition
takes place in motor variables rather than visual. Finally
we present some experimental results in Section IV and
discuss the main conclusions in Section V.

II. APPROACH

Gesture recognition is, in general, a complex task [6]-
[11]. Traditional approaches imply performing full 3D
reconstruction of the hand, followed by a pose classifier.
To make the 3D reconstruction, it is necessary to track
the fingertips, while handling the multiple occlusions
generated by the complex hand motion. State-of-the-art
algorithms rely on good initial estimates and require
sophisticated kinematic models of the hand.

The approach we propose here differs from other works
in several ways: (i) use of object affordances in the
recognition process (canonical neurons); (ii) recognition
is performed in the motor space (mirror neurons) and (iii)
use of global descriptors of the hand appearance.

Many objects are grasped in very precise ways, since
they allow the object to be used for some specific purpose.
A pen is usually grasped in a way that affords writing
and a glass is hold in such a way that we can use it
to drink. Hence, if we recognize an object that is being
manipulated, it immediately tells us some information
about the most likely grasping possibilities (expectations)
and hand appearance, simplifying the task of gesture
recognition.

This link between objects and their affordances is
possibly played in the macacque’s brain by the canonical
neurons of the area F5. If two objects can be grasped
in the same way, the same neurons will fire when either
object is presented. The affordances of the object have
thus an attention property because the number of possible
(or likely) events are reduced, thus overcoming possible
ambiguities. This will be the first module of our overall
system architecture.

We have seen in the previous section that, in spite of
their localization in a motor area of the brain, mirror

neurons are also active during pure visual (recognition)
tasks. When observing someone doing a familiar gesture,
the same neurons, that would fire when performing this
same gesture, become active. It has also been shown that
lesions in the motor part of the brain do affect recognition
capabilities.

This observation suggests that the motor system respon-
sible for triggering an action is also involved when rec-
ognizing that same action, leading to the question of how
to use motor information for recognition. Since during
the recognition, only visual information is available, the
solution lies in making a transformation from visual to the
motor space, where recognition will eventually be done.

The common approach to recognition involves compar-
ing acquired visual features to data from a training set.
Instead, we will first use a Visual-Motor Map to convert
such measurements to the motor space and then perform
the comparison/recognition in terms of motor variables.

The advantage of doing this inference in the motor
space is two-fold. Firstly, while visual features can be
ambiguous, we show that converting these features to
the motor space may reduce ambiguity. Secondly, as
the motor information is directly exploited during this
process, imitation can be done immediately, as all the
information/signals are readily available.

To use motor representations for grasp recognition, we
need to define Visuo-Motor maps (VMMs) to transform
visual data onto motor information. The VMM can be
learnt during an initial phase of self-observation, while
the robot performs different gestures and learns its visual
effects.

The question that remains is that of choosing what vi-
sual features to use. As we will focus on the classification
and imitation of coarse gestures (power grasp and preci-
sion grip), we will rely on global appearance-based image
methods. Together with the prior information provided by
the canonical neurons, appearance based methods offer
an easier, fast and more robust representation than point
tracking methods.

In the next section we will present a Bayesian approach
for a gesture recognition that includes models of the
canonical and mirror neurons, using visual appearance
methods. The approach leads to excellent classification
rates and classification occurs in the motor space.

III. A BAYESIAN MODEL FOR CANONICAL AND

MIRROR NEURONS

Gesture recognition can be modeled in a Bayesian
framework, which allows to naturally combine prior in-
formation and knowledge derived from observations (like-
lihood). The role played by canonical and mirror neurons
will be interpreted within this setting.

Let us assume that we want to recognize (or imitate) a
set of gestures, Gi, using a set of observed features, F .



For the time being, these features can either be represented
in the motor space (as mirror neurons seem to do) or in
the visual space (directly extracted from images). Let us
also define a set of objects, Ok, present in the scene, that
represents the goal of a certain grasp action.

The prior information is modeled as a probability
density function, p(Gi|Ok), describing the probability
of each gesture given a certain object. The observation
model is captured in the likelihood function, p(F |Gi, Ok),
describing the probability of observing a set of (motor
or visual) features, conditioned to an instance of the pair
gesture and object. The posterior density can be directly
obtained through Bayesian inference:

p(Gi|F,Ok) = p(F |Gi, Ok)p(Gi|Ok)/p(F |Ok),

ĜMAP = arg max
Gi

p(Gi|F,Ok) (1)

where p(F |Ok) is just a scaling factor that will not
influence the classification.

The MAP estimate, GMAP , is the gesture that max-
imizes the posterior density in Equation (1). In order
to introduce some temporal filtering, features of several
images can be considered:

p(Gi|F,Ok) = p(Gi|Ft, Ft−1, ..., Ft−N , Ok),

where Fj are the features corresponding to the image at
time instant j. The posterior probability distribution can
be estimated using a naive approach, assuming indepen-
dence between the observations at different time instants.
The justification for this assumption is that, recognition
does not necessarily require the accurate modeling of the
density functions. We then have:

p(Gi|Ft, ..., Ft−N , Ok) =
N∏

j=0

p(Ft−j |Gi, Ok)p(Gi|Ok)
p(Ft−j |Ok)

A. The role of canonical neurons

The role of canonical neurons in the overall classifica-
tion system lies essentially in providing the affordances,
modeled as the prior density function, p(Gi|Ok) that,
together with evidence from the observations, will shape
the final decision. This density can be estimated by the
relative frequency of gestures in the training set.

Canonical neurons are also somewhat involved in the
computation of the likelihood function, since it depends
both on the gesture and object, thus implicitly defining
another level of association between these. Computing the
likelihood function, p(F |Gi, Ok), is more elaborated and
is described in detail in Section III-B.

B. Estimating the likelihood function

As the likelihood function may correspond to a complex
distribution, it will be modeled it by a Gaussian mixture,

which is fitted to data points. In what follows we will
describe the process of fitting a mixture model to a density,
p(x):

p(x) =
K∑

j=1

πj p(x|j),

where p(x|j) ∼ N(µj , σj), is a Gaussian distribution. For
a proper probability density function, we need to ensure
that

∑K
i=1 πi = 1, πi ≥ 0.

The Expectation-Maximization (EM) algorithm can be
used to estimate the parameters µi, σi, πi that best fit the
data. The main problem with this solution is the necessity
of knowing in advance the number of kernels, K. In
[25], [26] there is the option of modifying the number
of Gaussian kernels used to best fit the data. The number
of kernels can be increased during the learning process,
based on a new measure designated as the total kurtosis,
K:

K �
=

∫ ∞

−∞

(
x − µj

σj

)4
p(j|x)

πj
p(x)dx − 3

The kurtosis measures how far a distribution is from
a Gaussian and it is zero for a Gaussian function. If the
kurtosis is not close to zero for a given kernel, it means
that the data are not Gaussian and this kernel is split. On
the other hand, the number of kernels can sometimes be
reduced (merged) in order to reduce the model complexity.
A “closeness” metric between two kernels, can be defined
as follows:

d(p1, p2) =

∏
xi∈X1

p2(xi)
∏

xi∈X2
p1(xi)∏

xi∈X1
p1(xi)

∏
xi∈X2

p2(xi)

where Xi stands for the data points used for the estimation
of pi(x).

Two different kernels can be merged if the distance
between them is sufficiently small. At the end of this
process, we have an estimate of the likelihood function
directly from the data, without imposing a particular
structure for the underlying distribution. An important
point worth mentioning is that this method can cope
with clusters that with very irregular shapes and that it
automatically adapts to the shape of such clusters..

C. Mirror Neurons

The classification done by our system as several prop-
erties similar to the mirror neurons. In this section we
will see how to account to some of the observations
regarding this neurons into our Bayesian framework. We
must first consider a Visuo-Motor Map that transforms
observed visual data, to the motor representations that will
eventually drive the recognition process.



1) Visual versus motor features: An image contains a
large amount of highly redundant information. This allows
for the use of methods whereby the image information
is compacted in lower dimensional spaces, thus boosting
computational performance. Our visual features consist of
projections of the original image onto linear subspaces,
using Principal Components Analysis (PCA). As a result,
our images can be compressed to a 15 dimension coeffi-
cient vector.

Rather than representing the hand as a kinematic model
built from tracked fingers and finger tips, we code directly
the image as templates projected in the low-dimensional
subspace. This method has the advantage of being robust
and fast.

In a real (robotic or living) system, motor features
would correspond to proprioceptive information about the
hand/arm pose/motion. In our experiments [27], this is
obtained through the use of a data-glove that records 23
joint angles of someone’s hand performing gestures.

2) Visuo-Motor Map: As referred previously, the Visuo-
Motor Map must transform the features defined in the
previous section, from the visual space to the motor space.

V MM : FV → FM

As the structure of the transformation is quite complex,
it was learned with a Multi-Layer Perceptron, for each
joint angle. For each network, i, the input consists of a 15-
dimensional vector FV , which are the PCA components
of the imaged hand appearance. The output consists of
a single unit, coding the corresponding joint angle, FM

i .
There are 5 neurons in the hidden layer.

We assume that FV is captured across many different
view points. This is possible to generate during self-
observation since a huge variety of hand configurations
can be easily displayed. Otherwise, some kind of view-
point transformation is needed to pre-transform the visual
data [24].

The VMM can lead to impossible (temporal) trajecto-
ries, as errors in input frames can cause discontinuities in
the motor space. To overcome this problem, continuity is
imposed in the motor data through a first-order dynamic
filter.

Each network was trained with momentum and adaptive
back-propagation with the data pre-processed to have zero
mean and unitary variance. It converges to an error of 0.01
in less than 1000 epochs.

Figure 2 shows trajectories (solid-line) for a joint angle
of the little finger when performing several precision grips.

It is noticeable that, even inside each grasp class, the
variability is very large. This is due to the differences be-
tween the grasped objects, and illustrates how the observed
features depend not only on the ”grasp” type but also on
the manipulated object (see Section III-A for discussion).
The dashed-line in the figure shows that the trajectory
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Fig. 2. A sequence of several trials of a precision grip experiment.
Solid line: original motor information. Dotted Line: reconstructed motor
information using the Visual-Motor Map (VMM)

reconstructed through the neural-VMM is in a very close
agreement with the ”true” values.

A final aspect worth mentioning is that the VMM can
be learned very naturally during an initial phase, when a
system (natural or artificial) performs hand/arm gestures
and observes the (visual) consequences of such gestures.
During self-observation, both proprioceptive (motor) and
visual data are present and the association can be es-
tablished. As an additional aspect, self-observation would
allow the system to search and tune the most interesting
visuo-motor features such that a more compact represen-
tation could be used.

IV. EXPERIMENTAL RESULTS

For the results presented here, we use a data set pre-
pared at the Lira Lab, University of Genova, [27], with
a specially designed experimental setup. Several subjects
were asked to perform different types of grasp on different
objects. The experiment begins with the subject sitting in
a chair, with the hand on the table. Then, the subject is
told to grasp the object that is in front of him.

The experiments include two types of grasp: power
grasp and precision grip. Power grasp is defined when all
the hand fingers and palm are in contact with the object.
Instead, in precision grip, only the fingertips touch the
object.

We considered three different objects: a small sphere,
a large sphere and a box. The small sphere is sufficiently
small so that only precision grip is allowed. The big sphere
allows only power grasps. The box is ambiguous because
it allows all possible grasps with different orientations.

Every experiment was repeated several times under
varying conditions. The subject and the camera go around
the table to cover a large variation of viewpoints. To
record the sequences we use a stereo-pair. In total, we
record the experiments from 6 different azimuths (12 if
we consider the stereo-pair). In order to record the motor
information, a data-glove [28], capable of recording 23
values of the hand configuration, is used. We used the
first 15 values that correspond to all the joint angles (3



for each finger). Finger’s abduction and palm and wrist
flexion were also available but they were not used in the
recognition. Altogether the data-set contains sixty grasp
sequences with three objects, two grasps with six different
azimuths.

Figure 3 shows sample images of the data set acquired
according to process just described. Notice the multiplicity
of grasps and view points. Some external observations of
an arm are impossible to have when looking to one’s arm.
For the case of an hand this is not the case because moving
the arm allows observing the hand from all viewpoints.
Because of this some arm images that might appear
impossible have realistic hand observations.

Fig. 3. Data set illustrating some of the used grasp types: power
(left) and precision (right). Altogether the tests were conducted using
60 sequences, from which a total of about 900 images were processed.

Every video sequence is automatically processed in
order to segment the hand. First, a color-based clustering
method, in the Y-Cr-Cb space, was applied to extract skin-
colored pixels. The bounding box is determined based on
the vertical/horizontal projections of the detected skin re-
gion. Finally, the hand is resized for a constant scale before
applying the PCA. This approach yields uniformly scaled
hand image regions. Figure 4 presents some segmentation
results.

Fig. 4. Segmentation results of scale-normalized hand regions automat-
ically detected from colour clustering.

Table I shows the obtained classification rates. It allows
us to compare the benefits of using motor representations
for recognition as opposed to visual information only. The
results shown correspond to the use of the ambiguous
objects only, when the recognition is more challenging.
We varied the number of viewpoints included in both the
training and test sets, so as to assess the degree of view
invariance attained by the different methods.

In the first experiment, both the training and test sets
correspond to one single view point. Training was based
on 16 grasp sequences, while test was done in 8 (different)
sequences. The achieved classification rate was 100%. The
number of visual features (number of PCA components)
was also tuned and the value of 5 provided good results.
The number of modes (gaussians in the mixture) were
typically from 5 to 7.

The second experiment shows that this classifier is not
able to generalizes to other view points / camera positions.
We used the same training-set as in Exp.I , but the test-set
is formed with image sequences acquired with 4 different
camera positions. In this case, the classification rate is
worse than random (30%).

In the third experiment, we added view point variability
in the training set. When sequences from all camera
positions are included in the training-set, the classification
rate in the test-set drops to 80%. While this is a more
acceptable value, it is nevertheless a significant drop from
the desired 100%. This result shows that the view point
variation introduces such challenging modifications in the
hand appearance that classification errors occur.

The final experiment corresponds to the main approach
proposed in this paper. The system learns a visuo-motor
map during an initial period of self-observation. Then, the
VMM is used to transform the (segmented) hand images
to motor information, where classification is conducted.
A very high degree of classification was achieved (97 %).
Interestingly, the number of modes need for the learning
is between 1-2 in this case as opposed to 5-7, when
recognition takes place in the visual domain. This also
shows that mapping visual data to motor representations,
helps clustering the data, as it is now view-point invariant.

Notice that view-point invariance is achieved when the
training set only contains sequences from one single view
point.

TABLE I

GRASP RECOGNITION RESULTS. NOTICE THE GAIN OBTAINED IN THE

CLASSIFICATION RATE AND VIEWPOINT INVARIANCE DUE TO THE

USE IF MOTOR FEATURES.

Exp. I Exp. II Exp. III Exp. IV
(visual) (visual) (visual) (motor)

Training
# Sequences 16 24 64 24
View Points 1 1 4 1
Classif. Rate 100% 100% 97% 98%
# Features 5 5 5 15
# Modes 5-7 5-7 5-7 1-2

Test

# Sequences 8 96 32 96
View Points 1 4 4 4
Classif. Rate 100% 30% 80% 97%



These experiments show that motor representations
describe the hand better, for gesture recognition, due
to the inherent viewpoint independence. As only visual
information is available during recognition, the process
greatly depends on the VMM. The results also validate
our approach to estimate the VMM. For the case of only
one camera position the quality obtained was very good,
with 15 visual features.

The use of motor features for the recognition, has
the additional advantage of making imitation a straight
forward process, as all the reasoning is performed in
motor terms. Figure 5 shows a hand imitating an observed
gesture.

Fig. 5. Reconstruction results of our model hand, obtained with the
VMM

V. CONCLUSIONS

Neurophysiology can provide many useful ideas for
engineers to build more efficient artificial systems. On the
other hand, designing artificial systems, grounded on such
biological principles, is a valuable means of validating
hypotheses or theories in biology.

In this work we propose a framework for gesture
recognition based on a model for canonical and mirror
neurons, that seem to play a fundamental role for grasp
recognition or imitation in primates.

Canonical neurons provide prior information in terms of
object affordances which narrows the attention span of the
system, since very unlikely gestures or hand appearances
can be discarded immediately . The fact that, despite being
located in a motor area of the brain, mirror neurons are
active during both the execution and recognition of an
action, suggest that recognition takes place in the motor
space rather than on the visual space.

We propose a Bayesian formulation where all these
observations are taken into account. We describe how to
estimate the prior density and likelihood functions directly
from the data. A Visuo-Motor Map is used to transform
image data to the motor space, and is learnt during an
initial period of self-observation. The use of the VMM
is good for the classification and, as an extra advantage,
gives the possibility of doing gesture imitation directly.

Although hand posture recognition is in general quite
difficult, grasp classification benefits from using extra
information. Temporal integration and object-related cues
are very useful for recognition. Occlusions and ambiguous
positions of the hand can also be solved with temporal
information. The observation of a given object “conveys”
information about the possible and the most probable
grasp types for that object class. Expectations of the hand
appearance can also be created.

The results show that it is possible to achieve 100%
recognition rates based on this approach. Notably, we
avoid using complex schemes for detecting and tracking
fine details of the hand on a video sequence. Rather, we
rely on the global hand appearance for this purpose.

In our opinion, the results obtained are an encourag-
ing step in the endeavor of understanding the biological
grounding of imitation and, at the same time, develop the
principles to build more performing and robust machines,
able to cope with complex tasks and to interact with
humans.
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