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Abstract

Vision and manipulation are inextricably intertwined in the primate brain. Tantalizing results from

neuroscience are shedding light on the mixed motor and sensory representations used by the brain during

reaching, grasping, and object recognition. We now know a great deal about what happens in the brain

during these activities, but not necessarily why. Is the integration we see functionally important, or

just a reflection of evolution’s lack of enthusiasm for sharp modularity? We wish to instantiate these

results in robotic form to probe their technical advantages and to find any lacunae in existing models.

We begin with a precursor to manipulation, simple poking and prodding, and show how it facilitates

object segmentation, a long-standing problem in machine vision. The robot can familiarize itself with the

objects in its environment by acting upon them. It can then recognize other actors (such as humans) in

the environment through their effect on the objects it has learned about. We argue that following causal

chains of events out from the robot’s body into the environment allows for a very natural developmental

progression of visual competence, and relate this idea to results in neuroscience.
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Abstract

Vision and manipulation are inextricably intertwined in the primate brain. Tantalizing results from

neuroscience are shedding light on the mixed motor and sensory representations used by the brain during

reaching, grasping, and object recognition. We now know a great deal about what happens in the brain

during these activities, but not necessarily why. Is the integration we see functionally important, or

just a reflection of evolution’s lack of enthusiasm for sharp modularity? We wish to instantiate these

results in robotic form to probe their technical advantages and to find any lacunae in existing models.

We believe it would be missing the point to investigate this on a platform where dextrous manipulation

and sophisticated machine vision are already implemented in their mature form, and instead follow a

developmental approach from simpler primitives.

We begin with a precursor to manipulation, simple poking and prodding, and show how it facilitates

object segmentation, a long-standing problem in machine vision. The robot can familiarize itself with the

objects in its environment by acting upon them. It can then recognize other actors (such as humans) in

the environment through their effect on the objects it has learned about. We argue that following causal

chains of events out from the robot’s body into the environment allows for a very natural developmental
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2progression of visual competence, and relate this idea to results in neuroscience.

1 Vision, action, and development

Robots and animals are actors in their environment, not simply passive bystanders. They have the oppor-

tunity to examine the world using causality, by performing probing actions and learning from the response.

Tracing chains of causality from motor action to perception (and back again) is important both to understand

how the brain deals with sensorimotor coordination and to implement those same functions in an artificial

system, such as a humanoid robot (Sperber et al., 1995). In this paper, we propose that such causal probing

can be arranged in a developmental sequence leading to a manipulation-driven representation of objects.

We present results for many important steps along the way, and describe how they fit in a larger scale

implementation. And we discuss in what sense our artificial implementation is substantially in agreement

with neuroscience.

Table 1 shows four levels of causal complexity that we address in the paper. The simplest causal chain

that an actor – whether robotic or biological – may experience is the perception of its own actions. The

temporal aspect is immediate: visual information is tightly synchronized to motor commands. Once this

causal connection is established, we can go further and use it to actively explore the boundaries of objects.

In this case, there is one more step in the causal chain, and the temporal nature of the response may be

delayed since initiating a reaching movement doesn’t immediately elicit consequences in the environment.

Finally we argue that extending this causal chain further will allow the actor to make a connection between

its own actions and the actions of another. This is reminiscent of what has been observed in the response of

the primate’s premotor cortex.

Taken together these observations from neuroscience suggest a critical role for motor action in perception.

Certainly vision and action are intertwined at a very basic level. While an experienced adult can interpret

visual scenes perfectly well without acting upon them, linking action and perception seems crucial to the

developmental process that leads to that competence. We can construct a working hypothesis: that action is
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3
required for object recognition in cases where an agent has to develop categorization autonomously. Of course

in standard supervised learning action is not required since the trainer does the job of pre-segmenting the data

by hand. In an ecological context, some other mechanism has to be provided. Ultimately this mechanism is

the body itself that through action (under some suitable developmental rule) generates informative percepts.

This notion is related to the “toil versus theft” distinction used by Harnad (Harnad, 2002). Harnad points

out that although the meaning of concepts must eventually be traced back to experience (“toil”), evolution

and communication provide a way to bypass this through genetic or social “theft”. Human infants, for

example, exhibit significant perceptual abilities before their motor skills have developed fully. Nevertheless,

they clearly “detect object properties with increasing specificity in relation to their own emerging action

capabilities” (Adolph et al., 1993). In our robotic experiments, we seek to trace a causal path all the way

from the perception and exploitation of object affordances back to a very minimal set of sensor and motor

primitives. When seeking analogues between this process and development in humans or other primates, it is

important to bear in mind that some logically required steps may be subsumed by the animal’s evolutionary

legacy.

We can distinguish three main conceptual functions in the developmental process that leads to object

representation (similar to the schema of Arbib et al. (Arbib, 1981)): reaching, grasping (manipulation), and

object recognition. These functions correspond to the levels of causal understanding introduced in Table 1.

They also form an elegant progression of abilities which emerge out of very few initial assumptions. All that

is required is the interaction between the actor and the environment, and a set of appropriate developmental

rules specifying what information is retained during the interaction, the nature of the sensory processing,

the range of motor primitives, etc. If we consider the actual localization of functions in the brain we can

observe a developmental sequence roughly following a dorsal to ventral gradient. Unfortunately this is a

question which has not yet been investigated in detail by neuroscientists, and there is very little empirical

support for this claim (beside the work of Kovacs et al. (Kovacs, 2000)).

What is certainly true is that the three modules/functions can be clearly identified. If our hypothesis is

correct then the first developmental step has to be that of transporting the hand close to the object (that
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4
we numbered level 1 in our concise description of table 1). In humans, this function is accomplished mostly

by the circuit VIP/7b-F4-F1 (see also figure 2). Reaching requires at least the detection of the object and

hand, and the transformation of their positions into appropriate motor commands. Parietal neurons seem

to be coding for the spatial position of the object in non-retinotopic coordinates by taking into account the

position of the eyes with respect to the head. According to (Pouget et al., 2002) and to (Flanders et al.,

1999) the gaze direction (the eye motor plant) seems to be the privileged reference system used to code

reaching. Relating to the description of causality, the link between an executed motor action and its visual

consequences can be easily formed by a subsystem that can detect causality in a short time frame (the

immediate aspect).

Once reaching is reliable enough, we can start to move our attention outwards onto objects (identified as

level 2 in table 1). Area AIP (parietal lobe) and F5 (frontal cortex) are involved in the control of grasping

and manipulation. F5 talks to the primary motor cortex for the fine control of movement. The AIP-F5

system responds to the “affordances” of the observed object with respect to the current abilities (Gibson,

1977). Arbib and coworkers (Fagg and Arbib, 1998) proposed the FARS model as a possible description of

the computation in AIP-F5. They did not however consider how affordances can be actually learned during

interaction with the environment. Learning and understanding affordances requires a slightly longer time

frame since the initiation of an action (motor command) does not immediately elicit all relevant sensory

consequences. In this example, the initiation of reaching requires a mechanism to detect when an object is

actually touched, manipulated, and whether the collision/touch is causal to the initiation of the movement.

The next step along this hypothetical developmental route is to acquire the F5 mirror representation

(Gallese et al., 1996). We might think of AIP-F5 neurons as an association table of grasp/manipulation

(action) types with object (vision) types. Mirror neurons can then be thought of as a second-level associa-

tive map which links together the observation of a manipulative action performed by somebody else with

the neural representation of one’s own action. Mirror neurons bring us to an even higher level of causal

understanding (level 3). In this case the action execution has to be associated with a similar action executed

by somebody else. The two events do not need to be temporally close to each other. Arbitrary time delays
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5
might occur.

The conditions for when this is feasible are a consequence of active manipulation. During a manipulative

act there are a number of additional constraints that can be factored in to simplify perception/computation.

For example, detection of useful events is simplified by information from touch, by timing information about

when reaching started, and from a knowledge of the location of the object.

The last subsystem to develop is object recognition (level 4). Object recognition can build on manipula-

tion in finding the boundaries of objects and segmenting them from the background. More importantly, once

the same object is manipulated many times the brain can start learning about the criteria to identify the

object if it happens to see it again. These functions are carried out by the infero-temporal cortex (IT). The

same considerations apply to the recognition of the manipulator (either one’s own, or another’s). In fact, the

STs region is specialized for this task. Information about object identity is also sent to the parietal cortex

and contributes to the formation of the affordances. However object recognition is performed, at a minimum

all information (visual in this case) pertaining to a certain object needs to be grouped during development

so that a model of the object can be constructed.

[Table 1 about here.]

For the robotic implementation we endeavor to follow the same developmental pathway and exploit the

same sort of causal links between actions and sensory feedback. Also, we wish to instantiate these results in

robotic form to probe their technical advantages and to find any lacunae in existing models.

We wished to keep the actions implemented on our robotic system as simple as possible, to avoid obscuring

the core issue of development behind an elaborately engineered dextrous system. We found that simple poking

gestures (prodding, tapping, swiping, batting, etc.) were rich enough to evoke object affordances such as

rolling. They also provided exactly the kind of training data needed to bootstrap perception, since they

facilitated “active segmentation”, where the motion of the object generated by the robot served to identify

its boundaries.

[Figure 1 about here.]
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2 Object or illusion?

Following (Manzotti and Tagliasco, 2001), we can ask whether macroscopic objects exist completely in their

own right, or instead owe something of their existence to their interaction with an observer. How the world

is divided up, and what parts of it we grant status as objects, says as much about us as about the world

around us (Hendriks-Jansen, 1996). For example, would a chair still be a chair if we had a completely different

embodiment? Further, even if a part of the physical world could be separated out from the background in

an objective manner, its function still depends on our body and skills – for example, a floppy disk is of little

use to one who is computer illiterate, and perhaps can be just regarded as a clumsy frisbee or ugly drink

coaster.

Consider the example in Figure 1. It is clear that the cross on the left is a cross and does not seem to

owe its existence to us as observers. The array in the middle for many of us is still a cross. This would

still be the case even if we had not developed the concept of number or these particular graphic symbols

to identify numbers. What can we say about the array on the right? On a first examination it looks like a

random collection of numbers. But if we are told that the criterion is “prime numbers vs. non-prime” then

a cross can still be identified.

On the very right of figure 1 we show a cube sitting on the table. While humans are very good in

analyzing scenes like this one, there are many features that can fool a computer vision system. The edges of

the cube and table happen to be aligned, the color is poorly separated, and the surface pattern of the cube

does not really tell much about the object itself. Is the internal dark square a different object lying on top

of the cube? Another possibility is that the cube is extremely heavy or even part of the table and thus it is

not manipulable or movable. Does it make sense then to speak about objects in images, as if there were a

unique correspondence between the two? As early as 1734, Berkeley observed that:

...objects can only be known by touch. Vision is subject to illusions, which arise from the

distance-size problem... (Berkeley, 1972)

Vision is indeed subject to many illusions. But touch also can be fooled since it has been shown that vision
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7
and touch combine optimally with respect to a maximum likelihood criterion (Ernst and Banks, 2002).

Which sensory modality dominates depends on the experimental conditions and apparently we shouldn’t

always “blindly” trust our senses. The key to resolving ambiguity is to take action, rather than remain a

passive observer. In the remainder of the paper we argue that in the presence of manipulation – even a

simple form of manipulation – vision becomes more powerful and many of its illusions fade away.

3 Objects and action in humans

The example of the cross composed of prime numbers is a novel (albeit unlikely) type of segmentation in our

experience as adult humans. We might imagine that when we were very young, we had to initially form a

set of such criteria to solve the object identification/segmentation problem in more mundane circumstances.

That such abilities develop and are not completely innate is suggested by results in neural science. For

example Kovacs (Kovacs, 2000) has shown that perceptual grouping is slow to develop and continues to

improve well beyond early childhood (14 years). Long-range contour integration was tested and this work

elucidated how this ability develops to enable extended spatial grouping.

A useful concept to understand how such capabilities could develop is the well-known theory of Unger-

leider and Mishkin (Ungerleider and Mishkin, 1982) who first formulated the hypothesis that the brain’s

visual pathways split into two main streams: the dorsal and the ventral. The dorsal is the so-called “where”

pathway, concerned with the analysis of the spatial aspects of motor control. The ventral is related with the

“what”, i.e. the identity of objects.

Goodale and Milner (Milner and Goodale, 1995) refined the theory by proposing that objects are rep-

resented differently during action than they are for a purely perceptual task. The dorsal deals with the

information required for action, while the ventral is important for more cognitive tasks such as maintain-

ing an object’s identity and constancy. Although the dorsal/ventral segregation is emphasized by many

commentators, it is significant that there is a great deal of cross talk between the streams. Observation

of agnosic patients (Jeannerod, 1997) shows a much more complicated relationship than the simple dor-
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sal/ventral dichotomy would suggest. For example, although some patients could not grasp generic objects

(e.g. cylinders), they could correctly preshape the hand to grasp known objects (e.g. a lipstick): interpreted

in terms of the two pathways, this implies that the ventral representation of the object can supply the dorsal

stream with size information.

[Figure 2 about here.]

Grossly simplifying, the brain circuitry responsible for object oriented actions is thought to consist of at

least four interacting regions (Figure 2), namely the primary motor cortex (F1), the premotor cortex (F4,

F5), the inferior parietal lobule (AIP, VIP), and the temporal cortex (TE, TEO) (see (Rizzolatti et al., 1997;

Fadiga et al., 2000; Jeannerod, 1997) for a review). While this is a useful subdivision, it is worth bearing in

mind that the connectivity of the brain is much more complex, that bidirectional connections are present,

and that behavior is the result of a population activity of these areas. The example about the grasping

of known objects in agnosic patients testifies to the abundance of anatomical connections between different

regions (Jeannerod et al., 1995).

Another way of looking at the same connectivity is in terms of the main function of each area. For

example F4, VIP, and 7b are involved in the control of reaching, F5 and AIP contain the majority of grasp

related neurons, while TE and TEO are thought to subserve object recognition. These regions together form

a network of parallel and yet interacting processes. In fact, at the behavioral level, it has been observed that

reaching and grasping need to interact to correctly orient and preshape the hand (Jeannerod et al., 1995).

Neurons responsive to reaching are present in the inferior parietal lobule. For example, Jeannerod et al.

reported that the temporary inactivation of the caudal part (VIP) of the intraparietal sulcus by injecting

a GABA agonist disrupts reaching (Jeannerod et al., 1995). Conversely, injection in the more rostral part

(area AIP) interferes with the preshaping of the hand.

Some of the VIP neurons have bimodal visual and somatic receptive fields (RF). About 30% of them

have a RF which does not vary with movement of the head (Rizzolatti et al., 1997). The tactile and visual

RF often overlap (e.g. a central visual RF corresponds to a tactile RF in the nose or mouth). The parietal

cortex also contains cells related to eye position/movements that appear to be involved in the visuo-motor
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transformation required for reaching. VIP projects to area F4 in the premotor cortex. Area F4 contains

neurons that respond to objects and are related to the description of the peripersonal space with respect to

reaching (Graziano et al., 1997b; Fogassi et al., 1996). A subset of the F4 neurons have a somatosensory,

visual, and motor receptive field. The visual receptive field extends in 3D from a given body part, such

as the forearm. The somatosensory RF is usually in register with the visual one (as in VIP neurons).

Motor information is integrated into the representation by maintaining the receptive field anchored to the

correspondent body part (the forearm in this example) irrespective of the relative position of the head and

arm.

Also, Graziano et al. (Graziano et al., 1997a) described neurons that maintain a memory of the position

of objects for the purpose of reaching. They found neurons that change their firing rate after an object is

illuminated briefly within reaching distance. The neurons return to their baseline firing rate only after the

monkey is shown that the object have been taken away or moved to a different position.

Sakata and coworkers (Sakata et al., 1997) investigated the response of neurons in the parietal cortex and

in particular in area AIP (anterior intra-parietal). They found cells responsive to complex visual stimuli.

Neurons in AIP responded during grasping/manipulative actions and when an object was presented to the

monkey but no reaching was allowed. Neurons were classified as motor dominant, visual dominant or visuo-

motor type depending on how they fired in the dark. Of the visual dominant neurons, some responded to the

presentation of the object alone and often they were very specific to the size and orientation of the object,

others to the type of object, while yet others responded indifferently to the presentation of a broad class of

objects. Area AIP is interesting because it contains both motor and visually responsive cells intermixed in

various proportions; it can be thought of as a visuo-motor vocabulary for controlling object directed actions.

It is also interesting because projections from AIP terminate in the agranular frontal cortex. For many

years, because of the paucity of data, this part of the cortex was considered a unitary motor control area.

Recent studies (see (Jeannerod, 1997; Fadiga et al., 2000)) have demonstrated that this is not the case.

Particularly surprising was the discovery of visual responsive neurons. A good proportion of them have both

visual/sensory and motor responses. Area F5, one of the main targets of the projection from AIP (to which
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it sends back recurrent connections), was thoroughly investigated by Rizzolatti and colleagues (Gallese et al.,

1996).

F5 neurons can be classified in at least two different categories: canonical and mirror. Canonical and

mirror neurons are indistinguishable from each other on the basis of their motor responses; their visual

responses however are quite different. The canonical type is active in two situations: i) when grasping an

object and ii) when fixating that same object. For example, a neuron active when grasping a ring also fires

when the monkey simply looks at the ring. This could be thought of as a neural analogue of the “affordances”

of Gibson (Gibson, 1977). However, given the heavy projection from AIP, it is not entirely true that the

affordances are fully described/computed by F5 alone. A more conservative stance is that the system of

AIP, F5, and other areas (such as TE) participate in the visual processing and motor matching required to

compute the affordances of a given object.

The second type of neuron identified in F5, the mirror neuron (Fadiga et al., 2000), becomes active

under either of two conditions: i) when manipulating an object (e.g. grasping it, as for canonical neurons),

and ii) when watching someone else performing the same action on the same object. This is a more subtle

representation of objects, which allows and supports, at least in theory, mimicry behaviors. In humans,

area F5 is thought to correspond to Broca’s area; there is an intriguing link between gesture understanding,

language, imitation, and mirror neurons (Rizzolatti and Arbib, 1998).

The superior temporal sulcus region (STs) and parts of TE contain neurons that are similar in response

to mirror neurons (Perrett et al., 1990). They respond to the sight of the hand; the main difference compared

to F5 is that they lack the motor response. It is likely that they participate in the processing of the visual

information and then communicate with F5 (Gallese et al., 1996) most likely via the parietal cortex.

A possible developmental explanation of the acquisition of these functions can be framed in terms of trac-

ing/interpreting chains of causally related events. The ability to probe longer chains triggers the emergence

of new functionality and/or a new set of behaviors. The next sections delves deeper into this proposal for

the ontogenesis of object oriented action and provides experimental results of many steps towards this goal.
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4 The experimental platform

This work is implemented on the robot Cog, an upper torso humanoid (Brooks et al., 1999; Adams et al.,

2000). The robot has previously been applied to tasks such as visually-guided pointing (Marjanović et al.,

1996), and rhythmic operations such as turning a crank or driving a slinky (Williamson, 1998). Cog has two

arms, each of which has six degrees of freedom – two per shoulder, elbow, and wrist. The joints are driven

by series elastic actuators (Williamson, 1995) – essentially a motor connected to its load via a spring (think

strong and torsional rather than loosely coiled). The arm is not designed to enact trajectories with high

fidelity. For that a very stiff arm is preferable. Rather, it is designed to perform well when interacting with

a poorly characterized environment, where collisions are frequent and informative events.

[Figure 3 about here.]

The following sections 5 through 9 explore the four levels of causation which are at the core of our working

hypothesis. The rationale of the experiments is to show that one possible route to object recognition goes

through the “understanding” of longer chains of cause-effects relationships. In particular section 5 describes

the simplest causal chain where motion of the robot causes immediate visual effects. Simple cross-correlation

over time of motor and visual signals allows localizing the robot’s end-point. Reaching is seen as an extension

of the same mechanism. Subsequently, we show in section 6 how the robot explores its peripersonal space and

get to explore physical objects. Exploiting causality leads to object segmentation (figure/ground separation).

In this case there is a potentially delayed effect because initiating the reaching action does not automatically

lead to the interaction with the object. The experiments described in section 7 and 8 build on top of the

segmentation to learn object “affordances”. Exploring further a complex causal chain where the actions of

others are considered moves us naturally to a “mirror neuron” like response. Eventually, object recognition

and an empirical definition of “objecthood” are presented in section 9. Our definition relies on a combination

of object affordances and the acquisition of data through multiple instances of the same manipulative act.
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5 Perceiving direct effects of action

Motion of the arm may generate optic flow directly through the changing projection of the arm itself, or

indirectly through an object that the arm is in contact with. While the relationship between the optic flow

and the physical motion is likely to be extremely complex, the correlation in time of the two events will

generally be exceedingly precise. This time-correlation can be used as a “signature” to identify parts of

the scene that are being influenced by the robot’s motion, even in the presence of other distracting motion

sources. In this section, we show how this tight correlation can be used to localize the arm in the image

without any prior information about visual appearance. This is in fact why we chose to detect the arm using

optic flow rather than by searching for a predetermined color or shape. In the next section we will show

that once the arm has been localized we can go further, and identify the boundaries of objects with which

the arm comes into contact.

A similar procedure was described by Piaget as “circular reaction” (Piaget, 1963). In Piaget’s observations

the circular reaction is the mechanism by which the loop between vision and action is closed. In the

child, this seemingly random activity mediates the discovery of contingent activation of visual, motor, and

somatosensory areas. Other researchers (Bullock et al., 1993) applied a similar model in learning visuomotor

transformations. The “motor babbling” activity was used to self-train the sensori-motor transformations

required for reaching. We instantiate here a similar mechanism to learn to localize the robot effector.

Reaching out

The first step towards manipulation is to reach objects within the workspace. If we assume targets are

chosen visually, then ideally we need to also locate the end-effector visually to generate an error signal for

closed-loop control. Some element of open-loop control is necessary since the end-point may not always be

in the field of view (for example, when it is in its the resting position), and the overall reaching operation

can be made faster with a feed-forward contribution to the control.

[Figure 4 about here.]
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The simplest possible open loop control would map directly from a fixation point to the arm motor

commands needed to reach that point (Metta et al., 1999) using a stereotyped trajectory, perhaps using

postural primitives (Mussa-Ivaldi and Giszter, 1992). If we can fixate the end-effector, then it is possible

to learn this map by exploring different combinations of direction of gaze vs. arm position (Marjanović

et al., 1996; Metta et al., 1999). So locating the end-effector visually is key both to closed-loop control, and

to training up a feed-forward path. We shall demonstrate that this localization can be performed without

knowledge of the arm’s appearance, and without assuming that the arm is the only moving object in the

scene.

Localizing the arm visually

The robot is not a passive observer of its arm, but rather the initiator of its movement. This can be used to

distinguish the arm from parts of the environment that are more weakly affected by the robot. The arm of

a robot was detected in (Marjanović et al., 1996) by simply waving it and assuming it was the only moving

object in the scene. We take a similar approach here, but use a more stringent test of looking for optic flow

that is correlated with the motor commands to the arm. This allows unrelated movement to be ignored.

Even if a capricious engineer where to replace the robot’s arm with one of a very different appearance, and

then stand around waving the old arm, this detection method will not be fooled.

The actual relationship between arm movements and the optic flow they generate is complex. Since the

robot is in control of the arm, it can choose to move it in a way that bypasses this complexity. In particular,

if the arm rapidly reverses direction, the optic flow at that instant will change in sign, giving a tight, clean

temporal correlation. Since our optic flow processing is coarse (computed by a generic correlation-based

approach over a 16 × 16 grid over a 128 × 128 image at 15 Hz), we simply repeat this reversal a number

of times to get a strong correlation signal during training. With each reversal the probability of correlating

with unrelated motion in the environment goes down. This probability could also be reduced by higher

resolution (particularly in time) visual processing.

Figure 4 shows an example of this procedure in operation, comparing the velocity of the arm’s wrist with
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the optic flow at two positions in the image plane. A trace taken from a position away from the arm shows

no correlation, while conversely the flow at a position on the wrist is strongly different from zero over the

same period of time. Figure 4 shows examples of detection of the arm and rejection of a distractor.

Localizing the arm using proprioception

The localization method for the arm described so far relies on a relatively long “signature” movement that

would slow down reaching. This can be overcome by training up a function to estimate the location of the

arm in the image plane from proprioceptive information (joint angles) during an exploratory phase, and

using that to constrain arm localization during actual operation.

The response of such a filter is not too distant from that of the monkey’s parietal and frontal cortices.

In particular we already described, in section 3, neurons that respond to the sight of a body part (e.g. the

hand) irrespective of the relative position of the eyes, head, and arms.

[Figure 5 about here.]

As a function approximator we simply fill a look-up table, implemented as a list of nodes allocated

dynamically. This implementation was chosen to reduce memory consumption; the input space is six dimen-

sional and even a coarse discretization of this space would require memory in the order of several Mbytes.

Rather than using all the joint angles the current direction of gaze is first coded in terms of only two angles

representing the global pan (θ) and tilt (φ) of one of the cameras. This is easily computed from the kine-

matics of the head and the joint angles. The end-point position is coded considering only the first four joints

(q1 . . . q4). The position of joint q5 and q6 is not employed because the wrist does not significantly contribute

to the end-point position. The output of the approximator is the position of the end-point (the forearm) on

the image plane. Figure 5 shows the resulting behavior after about twenty minutes of real-time learning.

Reaching for the object

Reaching is implemented as a direct mapping between the direction of gaze (θ, φ) and the command required

to reach the fixation point. Inspiration is drawn from the experiments of (Flanders et al., 1999) and (Pouget
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et al., 2002) that have shown that both humans and monkeys employ gazing as a reference for reaching.

This procedure is consistent because we are interested in reaching a point on a plane in front of the robot

(a table): i.e. each point on the table is identified by one and only one gaze value. The resulting map is

thus 2D → 6D (the arm has 6 degrees of freedom). The same argument could be extended to the 3D case

by augmenting the encoding of gaze with, for example, the vergence angle. The arm motor commands are

represented in terms of joint positions, and the mapping is linear:




q̂1

...

q̂6



=




a11 a12

...
...

a61 a62




·




θ

φ


 (1)

where q̂ are the desired joint positions. The coefficients anm are estimated following a brief calibration

procedure from a small number of training pairs of the form (q̂, (θ, φ)). The linear approximation is justified

in our case because of the relatively small region of the workspace where the reaching is expected to operate.

The complete robot workspace is much bigger because the torso can also move to keep the operational point

of the linear approximation within reasonable limits.

Redundancy is not an issue since the vector of joint angles q̂ spans only a 2D subspace of the full 6D

space. This subspace is determined by the anm and it is uniquely indexed by the input vector (θ, φ). Hence

the mapping allows the robot to reach a point on a particular plane in space consistently. We verified this

to be true empirically for a large number of configurations.

At a lower level a low-stiffness position control and a simple trajectory generator interpolate the motion

of the arm from the current position to the commanded one. Gravity compensation for the shoulder joint

has been implemented to further improve accuracy.

[Figure 6 about here.]
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6 Perceiving indirect effects of action

We have assumed that the target of a reaching operation is chosen visually. As discussed in the introduction,

visual segmentation is not easy, so we should not expect a target selected in this way to be correctly

segmented. For the example scene in Figure 1 (a cube sitting on a table), the small inner square on the

cube’s surface pattern might be selected as a target. The robot can certainly reach towards this target, but

grasping it would prove difficult without a correct estimate of the object’s physical extent. In this section,

we develop a procedure for refining the segmentation using the same idea of correlated motion used earlier

to detect the arm.

When the arm enters into contact with an object, one of several outcomes are possible. If the object is

large, heavy, or otherwise unyielding, motion of the arm may simply be resisted without any visible effect.

Such objects can simply be ignored, since the robot will not be able to manipulate them. But if the object

is smaller, it is likely to move a little in response to the nudge of the arm. This movement will be temporally

correlated with the time of impact, and will be connected spatially to the end-effector – constraints that are

not available in passive scenarios (Birchfield, 1999). If the object is reasonably rigid, and the movement has

some component in parallel to the image plane, the result is likely to be a flow field whose extent coincides

with the physical boundaries of the object.

[Figure 7 about here.]

Figure 6 shows how a “poking” movement can be used to refine a target. During a poke operation, the

arm begins by extending outwards from the resting position. The end-effector (or “flipper”) is localized as

the arm sweeps rapidly outwards, using the heuristic that it lies at the highest point of the region of optic flow

swept out by the arm in the image (the head orientation and reaching trajectory are controlled so that this

is true). The arm is driven outward into the neighborhood of the target which we wish to define, stopping

if an unexpected obstruction is reached. If no obstruction is met, the flipper makes a gentle sweep of the

area around the target. This minimizes the opportunity for the motion of the arm itself to cause confusion;

the motion of the flipper is bounded around the endpoint whose location we know from tracking during the
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extension phase, and can be subtracted easily. Flow not connected to the end-effector can be ignored as a

distractor. For simplicity, the head is kept steady throughout the poking operation, so that simple image

differencing can be used to detect the presence of motion at a higher resolution than optic flow. Figure 7

shows an example of the kind of results that are possible (see Section 9 for further examples).

The poking operation gives clear results for a rigid object that is free to move. What happens for non-

rigid objects and objects that are attached to other objects? Here the results of poking are likely to be more

complicated to interpret – but in a sense this is a good sign, since it is in just such cases that the idea of

an object becomes less well-defined. Poking has the potential to offer an operational theory of “objecthood”

that is more tractable than a vision-only approach might give, and which cleaves better to the true nature of

physical assemblages. The idea of a physical object is rarely completely coherent, since it depends on where

you draw its boundary and that may well be task-dependent. Poking allows us to determine the boundary

around a mass that moves together when disturbed, which is exactly what we need to know for manipulation.

As an operational definition of object, this has the attractive property of breaking down into ambiguity in

the right circumstances – such as for large interconnected messes, floppy formless ones, liquids, and so on.

7 Experimenting with object affordances

Poking moves us one step outwards on a causal chain away from the robot and into the world, and gives a

simple experimental procedure for segmenting objects. There are many possible elaborations of this method,

all of which lead to a vision system that is tuned to acquiring data about an object by seeing it manipulated

by the robot.

This kind of active segmentation will nevertheless be inconvenient in many situations if not coupled with

a mechanism to learn from experience. For example, it would be terribly inefficient to always have to poke

an object first before it could be grasped. It would be much better if the robot could learn about objects

and, in particular, how to identify a previously encountered object. A further difficulty, at least for a robot

with a simple manipulator (such as Cog’s flipper), is that “affordances” are scarce: most of the time the
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object will simply move from one position to another if we are willing to discount when it falls from the

table.

However, for objects that roll there is a cue the robot can exploit to understand their behavior. An object

that rolls tends to do so even if it is not poked precisely. We selected a small set of objects to experiment

with: a cube, a toy car, an orange juice bottle, and a ball. Affordances are not only a property of the

mechanics of the object, but rather a combination of visual appearance, of the object’s physical composition,

and of the ability of the actor. We selected a measure of the principal axis of the object (easily obtained

from the segmentation) as a visual component of the affordance. Table 2 shows the expected behavior.

[Table 2 about here.]

We need to group the data belonging to the same object obtained across many poking acts into coherent

clusters. We adopted simple color histogram similarity as our clustering criterion. After each poking action,

a color histogram of the pixels in the segmented region is built and used to judge whether the object belongs

to an existing group (for example, if it is mostly yellow, it is likely to be the toy car). This works well for

a small set of objects but more sophisticated methods would be required for a more general case with a

large set of objects (Schiele and Crowley, 2000). The data structure that simulates the AIP-F5 affordance

computation maintains all the instances of poking grouped by object, all the prototypes of the segmented

object, the direction of movement, and the action applied by the robot in each trial.

An alternative to the vision-based clustering procedure would be to try to classify the behavior of an

object after a single encounter, and use the behavior itself as a clustering criterion. So how an object rolls

could be used as a feature to recognize that object. Adopting this strategy would have made our results

much more sensitive to the performance of the motor and vision system, since we cannot average over the

noise they generate. Nevertheless, this would be a perfectly reasonable strategy for a next-generation system

to adopt.

Figure 8 shows the results of the segmentation, clustering and estimation of the affordance of the same

set of four objects. The training set consists of about 100 actions per object. The motor vocabulary of the

robot consists of four possible directions of poking. We labeled them for convenience as: pull in, side tap,
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push away, and back slap, depending on the effect they have on the object from the point of view of the

robot. Actions were generated at random during this training stage. During a poking action, the object is

tracked for 12 frames after the time of contact and the overall displacement is computed.

[Figure 8 about here.]

This description of the affordances shows clear differences between the objects. But it is not yet an

effective description since it does not by itself tell the robot how to take action once an object is observed.

For this purpose a description of the geometry of poking is required. This information can be derived from

the same training set we collected for learning about rolling. Figure 9 shows the histograms of the direction

of movement averaged over all objects for each possible action. For example, the back slap moves an object

mostly upward (about −100◦ on average, 0◦ being the direction parallel to the image x axis) and away from

the robot. A similar consideration applies to the other poking gestures. Figure 9 was obtained from the data

of about 500 poking events.

The last step is to connect all these elements together. If a known object is presented to Cog, the object

is recognized, localized, and its orientation estimated (by finding its principal axis). Recognition is based

on the color histograms. The same procedure used to form the clusters is employed here. Localization is

simply implemented by histogram back-projection and a search across the image. The current orientation

of the object is then estimated by comparing the current image with all the prototypes contained in the

cluster. The whole procedure has an error on the estimation of the principal axis in the range of 10◦ to 25◦

depending on the object.

To actually exploit the understanding of the affordance we need to connect vision to behavior. The robot

looks for the preferred rolling direction of the object (see figure 8) and adds it to its current orientation. The

action whose effects are closer (on average) to the combination of the orientation and affordance is selected.

We performed a simple qualitative test of the robot’s behavior presenting randomly two of the objects

(the toy car and the bottle) - note that the ball and the cube do not have a well defined principal axis so

there is no point in running the experiment. Out of 100 trials the robot made 15 mistakes. Analysis of the
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errors reveals that they are mainly due to imprecise control (12) and to a less extent to misinterpretation of

the orientation of the object (3).

[Figure 9 about here.]

8 Developing mirror neurons

An interesting question then is whether the system could extract useful information from seeing an object

manipulated by someone else. In the case of poking, the robot needs to be able to estimate the moment of

contact and to track the arm sufficiently well to distinguish it from the object being poked. We are interested

in how the robot might learn to do this. One approach is to chain outwards from an object the robot has

poked. If someone else moves the object, we can reverse the logic used in poking – where the motion of the

manipulator identified the object – and identify a foreign manipulator through its effect on the object. The

next experiment was designed to explore this aspect.

In fact, the same processing used for analyzing an active poking can be used to detect a contact and

segment the object from the manipulator. This is not different from what we used for learning. While

one might argue then that learning can be carried out just by mere observation, it is worth noting that: i)

this situation is not as well defined as the active one, and ii) there is no connection to the motor aspects

of the action and consequently it is difficult to link the observation to the behavior. There is no physical

contact, thus there is plenty of room for getting confused by false positives. The temporal aspect, so well

constrained during active manipulation, is more vague here – the robot, for example, does not know when

the foreign manipulator starts or stops the action. If missing a contact event or getting a false or mistaken

segmentation is not much of a problem in “observation mode”, it is much more troublesome is we corrupt

the training data with unreliable/noisy observations. Further, we should not assume the human “teacher”

is truly collaborative. There is no guarantee that actions suited to the robot perceptual system and/or goal

are performed at all. More seriously, the link to behavior is completely missing. Even if visual information

about objects can be collected as before, tracing back which action causes a particular consequence cannot
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be autonomously learned by the robot. Conversely, in the case the robot has already learned about objects,

as e.g. we have shown in the previous section, this information can be factored in to help the observation

of somebody else’s action. Touch (not in Cog) and physical contact are additional bits of information about

the ongoing activity.

In our case, if any activity is detected close to the object – measured by the amount of motion in a

neighborhood of the fixation point corresponding to the robot’s foveal camera – reaching is inhibited and

the whole action observed (assuming there is one at all). An example of human poking is shown in figure 10.

[Figure 10 about here.]

The first obvious thing the robot can do is to identify the action just observed with respect to its motor

vocabulary. It is easily done, in this case, by comparing the displacement of the object with the four possible

actions and by choosing the action whose effects are closer to the observed displacement. Indeed it allows

– even if in this limited setting – recognizing a complex action by interpreting its consequences on the

environment. This is orders of magnitude simpler than trying to completely characterize the action in terms

of the observed kinematics of the movement. Here, the complexity of the data we need to obtain from the

observations is somehow proportional to the complexity of the goal rather than that of the structure/skills

of the foreign manipulator. In our case, because the action, the goal, and the object are relatively simple,

the only information required is about the displacement of the object.

Therefore, the next question is whether we can use this “understanding” of observed actions to implement

mimicry behavior. It would be easy now to try to replicate the action just observed if the same object were

presented again. However, there is still a bit of ambiguity in that we can choose to mimic either the observed

displacement of the object or the way the object was poked with respect to its rolling affordance.

We chose to implement the latter. It is clear that poking along a particular observed direction requires

trivial modifications. In practice, after an action is observed the angle between the affordance (see table 2)

and the actual displacement is measured and stored. If it happens to see the same object again, the robot

chooses the action that has the greatest probability of poking the object along the previously stored angle.

Figures 10 and 11 show examples of such mimicry.
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[Figure 11 about here.]

This response is exactly what we would expect from a “mirror-type” representation. The observed action

is interpreted on the basis of the robot own motor code. The same data structure is also used/activated

when performing an action in response to the sight of a known object. The causal link between the two

events that could be separated by several seconds is the object, the goal, and the object’s affordances. There

is considerable precedent in the literature for a strong connection between viewing object manipulation

performed by either oneself or another (Wohlscläger and Bekkering, 2002). There is also a growing evidence

that imitation is goal-directed (Bekkering and Wohlschlager, 2000) and that the object of the action is

explicitly coded (e.g. during reaching) (Woodward, 1998).

9 Towards object recognition

[Figure 12 about here.]

Although poking is a very crude and primitive form of manipulation we have shown that it can help to

bootstrap more complex behaviors without relying on an external teacher. With only minimal assumptions

(using motion as segmentation cue) we were able to build a system that exploits its environment to learn

novel behaviors. If Cog had a dextrous hand, it could further exploit temporal constraints (e.g. an object

remains the same unless it is dropped) to collect tightly/temporally correlated data. There are already

examples in robotics of the acquisition of object categorization based on this kind of temporally correlated

information (Scheier and Lambrinos, 1996). This form of “object constancy” could be exploited for instance

to learn about an object with confusing visual features such as many different colors, different geometric

patterns, and so forth (see the example of the cube in figure 13). A finer form of manipulation can be used

also to group objects on the basis of their behavior rather than purely by visual appearance: e.g. the class of

“bottle” or of “toy cars”. This, in some future implementation, can help the robot to attain a goal by using

a suitable tool (among many) rather than exactly the same tool it used when initially learned the task.

A possible and obvious extension is to use the object segmentation provided by poking (and manipu-

22



23
lation in general) to build models of the appearance of objects beyond the color histogram we used in our

experiments (think again about the colored cube shown in figure 13). Also in this case the robot could work

autonomously on learning. Furthermore, the interaction between manipulator and object provides another

element that can be used to learn about the manipulator itself (see figure 14). The robot can then learn about

the appearance of its own hand or, equally, about the human hand. It is remarkable that the complexity of

the robot manipulator does not necessarily have to match that of the human manipulator. We can envision

a similar procedure to learn about any object that functions as manipulator.

[Figure 13 about here.]

[Figure 14 about here.]

10 Discussion and Conclusions

In this paper, we showed how causality can be probed at different levels by the robot. Initially the environ-

ment was the body of the robot itself, then later a carefully circumscribed interaction with the outside world.

This is reminiscent of Piaget’s distinction between primary and secondary circular reactions (Ginsburg and

Opper, 1978). Objects are central to interacting with the outside world. We raised the issue of how an agent

can autonomously acquire a working definition of objects.

In computer vision there is much to be gained by bringing a manipulator into the equation. Many

variants and extensions to the experimental “poking” strategy explored here are possible. For example,

a robot might try to move an arm around behind the object. As the arm moves behind the object, it

reveals its occluding boundary. This is a precursor to visually extracting shape information while actually

manipulating an object, which is more complex since the object is also being moved and partially occluded

by the manipulator. Another possible strategy that could be adopted as a last resort for a confusing object

might be to simply hit it firmly, in the hopes of moving it some distance and potentially overcoming local,

accidental visual ambiguity. Obviously this strategy cannot always be used! But there is plenty of room to

be creative here. There are also limitations in our current implementation that could usefully be addressed.
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The robot itself is not mobile, so its workspace is limited. There are also many constraints on the arm

that make fine motor control impossible – it cannot maintain all reachable poses indefinitely, and there is

significant noise and some hysteresis in its analog sensors. The robot will only attempt to reach towards a

target that is actually accessible to its arm – not too close, not too far, as determined using visual disparity.

In practice, this means that the ideal workspace is a table in front of the robot, and the motor control of

the robot has been specifically tuned to work well in that situation. A simple attention system and tracking

mechanism are used to bring the robot’s attention to a target. This phase can fail if the robot gets distracted

by some more salient (but unreachable) part of the scene. Objects that move together are not individually

segmented. And segmentation does not always succeed, due to shadows, or strong nearby edges.

In spite of some limitations, the robotic experiments support the view that reaching, grasping, and

recognition can be learned by following a particular ontogenetic pathway without the intervention of an

external teacher. This pathway is consistent with and inspired by what is known of this process in biological

systems (primates/mammals). We have endeavored to build from as few innate components as possible,

to elucidate the visual and motor challenges faced by a learning robot rather than simply solving them

by fiat. Although newborns show amazing abilities (Spelke, 2000) such as early imitation (Meltzoff and

Moore, 1977), face detection, etc, there is also evidence that the maturation of the brain is far from complete

at birth and complex perceptual abilities require a long time to emerge (Kovacs, 2000). We have given a

simple existence proof that object segmentation, recognition and localization can develop without any prior

knowledge of visual appearance. We have also shown that, without any prior knowledge of the human form,

the robot can identify episodes when a human is manipulating objects that are familiar to the robot purely

by the operational similarity of the human arm and its own manipulator in this situation. We believe such

demonstrations are important both in their own right, and in their elucidation of a concrete series of steps

that lead to a desired behavior.

Many researchers have shown now examples of the application of developmental principles in the design

of autonomous systems, for example (Weng et al., 2000; Weng, 2002) and (Metta et al., 1999). This approach

may provide novel directions to robotics. Besides, it may also serve as a useful reference point from which
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to investigate the biological solution to the same problem – although it can’t provide the answers, it can at

least suggest useful questions.
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ed from (Fagg and Arbib, 1998)). As described in the text, three main functions can be iden-

tified: object recognition, reaching, and grasping. These form three parallel yet connected

streams of processing. The circuit connecting the visual cortex to the inferior parietal lobule

VIP, F4 and F1 is thought to compute the visuomotor transformations required to control

reaching. Some evidence also suggests a possible role in the organization of reaching played

by the posterior parietal cortex PO and dorsal premotor area F2, reciprocally connected. AIP

and F5 are responsible for grasping. Temporal areas (TE, TEO) and STs are correlated to

the semantic of object recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 The robot Cog, an upper-torso humanoid. The ultimate goal of this work is for our robot to

follow chains of causation outwards from its own simple body into the complex world. Such

an incremental process suggests that perception and action develop together, supporting each

other. The head, torso, and arms together contain 22 degrees of freedom. . . . . . . . . . . . 39

4 (a) An example of the correlation between optic flow and arm movement. The traces show

the movement of the wrist joint (upper plot) and optic flow sampled on the arm (middle plot)

and away from it (lower plot). (b) The robot’s point of view and the optic flow generated

are shown on the left. On the right are the results of correlation. Large circles represent the

results of applying a region growing procedure to the optic flow. The small circle marks the

point of maximum correlation, identifying the regions that correspond to the robot’s own arm. 40
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5 Predicting the location of the arm in the image as the head and arm change position. The

rectangle represents the predicted position of the arm using the map learned during a twenty-

minute training run. The predicted position just needs to be sufficiently accurate to initialize

a visual search for the exact position of the end-effector. . . . . . . . . . . . . . . . . . . . . 41

6 The upper sequence shows an arm extending into a workspace, tapping an object, and retract-

ing. This is an exploratory mechanism for finding the boundaries of objects, and essentially

requires the arm to collide with objects under normal operation, rather than as an occasional

accident. The lower sequence shows the shape identified from the tap using simple image

differencing and flipper tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 An example of the power of active segmentation. The images marked “scene” show two

presentations of a yellow toy car sitting on a yellow table. The robot extends its arm across

the table. In the upper sequence it strikes from below, in the lower sequence it strikes from

the side (“action” images). Once the arm comes in contact with the car, it begins to move,

and it can be segmented from the stationary background (“object”). On the left of the figure,

a zoomed view of the car/table boundary is shown – the difference between the two is very

subtle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Probability of observing a roll along a particular direction for the set of four objects used in

our experiments. Abscissae represent the difference between the principal axis of the object

and the observed direction of movement. Ordinates the estimated probability. . . . . . . . . 44

9 Histogram of the direction of movement of object for each possible poking action. For each

of the four plots the abscissa is the direction of motion of the object where the 0◦ direction

is parallel to the x axis, and −90◦ to the y axis. The ordinate is the empirical probability

distribution of the direction of motion of the objects. . . . . . . . . . . . . . . . . . . . . . . 45
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10 Basic mimicry. The first step in mimicking an action is to actually be able to observe it.

The first sequence shows a human demonstration of a poking operation. Frames around

the moment of contact are shown. The object, after segmentation, is tracked for 12 frames

using a combination of template matching and optic flow. The big circles represent the

tracked position of the bottle in successive frames. The arrow displayed on the frame of

contact (3rd from the left) projects from the position at the time of contact and at the 12th

frame respectively. In the second sequence, the bottle is presented to the robot in the same

orientation it had in the demonstrated action and the robot repeats the observed action, a

“side tap”. In the third sequence, the car is presented at a different angle. The appropriate

action to exploit the affordance and make the bottle roll is now a “back slap”. . . . . . . . . 46

11 An extended mimicry example using the toy car. The sequences on the left show the robot

mimicking a human exploiting the car’s rolling affordance. The sequences on the right show

what happens when the human hits the car in a contrary fashion, going against its preferred

direction of motion. The robot mimics this “unnatural” action, suppressing its usual behavior

of trying to evoke rolling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

12 Once objects have been segmented from the background, they are much easier to distinguish

from each other since the irrelevant similarity of their shared environment is eliminated. To

build object models, the robot clusters all the segmented views it receives based on similarity of

their color histogram. This figure shows samples from four of the clusters found, corresponding

to the four objects used in Section 7. Note the baseball cap classified with the ball, lower

right – a young child wandered by the robot while we were collecting data and got it to poke

his cap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

13 Poking also gives the robot the opportunity to collect many views of a single object, and so

we can hope to deal with recognizing objects like this toy cube that has a different appearance

from every side (the segmentations shown here were collected automatically). . . . . . . . . 49
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14 Early experiments on segmenting the robot arm, or a human hand poking an object the robot

is familiar with, by working backwards from a collision event. . . . . . . . . . . . . . . . . . . 50
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nature of causation main path function and/or be-
havior

time profile

1 direct causal chain VC-VIP/7b-F4-
F1

reaching strict synchrony

2 one level of indirec-
tion

VC-AIP-F5-F1 poking, prodding,
grasping

fast onset upon con-
tact, potential for de-
layed effects

3 complex causation
involving multiple
causal chains

VC-AIP-F5-
F1+STs+IT

mirror neurons,
mimicry

arbitrarily delayed on-
set and effects

4 complex causation
involving multi-
ple instances of
manipulative acts

STs+TE-
TEO+F5-
AIP(?)

object recognition arbitrariry delayed on-
set and effects

Table 1
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object angle between principal
axis and preferred di-
rection of rolling

behavior

cube n.a. no principal axis, does not roll
car 0◦ rolls along the principal axis
bottle 90◦ rolls at right angle
ball n.a. no principal axis, does roll

Table 2
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Figure 3
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Figure 10
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Figure 12
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Figure 13
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Figure 14
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