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Abstract

Many existing independent component anal-
ysis algorithms include a preprocessing stage
where the inputs are sphered. This amounts
to normalising the data such that all correla-
tions between the variables are removed. In
this work, I show that sphering allows very
weak contextual modulation to steer the de-
velopment of meaningful features. Context-
biased competition has been proposed as a
model of covert attention and I propose that
sphering-like normalisation also allows weaker
top-down bias to guide attention.

1. Introduction

One of the longstanding questions in machine learn-
ing is how to extract from sensory inputs meaning-
ful features which are most useful for motor control,
predicting future rewards, etc. I propose a learn-
ing scheme and a model architecture which combine
ideas from various machine learning techniques and
models of neural information processing. The learn-
ing scheme is close to unsupervised learning but it
can use supervisory signals to steer learning to pro-
vide representations that are most useful for the sys-
tem. The model is designed to be an integral part of
an autonomous robot but the basic principle seems
useful for various other tasks, too.

The learning scheme is based on denoising
source separation (DSS) which is a recently in-
troduced framework for constructing source sep-
aration algorithms around a denoising procedure
(Särelä and Valpola, 2004). Depending on the type
of denoising, the learning scheme can range from
fully unsupervised to mostly supervised. Here
I consider a hierarchical, nonlinear model where
increasignly abstract features are extracted from
bottom-up inputs under the guidance of lateral, top-
down and temporally delayed context. The context
is used to implement the denoising required in DSS.

Interestingly, the present model, which was origi-
nally designed for feature extraction, turned out to
be similar in many respects to a model of visual

attention (Duncan and Humphreys, 1989) where at-
tention emerges from top-down bias and local com-
petition in a hierarchical network. In this article,
I elaborate on the links between feature extraction
and emergent attention. I propose that they can be
viewed as similar processes operating on two differ-
ent timescales. One of the principal ingredients of
DSS is normalisation which allows very weak contex-
tual influence to guide feature extraction. I propose
that similar normalisation is also useful for attention
mechanisms.

The rest of this article is structured as follows.
Feature extraction and attention models which are
the background for this work are introduced in Sec. 2.
The new model and connection to models of atten-
tion are proposed in Sec. 3 and experiments using the
new model are presented in Sec. 4. Finally, Sec. 5 dis-
cusses how the goals and value system of the robot
are able to guide feature extraction and attention
and what are the implications of the new model.

2. Background

This section first briefly introduces the feature ex-
traction algorithms on which the proposed approach
is based. Finally, models where attention emerges
from biased competition are discussed.

2.1 Denoising source separation

Recently, blind source separation techniques have re-
ceived a lot of attention in the signal processing com-
munity (Hyvärinen et al., 2001) and related models
have been shown to bare resemblance to cortical fea-
ture extraction (Olshausen and Field, 1996). DSS
is a recently developed framework for constructing
source separation algorithms around a denoising pro-
cedure (Särelä and Valpola, 2004). The basic ingre-
dients for a DSS-based algorithm are sphering, de-
noising and competitive, Hebbian-type learning.

Sphering refers to a normalisation scheme where
signals are decorrelated and their variances are nor-
malised. It is used by many blind source separation
algorithms as preprocessing since it makes it possi-
ble to use simple correlation-based learning. With-
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Figure 1: Original data set (a), after sphering (b) and af-

ter denoising (c). After these steps, the projection yield-

ing the best signal-to-noise ratio, denoted by arrow, can

be obtained by simple correlation-based learning.

out normalisation, learning would be biased towards
the signals with the highest energy. These are often
not the most useful signals. In DSS, sphering en-
ables very weak and vague influence to guide signal
extraction towards signals which are sought for. The
processing stages of DSS are shown in Fig. 1.

2.2 Hierarchical nonlinear models

Slow feature analysis (SFA) is a technique for find-
ing temporally-invariant features. With natural im-
ages as inputs, it has been shown to learn features
baring similarity to those found at the early stages
of visual system (Wiskott and Sejnowski, 2002). In
SFA, the observations are first expanded nonlinearly
and sphered. The expanded data is then high-pass
filtered and projections minimising the variance are
estimated. Due to the nonlinear expansion, it is pos-
sible to stack several layers of SFA on top of each
others to extract higher-level, slowly-changing fea-
tures, resulting in hierarchical SFA.

SFA is directly related to DSS. Instead of
minimising the variance after high-pass filtering
as in SFA, it is also possible to maximise the
variance after low-pass filtering. SFA is thus
equivalent to DSS with nonlinear data expan-
sion and low-pass filtering as denoising. The
structure of SFA is depicted in Fig. 2 from this
viewpoint. SFA shares many features with earlier
methods proposed for temporally-invariant feature
extraction (Földiák, 1991, Kohonen et al., 1997,
Parga and Rolls, 1998).

A common setup in large hierarchical models is
that consequtive layers are sparsely connected. In
neocognitron, for instance, the connections are to-
pographic and localised (Fukushima, 1980). Each
level compiles increasingly abstract features from lo-
cal features at the previous level. At the highest
levels, the features can be global and multi-modal.

2.3 Competition

Most feature extraction models which are learned in
unsupervised manner have either an explicit or im-
plicit competition mechanism. Explicit implemen-
tations include winner-take-all mechanisms and in-
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Figure 2: Left: One processing stage in SFA consists of

feature expansion and sphering followed by denoising and

dimension reduction. Denoising is implemented by low-

pass filtering. Right: A two-level hierarchy of three SFA

modules is shown on the right.

hibitory lateral or top-down connections that decor-
relate activations. Implicit mechanisms include or-
thogonalisation of bottom-up weights. The purpose
of the competition mechanism, whether explicit or
implicit, is to guarantee that a diverse set of features
develops. Without competition, all features might
develop to represent exactly the same thing.

Local lateral inhibitory connections are often used
in biologically motivated models. They need to be
combined with localised bottom-up connections be-
cause otherwise the developed features would be re-
dundant outside the range of the lateral inhibition.

2.4 Context-guided feature extraction

In hierarchical nonlinear models, such as a hierar-
chical SFA, each processing stage takes the features
learned at the previous level and assembles new,
more abstract features which are passed on to the
next level. In such a system, feature extraction boils
down to defining what is a useful abstraction. Raw
input, such as camera images, often contains a vast
amount of information and in order to be useful, the
high-level representation needs to discard most of the
information while retaining the meaningful parts.

Following several researchers, I argue that the
mutual information between the features and con-
text is an excellent criterion for developing use-
ful features. One of the early developments in
that direction was canonical correlation analysis
(CCA), a statistical technique which is designed to
find linearly correlated features from two data sets
(Hotelling, 1936). Since then, the criterion has been
extended from linear correlation to mutual informa-
tion (Becker and Hinton, 1992) and from relation be-
tween two data sets to a more general concept of con-
text. The context can include features at the higher
levels (top-down context), features at distant neigh-
bouring areas on the same level (lateral context) and
features delayed in time (temporal context). For a
recent review, see e.g. (Körding and König, 2001).

Figure 3 demonstrates how lateral and top-down



context can affect the interpretation of individual
parts of images. In this case the context causes
two identical low-level feature combinations to be
interpreted differently while in some other cases
the context can cause two different low-level fea-
ture combinations to be perceived the same. Con-
text can thus aid at defining categories at percep-
tual timescale. When learning is activity-dependent,
perceptual categorisation influences learning of cate-
gories. For example, word categories and other sim-
ilar features have been shown to be learned based
on similarities of the contexts in which words occur
(Ritter and Kohonen, 1989, Honkela et al., 2003).

Figure 3: Depending on the context, it is possible to per-

ceive either “RB” or “12 13” although those parts are

identical in the two cases. This contextual influence is

learned and the strength of the effect thus depends on

such factors as the language and handwriting the ob-

server is used to.

2.5 Emergent attention from biased compe-

tition

Contextual bias, predominantly top-down bias,
combined with local lateral competition has
been proposed as a model of covert attention
in humans (Duncan and Humphreys, 1989). In
simulations, such models have replicated many of
the phenomena found in neurophysiological exper-
iments (see, e.g., (Reynolds and Desimone, 1999,
Reynolds et al., 1999, Deco and Schürmann, 2000,
Deco and Rolls, 2004, Spratling and Johnson, 2004)).
Attention can thus be seen as a dynamic process
emerging from an interplay between long-range
excitatory and local inhibitory connections. Dif-
ferent strengths of excitation and inhibition have
been shown to give rise to several distinct func-
tional regimes, covert attention being one of them
(Szabo et al., 2004).

3. Proposed model

In this section, I introduce a feature extraction model
which is based on the principles introduced in the
previous section. I also suggest that context-guided
feature extraction and emergent attention discussed
in the previous section reflect the same principle but
operate on different timescales.

3.1 Overall model structure

I propose that features can be extracted from sphered
inputs via competitive learning which is biased by
the context. Within DSS framework, context can be

seen to provide information for denoising the activa-
tions. Sphering is important because it allows very
weak contextual guidance to steer feature extraction.
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Figure 4: Left: One module consists of feature expansion

and sphering followed by denoising and dimension reduc-

tion. Denoising is guided by context and is implemented

by biased competition. Right: A two-level hierarchy of

three modules is shown on the right. Dashed lines denote

contextual inputs (top-down, lateral and delayed). Note

the close resemblance with Fig. 2.

Slow feature analysis is closely related to the above
scheme if the context of each feature is limited to
the delayed value of the same feature. High mutual
information is in practice usually achieved if the fea-
ture changes slowly. If the context includes more
delayed values of the same feature or of other fea-
tures, the feature no longer needs to change slowly.
It is enough that the feature is predictable in the
context. In speech, for instance, the target features
could be phonemes. They can change faster than
the input features, spectra, but phonemes are highly
predictable given the context. Figure 4 highlights
the similarity of SFA and the proposed scheme. The
main difference is the criterion for denoising.

The basic ingredients of the model are the follow-
ing:

• hierarchical architecture with a distinction be-
tween bottom-up and contextual inputs

• contex consisting of top-down, lateral and de-
layed inputs

• initial processing stage of feature expansion and
sphering of bottom-up inputs

• subsequent processing stage integrating the
sphered features with the context

• localised bottom-up connections and local com-
petition

• neuron-like elements computing weighted sums
of their inputs and activity-based Hebbian-like
learning of the weights

There are several possible ways to implement the
above model and it is unlikely that exact details are
important.



The purpose of the initial processing stage is
twofold. First, nonlinear feature expansion enables
the model to implement a nonlinear mapping. Sec-
ond, sphering renders the variance of all projections
of the expanded feature space equal, allowing mini-
mal contextual influence to guide feature extraction.

The second processing stage applies dimension re-
duction to the expanded feature space guided by the
context. This is implemented by abstracted neurons
that compute weighted sums of their inputs. The
crucial point is that bottom-up inputs and context
have separate sets of weights that are normalised in-
dependently and whose relative contribution is fixed.
If the second processing stage is linear, essentially im-
plementing principal component analysis (PCA), an
infinitesimal contribution of the context is in princi-
ple able to bias dimension reduction.

An example of this is provided by CCA imple-
mented within DSS framework. CCA can be be im-
plemented by sphering the two given data sets and
applying PCA for each data set such that the each
principal component uses as its context the corre-
sponding principal component from the other data
set. CCA is the limiting case where the contribution
of the context goes to zero. Figure 5 illustrates non-
linear CCA, which includes nonlinear feature expan-
sion (Lai and Fyfe, 2000). In the proposed model,
the contribution of the context is nonzero but small
and the context is richer than in CCA.
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Figure 5: Nonlinear CCA can be implemented using the

proposed model if the context of each PCA component

is limited to the corresponding PCA component of the

other data set and the contribution of the context is in-

finitesimal. If a delayed version of the data is used as the

other data set, SFA follows (Friman et al., 2002).

Finally, note that while the bottom-up inputs need
to be localised and match in extent the radius of lo-
cal competition in the proposed model, there is no
such restriction for contextual inputs. As long as
the context only has a modulatory role and cannot
activate the neurons without the bottom-up inputs,
there is no risk of developing redundant features be-
cause outside the radius of the competition, the driv-
ing bottom-up inputs are different.

3.2 Detailed implementation

In order to keep things as simple as possible, batch
learning is used, i.e. the parameters of the model
are updated only after going through all the data.
The advantage of batch learning is that parameters
related to learning rates are not needed. In a real
autonomous robot the model will obviously be im-
plemented using online learning.

Instead of having a continuous field of neurons
with localised inhibitory connections, discrete mod-
ules are used. Any bottom-up input is connected to
all neurons in one module. In an on-line version, lat-
eral inhibitory connections would be used, but now
neurons are discouraged from developing redundant
features by explicit orthogonalisation-like procedure.
Orthogonalisation is not exact for feature expansion
at the first stage because there may be more features
than inputs and hence the basis cannot be orthogo-
nal.

The feature expansion is implemented by a sim-
ple sparse coding algorithm. In matrix notation, the
computation of activations S is as follows:

S = orth[f(WT
X)] (1)

f(x) = [x − tanh x]+ (2)

Here X denotes the inputs and each column vector is
the vector of inputs, W is the weight matrix with the
weights of each neuron as column vectors and S con-
tains the activations resulting from different input
vectors as column vectors. Approximate orthonor-
malisation is denoted by orth. The activation func-
tion f(·) operates element-wise on the matrix and
the function [·]+ denotes rectification, i.e. [x]+ = x

if x > 0, otherwise [x]+ = 0.
The activation function has a dual purpose. First,

it implements a nonlinearity which makes it reason-
able to build a hierarchy. Second, it plays a role in
promoting the development of meaningful features.
The adaptation algorithm can, in fact, be interpreted
as DSS because the activation function f(·) takes
small values towards zero (the gain is zero if the in-
put is zero) but passes through greater values (gain
approaches one as the input grows).

As usual in DSS, the weight matrix is updated
simply as

Wtmp = XS
T (3)

Wnew = norm(Wtmp) , (4)

where norm denotes normalisation. Since the data
is sphered and S are approximately orthogonal, W

will also be approximately orthogonal.
The first and second stage differ in their connec-

tivity and dimension of representation. The fea-
ture expansion stage receives bottom-up inputs only,
while the context-guided dimension reduction stage



receives the contextual inputs in addition to the ex-
panded, sphered features. At this latter stage, I ar-
bitrarily fixed the ratio of the sum of the weights
from the context and from the sphered bottom-up
features to be 1:9, i.e. 10 % of the input came from
the context. The results are insensitive to this choice
as long as the context only modulates but does not
drive the activations.

3.3 Unified view

Acoustic source separation is often exemplified by
the so-called cocktail-party problem. The task is to
concentrate on one speaker in a room full of convers-
ing people. The ability to select one target among
many interfering ones is closely related to attention.
Source separation is thus closely related to attention.
As we have seen, however, source separation can also
be used for feature extraction.

Competition and contextual bias can give rise to
both emergent attention and development of fea-
tures. There are obvious similarities and differences
but I argue that the similarities go deeper than the
surface and the differences can be traced back to dif-
ference in timescale. The similarites of the two phe-
nomena not only have theoretical interest but can
lead to genuine transfer of ideas. In particular, I
propose that since normalisation, or sphering, has
turned out to be very useful in feature extraction, it
should be useful for attentional mechanisms as well.

The input for both feature extraction and at-
tention is a set of activated bottom-up features.
Context-guided denoising can then compile a new,
more abstract representation, and competition in-
forces diversity guaranteeing that the representation
remains rich. The main difference between feature
extraction and attention is timescale. The develop-
ment of new features is based on long-term statistics
of the input features, i.e. there is integration over
time, while attention can rapidly shift from one ob-
ject to another. The input for attention is the active
population of features on a short timescale and the
end result is an object, or rather an event, defined
by a new population of active features.

In feature extraction, the long-term statistics
of the inputs guide slow development of synap-
tic weights. In attention, the active object is de-
fined by fast-changing activations. It is also pos-
sible that the synapses have a fast-changing por-
tion which serves binding and short-term memory
(Triesch and von der Malsburg, 1996). Since the re-
sult of learning in feature extraction is stored in the
synaptic weights, competition can be implemented
by an orthogonalisation procedure operating on the
weights. For attention this is not an option because
the outcome is defined in terms of activations. A
competition mechanism decorrelating the activations
can serve both feature extraction and attention.

The main thesis of this paper is that sphering is
useful for finding representations because it gives a
pivotal role to contextual effects. Very weak con-
textual bias can thus steer the development of fea-
tures and the same should hold for attention: nor-
malisation should allow a much weaker bias to give
rise to attention. In other words, the parameter
regime corresponding to covert attention reported
by (Szabo et al., 2004) would be expanded because
much weaker top-down excitation would suffice.

Sphering normalises the statistics of of the inputs
but as feature extraction and attention have different
timescales, the timescales of normalisation should
differ, too. The long-term covariance of the input
features is sphered for feature extraction but the
analogue of this for attention, covariance of input
objects, is more elusive. The reason is that the set
of features that constitutes an object can change in
time. Normalisation should thus change in time and
operate over the instantaneous populations of active
features corresponding to different objects. Because
the definition of an object is elusive, exact normal-
isation appears infeasible but this should not be a
major problem. First, normalisation needs not be
perfect in order to be useful, and second, the rep-
resentations of objects can be normalised gradually
towards higher levels of hierarchy. Imperfect and lo-
cal normalisation schemes would therefore suffice.

Interestingly, some of the inhibitory contex-
tual effects found on cortex might reflect instan-
taneous normalisation of objects. It is known
that at low levels of bottom-up activation, contex-
tual influence is predominantly excitatory but at
higher levels, the influence gradually becomes sup-
pressive (Angelucci et al., 2002). This is exactly
what one would expect if two contextual mecha-
nisms would operate in parallel: additive excita-
tory biasing and divisive inhibitory normalisation
(Schwartz and Simoncelli, 2001).

It has been proposed that the neural activation
levels (on V1 more specifically) relate directly to the
saliency of objects (Zhaoping, 2002) and no separate
“saliency map” is required. It seems plausible that
the representation at higher levels reflects the acti-
vations at the lower levels. The simple definition
of saliency could thus be: something able to acti-
vate a representation at higher levels. Perpectual
phenomena such as saliency of closure or pop-out of
anomalous features could be explained by excitatory
biasing and inhibitory normalisation, respectively.

I propose that inhibitory normalisation serves at-
tention by giving the weak biasing top-down influ-
ence a pivotal role in determining which represen-
tation wins local competition. What constitutes an
object is learned gradually during development and
then used on perceptual timescale to form and nor-
malise objects by excitation and inhibition, respec-



Figure 6: Top row: gray-scale image (left) and three 7 by 7 patches. Second and third row: activations at each image

location and receptive fields of four neurons from the feature expansion layer. Bottom: output activations of a neuron

pooling from the four features.

tively. The long-range connections are adapted based
on correlations, i.e., by Hebbian-type learning rules.
The long-range connections not only excite but also
inhibit the targets via inhibitory interneurons. The
net effect is additive excitatory biasing combined
with divisive inhibitory normalisation.

4. Experiments

The purpose of these experiments is to demonstrate
that sphering allows very weak contextual guidance
to steer the development of meaningful features. I
used sampled image patches as the data and will
show that spatial context alone is able to give rise
to features bearing similarity to translation invari-
ant complex cells found on primary visual cortex.
Complex cells have been shown to emerge from
using temporal context (e.g. (Kohonen et al., 1997,
Wiskott and Sejnowski, 2002)) but here I show that
no temporal ordering of the data is required.

A small image of a tree was preprocessed by high-
pass filtering and mild contrast normalisation. The
data was separated onto on- and off-center channels.
These steps resembles the early stages of visual pro-
cessing on the retina and thalamus. The processed
image is shown on the top left of Fig. 6.

First, 7 by 7 image patches were sampled (three
out of 5,220 are shown in Fig. 6) and used for learn-

ing 100 features at the initial feature expansion stage.
Many of the receptive fields that developed corre-
spond to localised edge detectors. This is a typical
result for sparse coding of images.

Second, 21 by 21 image patches divided into 9 sub-
fields were sampled. They were used to train the
second stage. On each subfield, dimension reduction
from 100 to 20 features was guided by the context
from the other subfields. The second stage leared
to integrate together the responses of the edge de-
tectors such that more invariant features developed.
An example of such complex-cell-like feature which
integrates four elementary edge detector features is
shown in Fig. 6. The output feature is cleaner and
more invariant than the constituent features at the
feature expansion stage.

Note that most neurons at the feature expansion
stage had even noisier outputs than the ones shown
in the figure but they were not used as much to build
the output features. The experiment thus shows that
even with very limited data set (usually several nat-
ural images are used) and without using temporal
context, it is possible to develop meaningful features
by contextual guidance. Very weak contextual guid-
ance is sufficient when the feature expansion stage
provides sphered outputs.



5. Discussion

Using context to guide feature extraction and atten-
tion of an autonomous robot makes sense because
context includes information about what the robot
is doing, what its goals are, etc. The robot will thus
develop such sensory features and guide attention in
such a way that relevance to action and goals is max-
imised. For instance, if the robot practices grasping
objects, its motor context (grasping) can guide the
development of relevant visual features (graspable).
Similarly, the robots attention would be guided to
the act of grasping (motor attention) and the grasped
object (visual attention). In this view, attention is
the process by which a coherent sensorimotor per-
cept and behaviour emerges. Cortical representation
of action and reward has a decisive role in the de-
velopment of sensory representations and categories.
What one thinks and does determines what one per-
ceives and learns.

It is well established that attention has a strong
top-down component, i.e. attention is to a large ex-
tent active and task-driven. A likely source of this
goal-oriented biasing is working memory located on
prefrontal cortex. More specifically, basal ganglia
have been proposed to gate thalamocortical loops
which implement working memory (O’Reilly, 2003).
The control of this active gating develops via rein-
forcement learning. The contents of working mem-
ory exerts top-down bias over the sensory represen-
tations and gives rise to movements, goal-oriented
attention, etc., depending on the area of prefrontal
cortex in question. Since the development of fea-
tures is activity dependent, goal-oriented attention
translated into behaviourally significant feature rep-
resentations.

Note that this type of context-guided learning does
not rule out a more unspecific role of value signals
in learning. It has been proposed that values signals
modulate the learning rate on cortical representa-
tions and thereby guide the development of feature
representations (Sahani, 2004). However, modula-
tion of learning rate only tells when to learn, not
what to learn. The contents of working memory
and context in general provide much more specific
information about what exactly to learn. It is likely
that the combination of information about what and
when to learn is more useful than either one alone.

The experiments reported here concentrated on
feature extraction and demonstrated only that spher-
ing allows very weak contextual bias to steer the de-
velopment of meaningful features. Using the same
idea for models of context-guided attention seems to
be a promising direction of future work. Normalisa-
tion of inputs, competition among local representa-
tion and biasing from context should be able to serve
both feature extraction and attention and it would
thus obviate the need for separate mechanisms for

the two tasks (separate mechanisms were used by
(Deco and Rolls, 2004)).

6. Conclusion

I combined two existing techniques, sphering and
context-guided learning, and shown that sphering
helps the development of meaningful features by al-
lowing very weak contextual guidance to steer learn-
ing. The experiments only addressed feature ex-
traction but I argued that the emergence of atten-
tion resembles feature extraction in many ways, the
main difference being different timescale of opera-
tion. I therefore suggested that sphering-like normal-
isation should be useful for the models where atten-
tion emerges from local competition and top-down
bias.
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