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1. Introduction 
 

“The goals of MIRROR are: 1) to realize an artificial system that learns to communicate 
with humans by means of body gestures and 2) to study the mechanisms used by the brain 
to learn and represent gestures. The biological base is the existence in primates’ premotor 
cortex of a motor resonant system, called mirror neurons, activated both during execution 
of goal directed actions and during observation of similar actions performed by others. This 
unified representation may subserve the learning of goal directed actions during 
development and the recognition of motor acts, when visually perceived. In MIRROR we 
investigate this ontogenetic pathway in two ways: 1) by realizing a system that learns to 
move AND to understand movements on the basis of the visually perceived motion and the 
associated motor commands and 2) by correlated electrophysiological experiments” (Mirror 
Project Technical Annex). 

 

This deliverable describes a formal biologically compatible model of the functioning of mirror 
neurons as derived from the investigation on the monkey and the current scientific 
understanding of the role of mirror neurons in action recognition. The model is mathematically 
described through the Bayesian formalism which fits naturally to the characteristics of problem 
(i.e. action representation and interpretation). The model also stands as the foundations on 
which to base the robotic implementation. In addition, this deliverable includes results from the 
first implementation and testing on a realistic data set. 

One of the fundamental questions raised by the discovery of mirror neurons which is also the 
main scientific question in the context of Mirror is to: “investigate how “visual-only” information 
of a motor act (not in a self-centered coordinate frame) can be used to index the self-centered 
extended representation, coding the learned action (this indexing is the core of a mirror 
neuron) (see also the technical annex)”. A related question is that of understanding how action 
recognition can be facilitated by the knowledge of how to perform those same actions. 

The first section of this deliverable addresses these questions by proposing a methodology 
that allows an artificial system to perform action recognition relying on motor information. This 
approach differs from the large majority of existing work on computer vision and robotics since 
we explicitly exploit motor information. We show that, by performing classification in motor 
space, the problem is simplified and implicitly provides a much larger degree of invariance to 
changes in the cameras’ point of view. 

This system is built upon a Visuo-Motor Map (VMM) that creates an association between the 
motor representation of the observed gestures (hand postures, in this case) and their visual 
appearance. The VMM is learned from observations within a supervised learning schema. In 
addition, the recognition system takes into account object affordances (see later). Tests were 
conducted employing a dataset collected using the project’s data-glove setup. A thorough 
analysis of the difference in performance resulting from the use of motor or visual 
representations was conducted. 

For the time being, the experiments on gesture recognition based on motor representations, 
have been simplified by employing a simplified color-based strategy to segment the hand and 
object from the background. 

 

1.1. Historical perspective 
The first attempt of modeling perception and action altogether was started several decades 
ago by Alvin Liberman, aiming at the construction of a ‘speech understanding’ machine 
(Liberman et al. 1967, Liberman and Mattingly, 1985, Liberman and Whalen, 2000). As one 
can easily imagine, the first effort of Liberman’s team was directed at analyzing the acoustic 
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characteristics of spoken words, to investigate whether the same word, spoken by different 
subjects, possessed any common phonetic invariant. Soon Liberman and his colleagues 
understood that speech recognition on the basis of acoustic cues alone could not be achieved 
with the limited computational power available at that time. Somewhat stimulated by this 
negative result, they put forward the hypothesis that the ultimate constituents of speech are 
not sounds but rather articulatory gestures that have evolved exclusively at the service of 
language. Accordingly, a cognitive translation into phonology is not necessary because the 
articulatory gestures are phonologic in nature. This elegant idea was however strongly 
debated, mainly because its implementation into a real system was impossible and it only now 
supported by experimental evidence (Kerzel and Bekkering 2001, Fadiga et al. 2002). 

Why is it that, normally, humans can visually recognize actions (or, acoustically, speech) with 
an approximation of about 99-100%? Why the inter-subject variability typical of motor behavior 
does not represent a problem for the brain while it is troublesome for machines? One 
possibility is that Liberman was right in saying that speech perception and speech production 
use a common repertoire of motor primitives that during speech production are at the basis of 
articulatory gestures generation, while during speech perception are activated in the listener 
as the result of an acoustically-evoked motor “resonance”. With the only difference of the 
sensory modality, this sentence might be true also for other, visually perceived, actions. What, 
in both cases, the brain needs is a “resonant” system that matches the observed/listened 
actions on the observer/listener motor repertoire. Note that, an additional advantage of such 
an empathic system would be the capability to automatically “predict”, to some extent, the 
future development of somebody else’s actions on the basis of the observer implicit 
knowledge (on the same actions). 

 

1.2. General setting 
Recent neuroscience results suggest a critical role for motor action in perception. Certainly 
vision and action are intertwined at a very basic level. While an experienced adult can 
interpret visual scenes perfectly well without acting upon them, linking action and perception 
seems crucial to the developmental process that leads to that competence. We can construct 
a working hypothesis: that action is required whenever the animal (or our artifact in the 
following) has to develop autonomously. Further, the ability to act is also fundamental in 
interpreting actions performed by a conspecific. Of course, if we were in standard supervised 
learning setting action would not be required since the trainer would do the job of pre-
segmenting the data by hand and providing the training set to the machine. In an ecological 
context, some other mechanism has to be provided. Ultimately this mechanism is the body 
itself and the ability of being the initiator of actions that by means of interaction (and under 
some suitable developmental rule) generate percepts informative to the purpose of learning. 

Grossly speaking, a possible developmental explanation of the acquisition of these functions 
can be framed in terms of tracing/interpreting chains of causally related events. We can 
distinguish four main conceptual functions (similar to the schema of Arbib et al. (Arbib, 1981)): 
reaching, grasping (manipulation), “imitation” as per the mirror response, and object 
recognition. These functions correspond to the four levels of causal understanding introduced 
in Table 1. We do not delve deeper into the description here, suffices to say that they form an 
elegant progression of abilities which emerge out of very few initial assumptions. All that is 
required is the interaction between the actor and the environment, and a set of appropriate 
developmental rules specifying what information is retained during the interaction, the nature 
of the sensory processing, the range of motor primitives, etc. 

Neurophysiology tells us that neurons from area F5 are involved in the control of grasping and 
manipulation. F5 projects then to the primary motor cortex for the fine control of movement. It 
has been already hypothesized that the AIP-F5 system responds to the “affordances” of the 
observed object with respect to the current motor abilities. Arbib and coworkers (Fagg & Arbib, 
1998) proposed the FARS model as a possible description of the computation in AIP/F5. They 
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did not however consider how affordances can be actually learned during the interaction with 
the environment. Learning and understanding affordances requires a prolonged 
developmental time, when information about the manipulative action (motoric and visual), 
about the target object, and about the goal of the action is integrated. Most of the F5 neurons 
have a pure motor response. However, approximately a third of them is also responsive to 
visual cues. In particular, the analysis of the responses of neurons in F5 allowed identifying 
two different classes with unique responses: they were called canonical and mirror neurons 
respectively. In short, canonical neurons respond both when the monkey is acting – e.g. 
grasping a peanut – and when fixating the same object – e.g. just watching the peanut on a 
tray. Mirror neurons respond similarly when the animal is actively involved in performing an 
action – e.g. grasping the same peanut as above – but they have a quite different visual 
response, in fact, they respond to the observation of a similar grasping action performed by 
somebody else. 

The first step in our developmental model requires thus the construction of the F5 “canonical” 
responses. The rationale is that having an understanding of the possible actions that an object 
“affords” simplifies the problem of recognizing when we observe someone else acting on the 
same object. In practice, the link between actively executing an action and just watching the 
action execution is not only as simple as depicted here. It is worth noting here that key 
element to the formation of an association between seeing an action and recognizing it is not 
quite the specific kinematics of the action but rather the achievement of a specific goal. 
Biologically, mirror neuron responses are evoked only when the action has a visible goal (the 
object). Neurons remain silent if the experimenter only mimics the action without a visible goal 
(e.g. pretending to grasp a peanut that is not there). 

Consequently, the next step along this hypothetical developmental route is to acquire the F5 
mirror representation. We might think of canonical neurons as an association table of 
grasp/manipulation (action) types with object (vision) types. Mirror neurons can then be 
thought of as a second-level associative map which links together the observation of a 
manipulative action performed by somebody else with the neural representation of one's own 
action. Mirror neurons bring us to an even higher level of causal understanding. In this case 
the action execution has to be associated with a similar action executed by somebody else. 
The two events do not need to be temporally close to each other and arbitrary time delays 
might occur. 

 

Nature of causation Main path Function and/or behavior 

Direct causal chain VC-VIP/LIP/7b-F4-F1 Reaching 

One level of indirection VC-AIP-F5-F1 Grasping 

Complex causation 
involving multiple causal 
chains 

VC-AIP-F5-F1+STs+IT Mirror neurons, mimicry 

Complex causation 
involving multiple 
instances of 
manipulative acts 

STs+TE-TEO+F5-AIP(?) Object recognition 

Table 1 Degrees of causal indirection, localization and function in the brain. 

 

As we will see, the next key aspect of the model is the “presence” of motor information into the 
decisional process. The question we might try to answer is whether this buys us anything. 
Intuitively we might think of motor signals as a sort of “reference frame”. If we could map 
everything we see (our visual input) into this motor reference frame we would gain the ability 
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to reason invariantly from the point of view. It would not matter the point of view visual 
information was gained from, the resulting action could be mapped, rotated, transformed just 
by transforming the motor information. Furthermore, this hypothetical learning system would 
have straightforward path from observation (perception) to action. Motor information would be 
already there. Although reenacting the same trajectory is not quite enough for imitating a goal, 
it is already a good starting point. 

 

2. Gesture recognition with motor representations 
From the above discussion, two core elements of the prospective mirror neurons model 
emerge, namely, the use of motor information (or coding) also during the recognition of 
somebody else’s actions and the use of object affordances (we provided support for the 
relevance of the target object during action execution). 

In practice, many objects are grasped in very precise ways, since they allow the object to be 
used for some specific purpose or goal. A pen is usually grasped in a way that affords writing 
and a glass is held in such a way that we can use it to drink. Hence, if we recognize the object 
being manipulated, then recognition immediately provides some information about the most 
likely grasping possibilities (expectations) and hand appearance, simplifying the task of 
gesture recognition. 

The affordances of the object possess an attentional-like1 property because the number of 
possible (or likely) events is reduced. Affordances provide expectancies that can be used to 
single out possible ambiguities. This has clearly to be a module of our overall system 
architecture. 

The common approach to recognition involves comparing acquired visual features to data 
from a training set. Differently, our approach is based on the use a Visual-Motor Map (VMM) 
to convert such measurements to a motor space and then perform the comparison/recognition 
in terms of motor representations. The advantage of doing this inference in motor space is 
two-fold. Firstly, while visual features can be ambiguous, we were able to show that converting 
these features to the motor space might reduce ambiguity. Secondly, since motor information 
is directly exploited during this process, imitative behaviors could be trivially implemented 
given that all the information/signals are already available. 

To use motor representations for grasp recognition, we need to define Visuo-Motor maps to 
transform visual data onto motor information. The VMM can be learnt during an initial phase of 
self-observation, while the robot performs different gestures and learns their visual effects. 
The question that remains to be addressed is that of choosing what visual features to use. As 
we will focus on the classification and imitation of coarse gestures (e.g. power grasp and 
precision grip), we will rely on global appearance-based image methods. Together with the 
prior information provided by the “canonical neurons” (or their artificial implementation 
thereof), appearance based methods offer an easier, fast and more robust representation than 
point tracking methods. In the next section we will present a Bayesian approach for a gesture 
recognition that includes models of the canonical and mirror neurons, using visual appearance 
methods. 

During the self-observation phase the machine could observe its own actions together with the 
hand’s visual appearance. Since the machine is the initiator of the action it could possibly 
relate visual consequences of enacted movements with the corresponding motor commands. 

                                                 
1 Attention in the sense of selecting relevant information out of a possibly much larger space. 
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Through this process the robot might perform many gestures and learn what effect they 
produce on visual re-afferences and on the objects in the environment. 

Once the VMM has been estimated, one can transform actions observed from a specific point 
of view into an “internal” motor description that can either be used for recognition or to elicit 
the corresponding gesture (in an imitation setting). 

In addition to learning the VMM, self-observation is also crucial for learning associations 
between classes of objects and classes of grasp types – i.e. the “canonical” neuron 
representation. Through object manipulation, one can possibly learn which grasp types are 
successful for a certain class of objects. When observing others manipulating objects, we can 
learn the most likely grasp types or specific use for a given class of objects. We refer to these 
combinations of action, manipulator’s skills, and object as a type of affordances (J.J. Gibson, 
The Ecological Approach to Visual Perception, Houghton Mifflin, Boston, 1979). For 
recognizing gestures (grasp types), affordances provide prior information as to which gestures 
are more likely given a certain object (similarly to what the response of F5 canonical neurons 
together with area AIP provides to the monkey). 

Within this model, recognition is only based on the final phase of the gesture – that is 
grasping. Figure 1, for example, illustrates the appearance of the hand during the approach 
phase (left panel), together with the final phase of two types of grasp that were used in this 
work: precision grip (rightmost panel) and power grasp (center panel). 

 

  
 
Figure 1: Hand appearance during the approach phase (left), power grasp (center) and 
precision grip (right). 
 
Gesture recognition has been addressed in the computer vision community in many different 
ways (J. Rehg and Takeo Kanade, Visual tracking of high DOF articulated structures: an 
application to human hand tracking, ECCV, 1994), (D.M. Gavrila. The visual analysis of 
human movement: A survey. CVIU 73(1), 1999). The difficulty of hand tracking and 
recognition arises from the fact that the hand is a deformable, articulated object that may 
display many different appearances depending on the configuration, viewpoint, and/or 
illumination. In addition, there are frequent occlusions between hand parts (e.g. fingers). 

Modeling the hand as an articulated object in the 3D space implies extracting and tracking 
finger-tips, fingers, and other notable points in the image. This is, in general, quite difficult 
depending on the viewpoint or the image acquisition conditions. To overcome this difficulty, we 
exploit a more iconic representation of the hand’s shape. 

In summary, the main contributions of this work are the following: 

• Recognition is based on motor information, since it is invariant to the viewpoint as 
perhaps suggested by the existence of mirror neurons. 

• Object affordances are modeled in the overall classification scheme (analogue to 
canonical neurons). 
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• The Visuomotor Map (VMM) is learned during self-observation, while the system can 
generate a large variety of stimuli. The hand appearance is used directly in this 
process, avoiding an explicit model-based kinematic reconstruction of the posture of 
the hand. 

• We show that the use of motor features allows better and more robust classification. 

The next section describes a Bayesian approach to gesture recognition that includes a 
biologically compatible model of the role of canonical and mirror neurons and uses visual 
appearance methods. The approach leads to notable classification rates while classification 
occurs in motor space. 

 

2.1. A Bayesian model for canonical and mirror neurons 
Gesture recognition can be modeled in a Bayesian framework, which allows naturally 
combining prior information and knowledge derived from observations (likelihood). The role 
played by canonical and mirror neurons will be interpreted within this setting. 

Let us assume that we want to recognize (or imitate) a set of gestures, Gi, using a set of 
observed features, F. For the time being, these features can either be represented in motor 
space or in visual space (directly extracted from images). Let us also define a set of objects, 
Ok, present in the scene that represent the goal of a certain grasp actions. 

Prior knowledge is modeled as a probability density function, p(Gi|Ok), describing the 
probability of each gesture given a certain object. The observation model is captured in the 
likelihood function, p(F|Gi,Ok), describing the probability of observing a set of (motor or visual) 
features, conditioned to an instance of the pair of gesture and object. The posterior density 
can be directly obtained through Bayesian inference: 

 

 

(1)

 

where p(F|Ok) is just a scaling factor that will not influence the classification. The MAP 
estimate, GMAP, is the gesture that maximizes the posterior density in Equation (1). In order to 
introduce some temporal filtering, features of several images can be considered: 

 

 
 

where Fj are the features corresponding to the image at time instant j. The posterior probability 
distribution can be estimated using a naive approach, assuming independence between the 
observations at different time instants. The justification for this assumption is that recognition 
does not necessarily require the accurate modeling of the density functions. We thus have: 
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2.1.1. The role of canonical and mirror neurons 

The role of canonical neurons in the overall classification system lies essentially in providing 
affordances modeled as the prior density function p(Gi|Ok) that, together with evidence from 
the observations, will shape the final decision. This density can be estimated by the relative 
frequency of gestures in the training set. 

Canonical neurons are also somewhat involved in the computation of the likelihood function, 
since it depends both on the gesture and the object, thus implicitly defining another level of 
association between these two. Computing the likelihood function, p(F| Gi, Ok), might be 
difficult because the shape of the data clusters might in fact be rather complex. We modeled 
these data clusters as mixtures of Gaussian random variables and the Expectation-
Maximization algorithm was used to determine both the number of Gaussian terms and their 
coefficients. 

 

a) Visual versus motor features 

An image contains a large amount of highly redundant information. This allows for the use of 
methods whereby the image information is compacted in lower dimensional spaces, and 
consequently boosting computational performance. In the following, visual features consist of 
projections of the original image onto linear subspaces by using Principal Components 
Analysis (PCA). Initial input images were compressed to a 15 dimension coefficient vector. 

Rather than representing the hand as a kinematic model built from tracked relevant points at 
the fingers and finger tips, we coded directly the image a set of templates projected in the low-
dimensional subspace. This method has the advantage of being robust and relatively fast. 

Under certain reasonable assumptions motor features might correspond to proprioceptive 
information about the hand/arm pose/motion. In our experiments (see also Mirror- “First Year 
Progress Report”, PPR-1) this was obtained through the use of the Mirror data-glove based 
setup that records 23 joint angles of someone's hand performing a grasping action 
synchronized with a sequence of images of the scene (binocularly). 

 

b) Visuo-Motor Map 

The Visuo-Motor Map transforms the PCA features defined in the previous section from the 
visual space into the motor space: 

 

 
 

As the structure of the transformation might be complicate, it was learned by means of a set 
multi-layer perceptron neural network: one complete neural network with a single output for 
each joint angle. For each network, i , the input consists of a 15-dimensional vector FV, which 
contains the PCA components extracted from the imaged hand appearance. The output 
consists of a single unit, coding the corresponding joint angle, FM. There are 5 neurons in the 
hidden layer. 
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We assumed that FV is captured across many different view points. This is “large variance” 
could be generated theoretically during self-observation since a huge variety of hand 
configurations can be easily displayed. Otherwise, a view-point transformation could be used 
to pre-transform the visual data as for example in: (M. Cabido-Lopes and J. Santos-Victor. 
Visual transformations in gesture imitation: What you see is what you do, ICRA - International 
Conference on Robotics and Automation, Taiwan, 2003). 

In our experiments, each neural network was trained with momentum and adaptive back-
propagation with the data pre-processed to have zero mean and unitary variance. It converges 
to an error of 0.01 in less than 1000 epochs. Figure 2 shows trajectories (solid-line) for a joint 
angle of the little finger when performing several precision grips, and estimated position of the 
same joint angle as predicted from image data by means of the corresponding VMM. The 
dashed-line in the figure shows that the trajectory reconstructed through the neural-VMM is in 
very close agreement with the "true" values. 

 

 
Figure 2: A sequence of several trials of a precision grip experiment. Solid line: original motor 
information. Dotted Line: reconstructed motor information using the Visual-Motor Map (VMM). 

 

Even inside each grasp class variability is very large. This is due mainly to the difference in 
posture forced by the actual grasped objects, and it clearly illustrates how the visually 
observed features depend not only on the "grasp" type but also on the manipulated object 
(see Section 2.1.1 for discussion).  

Finally, an additional aspect is that the VMM does not necessarily need to map into the hand 
joint space. In fact, motor features allowing a more compact representation could perhaps be 
used. This will be subject of further investigation in the future. 
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2.2. Experimental results 
For the results presented here, we used a data set acquired with the data-glove setup (see 
Mirror – 1st Year Progress Report for details). Several subjects were asked to perform different 
types of grasp on a small set of objects. Each experimental trial began with the subject sitting 
on a chair and the hand on the table. Then, the subject was told to grasp the object that is in 
front of him (no specific instructions were given). The experiments include two types of grasp: 
power grasp and precision grip. Power grasp is defined when all the fingers and palm are in 
contact with the object. Instead, in precision grip, only the fingertips touch the object. 

The three objects considered were a small sphere, a large sphere, and a box. The size of the 
small sphere is such that only precision grip is feasible in practice. The big sphere allows only 
power grasp. The box is ambiguous since it allows all possible grasps with different 
orientations. 

Every experiment was repeated several times under varying conditions. The subject and the 
camera went around the table to cover a large set of points of view. Sequences were recorded 
binocularly although all experiments were performed monocularly. In total, we recorded the 
same grasp type from 6 different orientations (12 if we consider that we have a binocular 
vision). Motor information was recorded through the data-glove. From the 23 joint angles 
sequences we used only 15 values that correspond to all the joint angles of the fingers (3 for 
each finger). Finger's abduction and palm and wrist flexion were also available. They were not 
used in these experiments. Altogether the dataset contains 60 grasp sequences with 3 
objects, 2 grasps with 6 different orientations. 

Figure 3 shows sample images of the dataset acquired according to procedure just described. 
If we were to consider also the posture of the arm some of these images would not be actually 
realizable through self-observation only. Since we were only considering the hand, all 
postures in the database can be attained since moving the arm allows positioning according to 
all our recording viewpoints. 

 
Figure 3: Data set illustrating some of the used grasp types: power (left) and precision (right). 
Altogether the tests were conducted using 60 sequences, from which a total of about 900 images 
were processed. 
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Every video sequence was automatically processed in order to segment the hand. First, a 
color-based clustering method, in the Y-Cr-Cb space, was applied to extract skin-colored 
pixels. The bounding box is determined based on the vertical/horizontal projections of the 
detected skin region. Finally, the hand is resized to a constant scale before applying the PCA. 
This approach yields uniformly scaled hand image regions. Figure 4 presents some 
segmentation results. 

 

 

Figure 4: Segmentation results of 
scale-normalized hand regions 
automatically detected from color 
clustering. 

 

Table 2 shows the classification rates obtained in a set of different experimental conditions. It 
allows us to compare the benefits of using the motor representation for classification as 
opposed to visual information only. The results shown correspond to the use of the ambiguous 
objects only when recognition is more challenging. We varied the number of viewpoints 
included in both the training and test sets so as to assess the degree of view invariance 
attained by the different methods. 

In the first experiment, both the training and test sets correspond to a single viewpoint. 
Training was based on 16 grasp sequences, while test was done in 8 (different) sequences. 
The achieved classification rate was 100%. The number of visual features (number of PCA 
components) was also tuned and the value of 5 provided good results. The number of modes 
(Gaussians in the mixture trained through the EM algorithm) was typically from 5 to 7. 

The second experiment shows that this classifier is not able to naturally generalize to other 
viewpoints and/or camera positions. We used the same training set as in the first experiment, 
but the test-set was this time formed with image sequences acquired from four different 
camera positions. In this case, the classification rate is worse than random (30%). That is, 
visual information only cannot generalize well to other viewpoints. 

In the third experiment, we added viewpoint variability in the training set. When sequences 
from all available camera positions were included in the training set the classification rate in 
the test set dropped to 80%. While this is a more acceptable value, it is nevertheless 
significant lower from the desired 100%. This result shows that the change of the viewpoint 
introduces such non-trivial modifications in the hand appearance that classification errors 
occur. 

The final experiment corresponds to the mirror approach. The system learns the VMM during 
the initial period of self-observation. Subsequently, the VMM is used to transform the 
(segmented) hand images into motor representation (joint angles) where the classifier is 
applied. High rates of classification were achieved (97%). Interestingly, the number of modes 
needed for the learning the conditional probabilities was only between one and two in this last 
case as opposed to 5-7, when recognition took place in the visual domain (experiments 1 to 
3). This also clearly shows that mapping visual data into a specific motor representation helps 
the clustering of the data, as the latter is now intrinsically viewpoint invariant. Notice that 
viewpoint invariance is achieved even when the training set only contains sequences from a 
single viewpoint. 
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Table 2. Grasp Recognition 
results. Notice the improvement 
obtained in the classification rate 
and viewpoint invariance due to 
the use of motor features. 

 

These experiments show that a motor representation clearly describes the hand better when 
gesture recognition is the goal due to its inherent viewpoint independence. As only visual 
information is available during recognition the process greatly depends on the quality of the 
VMM approximation. Nonetheless, we believe that these results also validate the approach 
taken in estimating the VMM. For the case of only one camera position the quality obtained 
was more than acceptable with only 15 visual features. On the other hand, the use of motor 
features for recognition has the additional advantage of transforming imitation into a simpler 
problem since all the “reasoning” could be performed in motor terms. Figure 5 shows a 
simulated robotic hand imitating an observed gesture. 

 

 

Figure 5: Reconstruction 
results of our model hand, 
obtained with the VMM 

 

2.3. Conclusions 
Although on a superficial reading it might seem that the Bayesian model encompasses all 
what it has to be said about mirror neurons, in fact it is substantially a supervised learning 
model. To relax the hypothesis of having to “supervise” the machine during training by 
indicating which action is which we need to remind what the evidence on mirror neurons tells 
us. First of all, it is plausible that the ‘canonical’ representation is acquired by self exploration 
and manipulation of a large set of different objects. F5 canonical neurons represent an 
association between objects’ physical properties and the action they afford: e.g. a small object 
affords a precision grip, or a coffee mug affords being grasped by the handle. This 
understanding of object properties and the goal of actions is what can be subsequently 
factored in while disambiguating visual information. There are at least two level of reasoning: i) 
certain actions are more likely to be applied to a particular object – that is, probabilities can be 
estimated linking each action to every object, and ii) objects are used to perform action – e.g. 
the coffee mug is used to drink coffee. Clearly, we tend to use actions that proved to lead to 



IST-2000-28159 (MIRROR) April 30, 2003

 

Deliverable 2.5 13

certain results or, in other words, we trace backward the link between action and effects: to 
obtain the effects apply the same action that earlier led to those effects. 

Bearing this is mind, when observing some other individual’s actions; our understanding can 
be framed in terms of what we already know about actions. In short, if I see someone drinking 
from a mug I can hypothesize a particular action (that I know already in motor terms) is used 
to obtain that particular effect (of drinking). This link between mirror neurons and the goal of 
the motor act is clearly present in the neurons’ response. It is also the only possible way of 
autonomously learning a mirror representation. Technically speaking, the learning problem is 
still a supervised one but the information can now be collected autonomously. The association 
between the canonical response (object-action) and the mirror one (including vision of course) 
is made when the observed consequences (or goal) are recognized as similar in the two 
cases – self or others acting. Similarity can be evaluated following different criteria ranging 
from kinematic (e.g. the object moving along a certain trajectory) to very abstract (e.g. social 
consequences such as in speech). 

In summary, we have presented a framework for gesture recognition based on a model for 
canonical and mirror neurons in general accordance with what is known about the physiology 
this specific brain area. In this model, canonical neurons provide prior information in terms of 
object affordances which narrows the attentional span of the system, allowing unlikely 
gestures or hand appearances to be immediately discarded. The fact that, despite being 
located in a motor area of the brain, mirror neurons are active during both the execution and 
recognition of an action, suggests that recognition takes place in motor terms rather than in 
visual space. 

We proposed a Bayesian formulation where all these observations are taken into account. We 
described how to estimate the prior densities and likelihood functions directly from the data. A 
visuomotor map is used to transform image data into the motor data. The VMM is supposedly 
learnt during an initial period of self-observation. The use of the VMM proved to be good for 
classification and additionally as an extra advantage it bears the potential of simplifying 
gesture imitation. 

Although hand posture recognition is in general quite difficult, grasp classification benefits 
from using this extra information. Temporal integration and object-related cues are very useful 
for recognition. Occlusions and ambiguous positions of the hand can also be solved if 
temporal information is included. The observation of a given object “conveys” information 
about the possible and the most probable grasp types for that object class. Expectations of the 
hand appearance can also be created. 

The results show that it is possible to achieve almost 100% recognition rates. Notably, the 
approach overcomes the need for complex schemes for detecting and tracking the fine details 
of the hand on the video sequences. 
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