

MIRROR Project Review IST-2000-28159

Brussels – December 1st, 2003

First Hour

Introduction

1. Overview of Mirror Projects – Giorgio Metta

Highlights of the second year results

- 2. Model of the learning artifact Jose' Santos-Victor
- 3. Biological experiments Luciano Fadiga
- 4. Development of action Claes von Hofsten

- LIRA-Lab, DIST, University of Genova Italy: G. Sandini, G. Metta
- Dept. of Biomedical Sciences University of Ferrara Italy: Luciano Fadiga, Laila Craighero
- Instituto Superior Técnico Lisbon, Portugal: Josè Santos-Victor, Alex Bernardino, Manuel Cabido-Lopes
- Dept. of Psychology University of Uppsala Sweden: Claes Von Hofsten, Kerstin Rosander

Scientific framework

IST-2000-28159

The project investigates the association between visual information and motor commands in the learning, representation and understanding of complex manipulative gestures (grasping).

taking inspiration from...

Mirror neurons (and 'canonical' neurons)

The neuron is activated by "seeing" someone else's hand performing a manipulative action **and** while the monkey is performing the same action

A mirror neuron is a motor neuron that "recognizes" gestures

- Realize an artificial system (artifact) able to interpret human gestures (hand grasping) by means of a mirror system
- Study the ontogenesis of motor (mirror) representation in humans, monkeys, and robots

MIRROR combines physiology, psychology, and computer science in building a model of the mirror system.

In doing so, we aim at enlarging our understanding of action recognition, interpretation, and communication in biological systems.

Developmental approach

...understanding someone else's actions is much simpler by **being able of performing that action**

In other words the person's ability in interpreting and/or imitating motor acts is facilitated by having learned how to perform that action while observing, **visually and "motorically**", his/her own body

Elements of the model

IST-2000-28159

What do two individuals have in common?

- The effects of the action are shared (visually for example)
- The target object of the action maybe shared
- A similar (if not the same) motor repertoire

Information Society

IST-2000-28159

Individual A

Information Society

Individual B

IST-2000-28159

- An individual can apply his/her own experience in determining which actions are more likely to be successful in manipulating an object
- Knowledge about objects can be acquired by actively manipulating them

IST-2000-28159

Rolls at right Rolls along angles to principal axis principal axis 0.5 0.5 0.4 0.4 Bottle, "pointiness"=0.1 Car, "pointiness"=0.07 0.3 0.3 0.2 0.2 0.1 0.1 6 10 20 30 40 50 60 70 80 90 6 10 20 30 40 50 60 70 80 90 0.5 0.5 0.4 0.4 Cube, "pointiness"=0.03 Ball, "pointiness"=0.02 03 0.3 0.2 0.2 0 0.1 6 6 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 difference between angle of motion and principal axis of object [degrees]

Information Society

Interpretation of other individual's actions can be acquired gradually...

- Learn how to control the hand (acquire motor actions and their visual consequences)
- Learn to associate feasible grasping to object characteristics (associate between objects with their affordances)
- Learn to associate actions performed by others to our own internal representation (recognize) → mirror system

- A formal probabilistic model of affordances and recognition based on motor information
- Investigation on the role of visual information for the response of mirror neurons
- Investigation on the contribution of visual information in interpreting someone else's action
- Investigation on the development of action in human infants

...and of course results!

- Full fledged implementation on a robotic system
- Better understanding of the model

ergo...

Better understanding of biological systems

Intentionally blank

Development...

IST-2000-28159

- Reaching and grasping (1 or 2 mechanisms?)
 UU Rotating rod (Babies)
 DIST Posting Task (Robot)
- Understand effects of manipulation actions

Performed grasps provide all components while observed grasp are only visual

Project funded by the Future and Emerging Technologies arm of the IST Programme FET-Open scheme "Artefefacts that live and grow"

Two sensorimotor components

Information Society

ICT 2000 28159

The role of vision

- How can the association between motor, proprioceptive and visual components be exploited during learning self-generated actions?
- What is the role of vision in learning how to grasps?
- Which visual information is required to "recognize"?

Visuo-motor association

IST-2000-28159

Setup for the acquisition of visual and proprioceptive information to test different learning strategies and visual and motor parameters

Grasp Data Acquisition

IST-2000-28159

Stereo vision

Kinematic data

FrameNumber	HandPositionY	HandPositionZ	IndexPressure
1	23.889401	15.478011	0.373547
2	23.885006	15.482406	0.351573
3	23.889401	15.482406	0.373547
4	23.889401	15.482406	0.351573
5	23.889401	15.486801	0.351573
6	23.889401	15.482406	0.3296
7	23.885006	15.49559	0.307627
8	23.889401	15.49559	0.241707
9	23.889401	15.49559	0.175787

Grasp Data Acquisition

 Early processing of grasp-related visual data (Stereo – viewpoint transformation)

Viewpoint Transformation

Stereo Vision

IST

Test the influence of "seeing the hand" and the object in the mirror system (Setup)

Role of vision in Mirror System

UNIFE and IST

Project funded by the Future and Emerging Technologies arm of the IST Programme FET-Open scheme "Artefefacts that live and grow"

Robot Hand

- 16 degrees joints
- 6 controlled d.o.f.
- Elastic components on all joints
- Hall sensors on all joints

