
Robotics and Autonomous Systems 39 (2002) 87–106

Development of auditory-evoked reflexes:
Visuo-acoustic cues integration in a binocular head

Lorenzo Natale∗, Giorgio Metta, Giulio Sandini
Laboratory for Integrated Advanced Robotics (LIRA), Department of Communication, Computer and Systems Science,

University of Genoa, Via Opera Pia 13, 16145 Genoa, Italy

Received 7 May 2001; received in revised form 22 January 2002
Communicated by F.C.A. Groen

Abstract

The goal of this paper is to propose a biologically plausible, functional model of the acquisition of visual, acoustic and
multi-modal motor responses. Within this context visual and acoustic spatial cues are considered, fused in a coherent percept
and eventually employed to control the orienting behavior of a humanoid robot. The rationale of the approach lies in the
possibility to test and empirically prove the correctness of the model through the embodiment and the real interaction of the
system with the environment.

The model takes into account the fact that (i) acoustic and visual cues are represented with respect to different coordinate
frames (head-centric versus retino-centric) and consequently they need to be “aligned” in order to be properly fused, (ii) a
teaching signal has to be generated in order to inform the system that the motor performance is not adequate to perform the task
(i.e. orient toward the stimulus) and thus adaptation is required, and (iii) vision plays a major role in driving the acquisition
of the appropriate map of space but other sources of feedback might be employed as well. © 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Many species including humans rely on acoustic
cues to behave appropriately in their environment. If
only sound interpretation were the concern, perhaps
a single ear would be sufficient. But for a very pecu-
liar task two ears are indeed necessary: that is sound
localization.

Although in some cases—such as vision and
touch—the brain might recover spatial information
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from a simple mapping of the sensory epithelium
(stereoscopic vision is an exception), sound localiza-
tion is based on a precise computational process. One
fascinating characteristic of this process is the ability
to detect time differences as small as few microsec-
onds in spite of the duration of neural spikes, which
is in the order of milliseconds.

The binaural information relevant to sound localiza-
tion is usually considered to be the interaural phase dif-
ference (IPD) and the interaural level difference (ILD),
due respectively to the different position of the ears
and to the shape of the head [1]. The IPD is mainly
related to the horizontal position of a sound source
(azimuth) while the ILD can be useful to perform es-
timation of both elevation and azimuth (see Fig. 1). In
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Fig. 1. Head-centric reference frame (a), lateral (b) and top view (c). The position of a sound source at a distancer from the listener can
be represented by means of the angles of azimuth and elevation (being, respectively,θ andφ).

particular it has been shown that, given a constant az-
imuthal angle, the ILD varies with continuity with the
elevation of the sound source [27]. However, the IPD
and the ILD by themselves are not sufficient to explain
the ability of some species (including humans) to per-
form accurate sound localization. Directional filtering
of the part of the external ear known as the pinna, in
fact, produces spectral changes that can be used to es-
timate the position of a sound source even in absence
of interaural differences [3]. Given the monaural na-
ture of these cues, the exact mechanism behind this
ability is not yet known. However, several computa-
tion theories have been proposed [10,29,36].

In the animal world, the barn owl is the one species
with the finest sound localization apparatus [19]. This
is because in nocturnal hunting the owl relies mostly
on sound to locate the prey. Further, because hunting
involves flying, in order to plan a successful attack
trajectory the barn owl has to locate its prey in both
the horizontal and vertical direction with respect to it-
self. The localization system of the barn owl is unique
in many aspects. Due to the peculiar disparity of the
arrangement of the feathers covering the left and the
right ear, the ILD at high frequencies is highly depen-
dent on the position of the sound source on the verti-
cal plane. The IPD and the ILD at low frequency are
used to estimate the horizontal position [22].

Each of the above localization cues is inherently am-
biguous if considered on a single or narrow frequency

range (this can be easily understood considering that
periodic signals produce periodic values of the IPD;
the same is still true for the ILD due to less obvious
geometric properties of head and ears). In any case,
natural sounds are usually broadband and, because the
IPD and the ILD change as a function of frequency,
it has been suggested that an integration procedure is
possible [5]. As long as pure tones are considered,
it is still possible to speak in terms of the IPD; con-
versely in the case of non-periodic broadband signals,
the interaural time difference (ITD1 ) is more often
considered as a global measure directly related to the
angular position of the sound source in the horizontal
plane.

Some studies such as those of Knudsen and
co-workers [4,20] also investigated where in the brain
and what signals might be at the basis of the plastic-
ity of the spatial representation that is found in the
optic tectum (or superior collicolus (SC) in mam-
mals) at the end of the sound localization pathway.
They reared some barn owls with distorting prisms
(shifting the visual world horizontally) and observed
which sort of modifications appeared in the response
of some collicolar neurons. They noted that although
the hearing system by itself had been left untouched,
the localization of sound sources in the dark suffered

1 ITD is the delay between the instants an auditory signal reaches
the left and the right ear.
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roughly the same error of the visual system. What has
happened? The acoustic representation was shifted ac-
cording to the distortion produced by the prisms. On
the basis of these results they concluded that one sen-
sory modality (i.e. vision) dictated how the other (i.e.
sound) had to develop in order to generate a coherent
percept.2

This multi-sensory map has to be subsequently
linked to a motor map, which drives the orienting be-
havior of the animal. The SC is a possible site where
this link takes place [25]. SC neurons were studied
extensively and are thought to mediate through effer-
ent pathways the orienting behavior by moving the
eyes, head, and body. Plastic changes in the visual,
acoustic, and motor maps are thought to depend on
visual feedback, but other explanations are possible
involving either sound or motor cues alone. In some
experiments in fact Knudsen and Mogdans have been
able to show that plastic changes might be observed
even in the absence of vision [21].

Engineers have proposed several solutions to the
problem of sound localization and, sometimes, ar-
tificial systems were realized [6,7,9]. All these ap-
proaches used a head mockup made of plastic together
with rubber pinnae in order to extract the estimation
of the position of the sound source mainly from the
knowledge of the Head Related Transfer Function
(HRTF). In robotics active sensors such as ultrasounds
provided usually some sort of acoustic sensation.
They were used particularly for navigating through an
unknown environment and building sometimes occu-
pancy maps for later use (see, for example, [24,35]).
Though there have been examples of use of acoustic
cues for navigation [13], the recent appearance of
humanoid robots, and their consequent interaction in
a human populated environment, increased the rele-
vance of sound localization [1]. In some cases there
have already been attempts to implement the local-
ization procedure by means of connectionist models
[15,31,32]. In the case of Rucci et al. [32] only a single
camera was employed and localization was limited to
the horizontal direction. In spite of this, they modeled
accurately the processing pathways by means of arti-
ficial neural networks and showed as this mapping led
to an appropriate visuo-acoustic integration. The work

2 Plasticity in the acoustic representation has been observed also
in humans [11].

of Rosen et al. [31] also proposes an accurate model
of the neurons in the ascending pathway to the optic
tectum. Irie [15] took a different approach designing
a neural network to learn the relationship between
a middle-level representation of the binaural signals
(i.e. a filtered version of different portions of the sig-
nals) and the position of the sound source in space.
In this case vision was used as the feedback signal
for a self-supervised backpropagation training of the
neural net.

The goal of this paper is to propose a biolog-
ically plausible, functional model for the acquisi-
tion (i.e. learning) of appropriate visual, acoustic
and motor responses for a humanoid robot inter-
acting in a real environment. We investigated how
acoustic and visual feedback might be used to au-
tonomously develop a representation for directing
the gaze toward visuo-acoustic sources. In particu-
lar, we investigated how a neural-like representation
can be assembled autonomously; we can talk of
self-supervised learning. This approach is similar
to the one proposed by Kuperstein [23] although
implemented in a real rather than simulated robot.
With respect to the implementation proposed by
Irie [15], our goal was to learn the sensori-motor
coordination rules, and not the localization per se.
Another example where sound and vision were in-
tegrated can be found in [12,28]. In this latter case
though, the emphasis was more on the localization
coupled to source separation rather than the learning
aspects we focused on. Finally, in all these exam-
ples, only the azimuthal component was considered
and in some cases more than two microphones were
employed. The core aspect of the paper is on show-
ing that (i) two microphones are enough and (ii)
visual and auditory cues can be combined in such
a way that autonomous on-line learning is possible.
In the next section (i.e. Section 2) a more detailed
description of the robot head and the background
information is provided. Section 3 provides the ra-
tionale behind the experiments and the assumptions
made. Section 4 develops the complete control and
learning model in details with emphasis on the
acoustic aspects, which are the major contribution
of this paper. Experiments showing the performance
of the system are presented in Section 5. Finally,
Section 6 draws the conclusions and discusses the
results.
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2. Experimental setup

The experimental setup consists of a 5 degree-of-
freedom robot head. It can independently pan the eyes,
which are mounted on a common tilt. Further, the head
can pan and tilt at the level of the neck. As for the
visual sensing the robot acquires and processes im-
ages in a space-variant format also known as log-polar
[34]. The robot’s eyes observe the world through a
high-resolutionfovea and a lower resolution periph-
ery. Fig. 2 shows an example of the actual images
used for the experiments (b), together with a picture
of the setup (a). Note the “tennis-like” balls covering
the cameras and the asymmetric ear lobes on top of

Fig. 2. (a) The experimental setup—front view on the left and
back view on the right. The microphones and the ear lobes are
mounted on the topmost part of the head. The cameras are within
the two “blue” tennis-like balls. (b) An example of log-polar image
as acquired by the robot visual system (left) and its reconstructed
Cartesian counterpart (right). The resolution is 64 eccentricities by
128 angles. Note the different resolution in the fovea with respect
to that in the periphery.

the head. In this respect, the microphones and the ear
lobes were mounted, for practical reasons, on the com-
mon tilt of the eyes, i.e. the only feasible mechanical
arrangement was on the link connecting the cameras.
The robot mount possesses also avestibular sense pro-
vided by a three-axis gyro mounted on the neck. The
role of inertial sensors within the robot controller was
studied elsewhere; a detailed description can be found,
for example, in Panerai et al. [30]. Each joint has also
a “proprioceptive” sense provided by high-resolution
optical encoders.

As far as the signal processing is concerned, the ITD
and the ILD were computed for sound localization,
while color segmentation was used to visually locate
interesting objects in the environment. Color segmen-
tation in this case proved to be reliable and robust as
a source of positional information. The particular al-
gorithm implemented here is also flexible enough, i.e.
it is not devoted to segment but only to a particular
color. In other words the robot utilizes a cueing mech-
anism (e.g. motion detection) to initially spot the pos-
sibly interesting objects in the environment and only
in a second stage identifies the “principal” color of the
object for tracking, saccading, etc. [26].

The robot is controlled by a set of Pentium-based
machines running Windows NT and connected
through a 100 Mbps Ethernet. The whole software
architecture is based on DCOM, an object-oriented
standard that among other functionalities allows remo-
te-calling methods through a network. Visual process-
ing is carried out by one machine, sound processing
by another, and motor control by a third one. A fourth
computer is dedicated simply to data logging, display,
and control of the status of the system.

In summary, the platform employed for the experi-
ments consisted of the following:

• a 5 degree-of-freedom robot head mount as de-
scribed above;

• two cameras and a software simulation of the
space-variant (log-polar) geometry;

• a couple of electret condenser microphones Sony
ECM-T140 and plastic ear lobes;

• four Pentium-based machines (ranging from 400
to 750 MHz), two frame grabbers, a motion con-
trol board (Motion Engineering), and a Sound-
Blaster PCI 128 for 44.1 kHz and 16 bits for sound
digitalization.
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3. Model and assumptions

As discussed above in Section 1 the principal cues
for sound localization are the ITD and the ILD. They
are not the only cues employed by humans but they
are the most easily extracted by processing the sound
waves impinging on the ears or microphones, and
we assumed they possess an almost one-to-one rela-
tionship with azimuth and elevation. In the artificial
implementation they are estimated by computing the
normalized cross-correlation and the ratio of the av-
erage power, respectively. In the barn owl the same
processing is thought to be carried out through two
different pathways starting from the cochlea and con-
verging in the central nucleus of the inferior collicu-
lus (ICc). Neurons of the ICc are directly connected
to the external nucleus of the inferior colliculus
(ICx) where, finally, an auditory map of space can
be found. At least in the barn owl, ICx is thought
to be the first stage where plasticity could be noted
[5]. Moreover, ICx neurons showed to be sensitive
to the delay between the sound signals: the final re-
sponse of the neurons in this region seems to reflect
a cross-correlation-like processing, albeit with a high
immunity to noise and echoes [17]. It has been argued
that the generalized cross-correlation [18] by com-
pensating for noise and echoes can provide a response
similar to that of the neural pathway of the barn owl
[33].

Given the ITD and the ILD there are still two
separate problems to be solved: (i) how to integrate
visual and acoustic spatial information; (ii) how to
convert the spatial percept in an appropriate motor
command.

The former is known to be solved in the barn owl by
aligning the representations of the visual and acous-
tic space. This kind of plasticity is driven by visual
information but changes were also observed in the
absence of vision. Although this is relatively simple
for the barn owl, which has a limited ocular mobility,
the same is more complicated for primates including
humans, which possess an efficient oculo-motor ap-
paratus. In this case, the two maps have to be kept
aligned by taking into account the position of the eyes
with respect to the head. The retino-centric represen-
tation of the visual space might shift with respect to
the head-centric representation of the acoustic space.
This mechanism has to include proprioceptive or

efference-copied information to dynamically realign
the maps.

Our robot implements such an aligning mecha-
nism, although a simplified version of it, i.e. for a
given eye–head orientation and only for the azimuthal
component. A bimodal map integrates vision with
sound and generates the motor commands required
to gaze toward a sound, a visual or multi-modal
stimulus. In this case, the movement of the head is
subsequently accomplished by driving the system
in order to roughly face the target by rotating the
neck. Adaptation in this case is driven by vision.
Even if vision might drive learning appropriately, we
decided also to explore whether sound alone could
generate an appropriate spatial map (of course of
sound alone in this case). A second experiment by
using the ITD and the ILD as teaching signals is thus
reported.

The second problem, i.e. generating the proper mo-
tor commands, is thought to be solved by the SC in
mammals, which is interconnected with other brain
structures, including premotor and motor nuclei in the
brainstem and spinal cord. In our model, maps con-
vert their inputs into motor commands, and the motor
response is tuned on the basis of a measure of the cur-
rent performance of the system. This measure might
be either visual or acoustic.

It is worth noting that when we use the word
“localization” referring to our artificial system, we
never mean the actual computation of either the po-
sition of the target in Cartesian coordinates or the
identification of the direction of the source with
respect to the robot. What we mean is always the
estimation of some quantities that can be used to
move the robot in a meaningful way with respect to
the environment, i.e. gazing toward the sound. It is
the “pragmatic” of the perception what we are inter-
ested in, in other words, which sort of signals might
represent perception with respect to the task to be
solved.

To be more precise the experiments will show the
following:

• The robot can autonomously learn the mapping be-
tween the retinal position of the target and its acous-
tic counterpart (e.g. the ITD).

• The robot can convert the “fused” percept into a
motor command, which can be used to generate
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saccades toward an acoustic, a visual, or a visuo-
acoustic target.

• The robot can employ only acoustic cues to learn
a map of the sound space, which allows moving
the neck toward a noisy target without any visual
contribution.

To recapitulate the assumptions made: the sys-
tem knows that the ITD and ILD are in an almost
one-to-one relationship with azimuth and elevation,
respectively. This is not a limiting assumption because
it has been shown [8] that it is indeed possible to
easily learn this relationship (for example, in the form
of a gain matrix). The same is true if we consider the
retinal error instead of the ITD and ILD pair. Given
the gain matrices the proposed model can learn all
the inverse maps needed to align visual and acoustic
cues, and to generate a proper orienting eye–head
movement as detailed in the next sections; no further
a priori knowledge is required.

4. Computation of ITD and ILD

4.1. Interaural time difference

In the previous sections, we mentioned that the ITD
is the main cue for estimating the horizontal com-
ponent of the position of a sound source. The sound
waves impinging on the microphones are delayed one
with respect to the other by an amount, which is a func-
tion of both the azimuthal angle of the source and the
relative distance between the microphones or baseline
d (see Fig. 1(c)).

By applying this definition of the ITD, we can work
out the relationship between the geometry of the head,
the microphones, and the sound source:

ITD � �R

c
, (1)

where�R is the difference of space traveled by the
sound wave to get from the source to the left and
right microphone, andc is the speed of sound. From
simple geometry (see also Fig. 1(c)), considering a
target positioned atθ degrees on the horizontal plane
and at a distancer from the center of the baselined,

we can expand Eq. (1) into

ITD = dright − dleft

c

= 1

c




√
r2 + d2

4
+ dr sinθ

−
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r2 + d2

4
− dr sinθ


 , (2)

which, under the assumptionr � d, becomes

ITD ≈ d

c
sinθ. (3)

This function is monotonic and continuous within the
interval ±π /2. The maximum and minimum values
(±d/c) are obtained in the limit, whenθ is ±π /2. If the
computation is carried out in the discrete, then the ITD
is measured as number of samplesk. The relationship
between the two previous quantities ITD andk is

ITD = k
1

fs
, k = fs

d sinθk

c
= N sinθk, (4)

wherefs is the sampling frequency. The ITD samples,
in this case, are not uniformly distributed. They are
denser nearθ = 0 and sparser as we approach the
limits. Given Eqs. (3) and (4) the distance between
two consecutive values of ITD is

�θk = 1√
N2 − k2

, k ∈ [−N + 1, N − 1], (5)

which is obtained by deriving the inverse of Eq. (4),
and where

N =
⌊

d

c
· fs

⌋
. (6)

For example, in our implementation the distance be-
tween the microphones is about 16 cm, that leads,
along with a sampling rate of 44,100 Hz, toN = 21
and a maximum accuracy of about 2.5◦.

The actual computation of the ITD is carried out
by using the generalized cross-correlation method
as described by Knapp and Carter [18]; as shown
in Fig. 3, the signals are initially filtered and subse-
quently the ITD is estimated as the maximum of their
cross-correlation function. The goal of the initial filter-
ing is that of preshaping the resulting cross-correlation
in order to improve the peak detection procedure.
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Fig. 3. Estimation of the ITD, general schema. The maximum of
the cross-correlation functionR(t) is taken as a measure of the
delay between the signals; the waveforms are prefiltered in order
to enhance both accuracy and reliability (see text for discussion).

Though the optimal filtering would require some a
priori knowledge about source and noise spectra, we
decided to avoid any noise estimation procedure and
made no assumptions about the spectral characteris-
tics of the sound sources to be located.

If Gyryl is the cross-spectrum of the filtered signals
(yr andyl ), then their cross-correlation can be obtained
in the frequency-domain by inversely Fourier trans-
forming:

Rrl(τ ) =
∫ +∞

−∞
Gyryl (f ) ej2πτf df. (7)

The effect of the filters is to weight the cross-spectrum
of the original signals, so that

Gyryl = Hr(f )H ∗
l (f )Gxrxl (f ). (8)

Fig. 4. Comparison between standard cross-correlation (left) and Smoothed Coherence Transform (right) for a broadband sound source.
The computation was carried out over 2048-sample long windows out of about six seconds of data. Results were averaged and standard
deviation computed.

Knapp and Carter described several methods to
chooseHr and Hl ; we implemented and compared
the Phase Transform (PHAT) and the Smoothed Co-
herence Transform (SCOT), which, at least under the
above mentioned assumptions, provided comparable
results. According to the SCOTHr andHl are chosen
as follows:

Hr(f )H ∗
l (f ) = 1√

Gxrxr (f )Gxlxl (f )
. (9)

Substituting Eqs. (8) and (9) in Eq. (7),

Rrl(τ ) =
∫ +∞

−∞
1√

Gxrxr (f )Gxlxl (f )

·Gxrxl (f ) ej2πτf df. (10)

Eq. (10) can be interpreted as a prewhitening of the
signals before computing the cross-correlation. Since
the side effect of the filter is to emphasize those parts
of the spectrum characterized by a low signal-to-noise
ratio, their contribution was suppressed by employing
a heuristically estimated thresholding procedure (i.e.
where spectra were below a certain threshold, no com-
putation was performed).

The SCOT provided a good response to both broad-
band signals (e.g. white noise) and relatively narrow-
band signals (e.g. voice). Figs. 4 and 5 show examples
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Fig. 5. Comparison between standard cross-correlation (left) and Smoothed Coherence Transform (right) for a narrowband source (voice).
The computation was carried out over 2048-sample long windows out of about six seconds of data. Results were averaged and standard
deviation computed.

of cross-correlation functions obtained by using real
voice and noise data. It is worth noting that the SCOT
(right column) provides a much sharper peak, which
of course enhances the peak detection, and thus the
ITD estimation in both cases.

4.2. Interaural level difference

With only two microphones—unlike the human
ears—there are no cues that can be exploited to es-
timate the elevation of the sound source (Fig. 1(b)).
As mentioned in the introduction we had to break
the symmetrical configuration and to further employ
artificial ear lobes meant to convoy the sound com-
ing from a particular direction. This, along with the
different orientation of the microphones (respectively
upward and downward for the right and left ear),
made the ILD to directly depend—at least at the fre-
quencies above a certain value—on the elevation of
the target source. The ILD is hence computed as a
function of the average power of the signals:

ILD = 10 log

∫
Gxlxl (f ) df∫
Gxrxr (f ) df

. (11)

Experiments with either broadband or narrowband sig-
nals led to the decision to compute the ILD by taking
into account only the frequency in the range 3–10 kHz.
This is because in that frequency range, the effect of

the different orientation of the microphones and of the
ear lobes is stronger and provides a better dynamics.
This effect is of course specific to our experimental
setup: a different arrangement might require a differ-
ent filtering.

4.3. System overview

The block diagram of the complete system is shown
in Fig. 6. As mentioned before, we used standard
equipment, made up by a couple of electret condenser
microphones and a preamplifier. A SoundBlaster PCI
128 at 16 bits and 44.1 kHz sound card samples the
signals, while the processing (the estimation of the
ITD and ILD) is carried out every 46 ms by an x86
processor using Intel Signal Processing Library [14].

The overall performance was measured using a
white noise source, placed in about 200 different lo-
cations, randomly distributed within the interval of
±60◦ for the angle of elevation and±80◦ for the
azimuth angle. In each location the values of the ITD
and the ILD were recorded several times (more than
10) and averaged yielding the maps shown in Fig. 7.
The two-dimensional maps represent the measured
signals as a function of the position of the sound
source. Fig. 7 shows also that the system performs
as expected, though it is clear that the estimation of
the ILD is reliable only in a relatively small region at
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Fig. 6. System overview. Sound is acquired through the SoundBlaster PCI 128 (indicated here by A/D) and Fourier transformed. The
initial low pass filters remove the frequencies above 10 kHz. Spectra and cross-spectrum are subsequently estimated and used to compute
the ITD and ILD. The cross-spectrum is weighted and inversely transformed to estimate the cross-correlation function, and, eventually,
the ITD (as described by the SCOT algorithm). The two spectra are also used to determine the ratio between the average power of the
signals and, through its logarithm, the ILD (see text).

Fig. 7. The ITD and ILD as a function ofθ and φ. A sound source was positioned in proximity of the robot’s head at 200 different
positions randomly distributed on the surface of an imaginary sphere. The ITD and ILD vary, respectively, within the interval of±440�s
and ±12 dB (regions relative to positive and negative values marked, respectively, with ‘+’ and ‘−’). The lower pictures show the same
measurements taken in the barn owl although within different frequency ranges (pictures adapted from [8] with permission of the authors).
In spite of some differences—mainly in the absolute values of the signals—a strong resemblance can be noticed. Both graphs are plotted
from the listener’s point of view.
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the center of the axes; outside this region, and even
at high frequencies, the ILD no longer depends on
the elevation alone and correlates also to the position
in the horizontal plane. The latter effect is probably
due to a reduced directionality of the ear lobes as
the azimuth increases. Besides, it is important to note
that, because of the different inclination of the micro-
phones, the median plane defined as the locus of the
points equidistant from the ears—where the ITD is
zero—is tilted. For all these reasons the ITD and the
ILD are neither mutually orthogonal nor independent
as shown also by the contour lines in Fig. 7.

Finally, the lower panel of Fig. 7 shows the re-
sponse of the barn owl external ear measured by in-
serting two small microphones within the ear canals
[5]. Basically the plots show the response—in terms
of the ITD and ILD—of the particular configuration
of feather and trough to an incoming sound in a given
frequency range. We reported this response here in or-
der to compare it to the response of the robot’s ear
lobes. They are qualitatively similar, a part from the
plot of the ITD which is horizontally flipped because
the microphones, in our implementation, besides be-
ing tilted are also not horizontally aligned.

5. Experiments

As outlined in Section 3, several experiments were
planned, whose main goal was to show the following:

• The robot can autonomously learn the mapping be-
tween the retinal position of the target and its acous-
tic counterpart and convert the “fused” percept in
a motor command, which can be used to generate
saccades both toward an acoustic and a visual target.

• The robot can employ only acoustic cues to learn
a map of the sound space, which allows moving
the neck toward a noisy target without any visual
contribution.

Two main classes of controllers were employed for
these tasks:

• Closed loop, whenever continuous information is
available, such as during the smooth tracking of a
visually identified target. Closed loop gains were
manually tuned in order to obtain stability, i.e.
no learning involved. The controller is typically a
proportional-integral-derivative (PID).

• Open loop, when only intermittent information is
available. Of course a further, possibly non-linear,
computation is necessary here to convert the sensory
signal into a motor command. The robot acquires
the relevant transformations during learning.

5.1. The control of the eyes

Consider the problem of moving the eyes toward a
spotted acoustic target: there is no sound feedback to
be exploited, since, as the eyes move, no variation is
elicited in terms of the perceived sound. The solution
we suggest here is to take advantage of the integration
between acoustic and visual information. The main
concern becomes that of matching two signals ex-
pressed with respect to different, decoupled, reference
frames—eye centered versus neck centered. Formally,
whenever a target appears in a certain spatial position,
the robot senses two different spatial “quantities” with
respect to either an eye centered or neck centered ref-
erence frame. The first one,sv, is theretinal error, the
second,sa, is simply the ITD. Given a particular joint
configurationq, a functionf links the two quantities:

sv = f (sa, q). (12)

This hypothetical function could be used to match vi-
sual and acoustic information or to express an acous-
tical spatial perception in the eye-centric reference
frame. At least in theory, at this point there is no differ-
ence between the two signals and a common control
system could be used.

However, an approximation of Eq. (12) cannot be
easily obtained unless a few other simplifications are
made:

• The functionf in Eq. (12) is estimated only for a
limited range of values ofq (i.e. the eyes in an
almost-centered configuration with respect to the
neck|q| < threshold). As a matter of fact this is not
a strong constraint since saccades are mostly gener-
ated after a previous movement has been completed
(no double saccades are allowed in this experiment)
thus the joint configuration is often within the “lim-
ited range”.

• The task is limited also to one dimension (i.e. hor-
izontal movements). This again is not too restric-
tive since in our present setup the same schema
cannot be applied for tilt movements because the
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Fig. 8. Eye–head coordination. (A) The situation preceding a saccade (i.e. eyes centered with respect to the neck) with a target appearing
within the robot’s field of view. The position of the target is estimated using both visual and auditory information and a saccade is thus
started. The neck is controlled in order to keep the robot head roughly facing the target. (B) The neck moves in the same direction of the
eyes. (C) At movement completion the robot is again in a symmetrical vergence configuration and ready to perform another saccade.

Fig. 9. Block diagram of the eye controller. It consists of two loops: a closed loop and a feed-forward loop. The former uses the inverse
Jacobian as in the classical visual servoing approach. The latter consists of an inverse model (indicated by “Map”). Whenever the error is
greater than a certain threshold the block identified by ‘saccade’ issues the start signal; the map puts together auditory and visual error
and it is employed to compute a saccade. The schema stresses the fact that the auditory feedback exists only when the neck moves. For
this reason, only the visual error drives the learning of the map. The auditory error is used for querying the map at the beginning of the
saccade when certain assumptions are satisfied (see text). A low-level PID controller (within the control board) takes care of computing
the torques to drive the motors.
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microphones are mechanically mounted on the com-
mon tilt of the cameras. As a consequence the eyes
cannot tilt independently of the ears. It is not diffi-
cult though to imagine a similar mechanism applied
to vertical movements.

The following visuo-acoustic to motor map is hence
estimated:

�q = f (sv, sa), (13)

Fig. 10. Learning the eye maps. (Top) Eye maps for the right and left eye respectively. The input is in both cases the retinal error measured
in pixels and the ITD measured in samples (respectively visual and acoustic information). The output (vectors) is the motor command
required to foveate the target. The motor command here is the velocity required to fulfill a saccade in a given time interval. The linear
relationship between the retinal error and the ITD is easily spotted in both maps. (Bottom) Measured residual errors during the learning
process. The plots show moving average (solid line—black) and standard deviation (solid line—light gray) computed over 100-sample
long windows. The process was interrupted from time to time (determined in order to sample the learning process non-uniformly) and 100
acoustic random stimuli were presented to the robot to test also the estimation of the visual information (see text)—the average error and
its standard deviation is superimposed to the same graph.

which blends together visual and acoustic error signals
and gives the required motor command in order to
foveate the target.

Whenever a target appears, the visual information
drives a feedback-error learning mechanism [16],
whereas the acoustic information is used only at the
beginning of the motion when the coordinate frames
are essentially aligned (andq is within the mapped
range). In defining a feedback-error mechanism here
what is necessary is the simultaneous perception of a
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visuo-acoustic target, an error signal (i.e. the visual
feedback) and how to subsequently query the learnt
map. By approximating the head with a simple inte-
grator (i.e. assuming a negligible head dynamics and
a high stiffness low-level PID controller), the feed-
back loop is constructed by using visual information
as follows:

�qleft = k · svleft, �qright = k · svright, (14)

wherek is the proportional gain and�qleft (�qright)
is the velocity motor command for the left (right) eye.
k was chosen beforehand in order to obtain a stable
closed loop system. The position on the image plane
svleft (svright) represents the error for the foveation task
(zero meaning perfect foveation). This sort of con-
troller is proven to be stable although the performance
is not always uniform because dynamics is not prop-
erly accounted for [2].

When a saccade is attempted, its precision/perform-
ance is evaluated and eventually criticized by the
closed loop controller (overshoot or undershoot of
the target). This resulting error signal can be used to
modify the future behavior of the system as follows:

�f (st−n
v , st−n

v ) = klearn · st
v. (15)

Fig. 11. An exemplar trajectory of the fixation point: top view. The simple sketch represents the robot—small circles are the eyes and
big circle is the neck. A target originally outside the robot’s visual field generates a short sound; the gaze shifts toward it along an
iso-vergence line (cross marks). The saccade is accurate enough to bring the target near the fovea in both retinas. A few “visual” closed
loop control steps then complete the movement (circle marks). It is worth noting that part of this second movement is needed to adjust
vergence (depth). The neck was not moved in this particular experiment.

Eq. (15) simply says that the current estimate of the
function f computed in(st−n

v , st−n
a ) is changed by an

amount proportional to the retinal errorst
v at the end of

the saccade. Time is made explicit andt represents the
end of the saccade, whilet−n is the instant the saccade
is started (of lengthn). Moreover, when a sensory pair
(st−n

v , st−n
a ) is observed, an approximation of Eq. (12)

is learnt too. In our constrained experiment Eq. (12)
can be well approximated by

sv = a · sa + b, (16)

wheresv (retinal error) andsa (ITD) are scalars, and
a andb are two parameters estimated using an on-line
least-square algorithm. This relationship appears to be
linear in our case although this is not generally true
for every possible experimental arrangement. In that
case, a more general neural network or suitably chosen
polynomial can replace the linear approximator.

The map (Eq. (13)) and Eq. (16) can be used even
if one of the two sensory components is not avail-
able. Roughly speaking, when visual information is
not available, Eq. (16) is employed to determine the
“missing” visual percept and address the map correctly
to determine the saccadic motor command.
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Fig. 12. Head trajectories, closed loop. Some trajectories of the head in the space (pan, tilt), in presence of a central target. The convergence
is guaranteed only inside a relatively small region. Outside it, the convergence of the ITD drives the system toward the center of the axis
where, at last, the error is zeroed.

Fig. 13. The neck control schema. It is made up of two loops: a closed and an open loop controller. The gaink1, k2, and λ are tuned
beforehand in order to obtain stability. Whenever the error is greater than a certain threshold the block identified by ‘saccade’ issues the
start signal; the map is employed to compute a saccade. A low-level PID controller (within the control board) takes care of computing the
torques to drive the motors.
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Fig. 14. Learning the neck map (1). Moving window average and standard deviation (both over windows of 150 trials) of the residual
error at the end of the saccade. After the activation of the learning (vertical solid line) a sharp increase of motor performance can be
noted. The topmost panel shows the map as obtained at the end of the learning phase: the output is the required saccadic command, the
input the initial error (ITD and ILD).
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Within our conceptual schema thus Eq. (16) plays
the role of keeping visual and acoustic information
aligned (coordinate conversion), and Eq. (13) acts as
the SC by generating the appropriate motor command
from the sensory information.

A final note for what concerns the control of the
neck. In this experiment, it has been controlled in
order to keep the robot head roughly facing the tar-
get, i.e. once the eyes start moving, also the neck
moves in the same direction so that eventually, at
movement completion, the robot is again facing
the target in a symmetrical vergence configuration.
Formally,

�qneck = PID(qright − qleft). (17)

This strategy is advantageous since it keeps the sys-
tem ready for a new movement and maximizes the
chances of being able to correctly complete subse-
quent movements by keeping the head far from limit
configurations (see Fig. 8). Fig. 9 shows the com-
plete block diagram of the implemented controller.
The low-level PID controller is indicated, together
with visual and acoustic loops. Maps are activated

Fig. 15. Learning the neck map (2). The head velocity at each control step is plotted in the (pan, tilt) plane. The same trajectory, relative
to a target placed atθ ≈ 50◦ and φ ≈ −30◦ is repeated during the learning phase; the increment of performance, is shown by the
straightening of the trajectory.

by a common logic whenever the conditions to gen-
erate a saccade are met (e.g. a target is not already
foveated).

During the experiments reported here, learning was
stopped from time to time and a sequence of 100 sac-
cade performed using only acoustic stimuli. The vi-
sual position was recovered from Eq. (16); average
and standard deviation of the error computed to be
compared with the average and standard deviation of
the error measured during learning. Fig. 10 shows
this result and the effectiveness of the learning pro-
cedure: saccades become more precise, and the num-
ber of closed loop control steps required to foveate
the target is reduced. At the same time, the ability of
the robot to move the eyes toward an acoustic stim-
ulus is increased. Maps shown (topmost plots) were
simple nearest-neighbor lookup tables. More sophis-
ticated neural network could in principle be used but,
for these cases of moderate difficulty, lookup tables
were simpler to implement and easier to analyze and
tune (e.g. learning rate, number of samples to con-
verge, analysis at a single location, etc.). An exemplar
trajectory of the fixation point of the robot in this sit-
uation is shown in Fig. 11.
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Fig. 16. Examples of trajectories. The error signals (ITD and ILD) and the movement of each joint are shown, entailed by a target at
θ ≈ −40◦ andφ ≈ 30◦. Two different conditions were tested: closed loop and feed-forward (saccadic) control, after a period of learning.
The availability of the sound signal can be noticed from the error plot: in (a) and (b) the sound was “on” for the whole motion; in (c) it
lasted only for a few control steps (in this case, at the end of the saccade, the head automatically returns to the zero position). It is worth
stressing how an accurate response is obtained even in presence of a very short signal (c).
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5.2. Using sound only

This last experiment addresses the issue of the
role of acoustic information alone during learning.
As in the previous experiment, we propose to use a
feedback-error learning schema. The difference here
is that the only available feedback signal is sound.
Of course, in this case, the eyes do not move; only
the neck moves to track the noisy target. It is worth
noting that the cameras will tilt as the microphones
and the cameras tilt altogether. The two components
of the controller need to be defined: (i) the closed
loop; (ii) the map to be learnt.

The closed loop controller can be imagined as ze-
roing the ITD and ILD. According to standard control
theory, under certain hypotheses the ITD and ILD can
be used directly in order to drive a simple PID con-
troller. Strictly, the ITD and ILD do not jointly respect
these hypotheses; it can be proven though that exists
a small region around(0, 0) where the stability of the
system is guaranteed. Outside this central region (that
is whenever the ITD is above a certain threshold), the
ITD by itself can drive the system toward(0, 0), so that
eventually, the error is zeroed. From the robot behav-
ior point of view, this means that the movement is not
straight to(0, 0) but rather the trajectory describes a
curve in joint space (see Fig. 12), and sometimes a lo-
cal divergent behavior of the tilt angle can be noticed.

The map has to approximate the inverse transform
between the error and the required motor command
�q, i.e.

�q = f (s). (18)

Function f is learnt by means of the feedback-error
learning mechanism as shown in Fig. 13 where a
sketch of the complete control schema is presented.
Learning has been carried out in a real environ-
ment (no acoustic-isolated environment nor anechoic
chamber) by using real and natural stimuli (voice,
metal objects, etc.); however, in order to make the
whole process repeatable we used also a continuous
broadband sound produced by a speaker connected
to a computer and placed at the distance of 1.5 m
from the robot. The head of the robot was then pas-
sively displaced in different positions, for example,
(qneck, qtilt ) thus simulating the presence of a target
in (θ = −qneck, φ = −qtilt ) (θ and φ, respectively,
azimuth and elevation as in Fig. 1). Afterward, the

robot was free to redirect the gaze toward the target
generating one or more new learning samples.

Moving window average and standard deviation of
the positioning error of the robot were computed. The
plots show a quick drop of both quantities after the
activation of learning, corresponding to a sharp in-
crease of motor performance (Fig. 14). However, it is
also clear that the system performs less reliably when
a movement of the tilt axis is involved due to the
poorer quality of the ILD. A further understanding of
the learning process can be drawn from Fig. 15 where
a repetitive saccade is performed toward the same
target; it is easy to spot that the trajectory becomes
progressively straighter as learning proceeds. A final
comparison between the behavior of the robot before
and after learning (closed loop versus feed-forward
control) is shown in Fig. 16.

6. Discussion

The theoretical and experimental data presented in
this paper aimed at demonstrating the following issues:
(i) binaural cues such as the ITD and the ILD are valid
measures of the position in space of a sound source
and can be used to drive appropriate motor responses
aimed at foveating the target; (ii) visual information
can drive the acquisition of appropriate acoustic-visual
to motor maps which can be used to direct gaze to-
ward interesting events in the environment; (iii) even
sound alone can suffice in building a spatial map of
the “acoustic” environment in cases where the visual
information is lacking. Furthermore, integration of vi-
sual and acoustic cues might lead to a more complete
range of behaviors and, though not analyzed here, to
the enhancement of the response in cases where both
cues are present.

For humanoid robots these abilities might prove to
be fundamental in operating in a human environment
where the ability to direct the attention toward differ-
ent speakers, or unexpected events (e.g. an object falls)
could foster more sensible actions to be undertaken.
We have shown in different experiments that the robot
by simply interacting in such an environment and pro-
vided appropriate learning rules, could independently
and autonomously learn the coordinate transforma-
tions and motor commands required for shifting its
attention appropriately.
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For biological systems we already know, at least
partially, that these maps and controllers are present.
What we do not know is exactly how the different
signals interrelate, and how learning could be carried
out appropriately. So we would like to stress the fact
that for the first time we were able to condense, albeit
in a simplified form, our knowledge onto a working
physical setup, interacting in a real environment. This
“learning” by doing approach might prove useful in
understanding how and why some variables are nec-
essary, and how the brain might be using such infor-
mation.

Future work will include a more accurate exploita-
tion of the frequency information, for example, it is
known that the ILD at low frequencies provides infor-
mation on the azimuthal angle, and thus can be inte-
grated with the ITD for better performance. Further,
temporal delays at stimulus onset or termination are
valid cues for improving ITD estimation. The model
will be also extended to take into account the eyes
position for a large range of values (and not only for
|q| < threshold) thus removing some of the assump-
tions made in the proposed implementation. In this
paper we focused the attention on the aspects concern-
ing the learning of the motor response; future experi-
ments will investigate the ability of the robot to keep
an adequate motor performance even in presence of
alterations in the sensory and motor subsystems.
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