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Abstract

In this paper, we review the recently proposed denoising source separation (DSS) frame-
work. In the DSS framework, source separation algorithms are constructed around denoising
proceduces. The denoising should reflect the prior knowledge of the source characteristics and
it can be procedural. Source separation methods are an active research topic in signal pro-
cessing domain but they can also be applied to feature extraction. It has also been proposed
that independent component analysis (ICA) and related methods have similarities with sensory
processing in the brain. The main purpose of this paper is to discuss extensions to the basic
DSS framework to make it more suited for feature extraction. We also discuss connections with
sensory processing in the brain.

1 Introduction

The goal of feature extraction is to find a representation that facilitates the task at hand, such
as object recognition or motor control. Obviously the features ought to capture the important
information in the incoming data but the information-theoretic notion of information as something
that can be decoded is not the same as something that can be decoded in practice. Useful infor-
mation should be made as explicit as possible so that it is easy to decode it. In addition, useless
information should be discarded so that it is easy to learn to use the useful information.

The traditional principal component analysis (PCA) extracts features which explain the largest
amount of variance in the data that is possible with a linear mapping. PCA can be realised by
simple Hebbian learning, for example, by Oja’s rule [Oja, 1982] and has attracted interest as an
abstract model of cortical sensory processing. However, the features provided by PCA appear very
different from those found in the brain. Moreover, PCA tends to emphasize correlations between
sensory inputs while in the brain, mechanisms that remove correlations abound.

Independent component analysis (ICA) [Hyvärinen et al., 2001] has been more successful in
developing features which resemble those found in the brain, at least in the primary visual cortex
(simple cells in V1). While the features are only guaranteed to be uncorrelated in PCA, ICA
renders the sources as independent as possible. This seems to be a reasonable criterion for making
information explicit: one feature encodes one independent aspect of the environment. Another,
related criterion is sparsity of the features. Again, this appears to be a reasonable criterion for
feature extraction because different entities in the environment can often be accepted to appear
infrequently. Most of the time the feature would be absent while sometimes it would be strongly
activated. This amounts to a sparse temporal distribution. Often, but not always, ICA and sparse
coding develop similar features (see, e.g., [Olshausen and Field, 1996] for sparse coding and [Hoyer
and Hyvärinen, 2000] for independent component analysis of natural images).



Basic ICA and sparse coding rely on linear mappings and it is quite difficult to extend them for
nonlinear mappings. This is a serious limitation for feature extraction because often the important
features in the data can be made explicit only by nonlinear transformations. So-called subspace
methods have had some success in developing hierarchies of increasingly nonlinear features. The
idea is to group together several simple features that appear to encode the same entity. This
creates a “complex” feature which can be more invariant than the simple features. The simple
features can respond, for instance, to rotations, translations or scalings of the same object. The
combined complex feature would then be invariant to rotation, translation, scaling or all of them.
The most common criterion for grouping simple features is temporal proximity of the activations
(see, e.g., [Kohonen et al., 1997, Wiskott and Sejnowski, 2002, Hyvärinen et al., 2003] for models
which develop features akin to simple and complex cells in V1). It is reasonable to assume that
features that are often activated at roughly the same times, signal the presence of the same entity.

None of the criteria discussed above (high variance, independence, sparsity, temporal proximity)
is ecological in the sense that it would take into account the subsequent use of the features for tasks
such as recognition or control. This becomes a serious limitation when deeper nonlinear hierarchies
are built because the number of potential groupings and nonlinear features grows quickly. In deeper
hierarchies it becomes crucial to select and guide the development of feature extraction by signals
which carry information about the goals.

We have recently introduced the denoising-source-separation framework [Särelä and Valpola,
2005] where separation algorithms are constructed around denoising procedures. Previously we
have mainly focused on signal processing and data analysis. We review some of that work but
mainly concentrate on how DSS can be applied to goal-driven learning of nonlinear features. In
DSS, the information about the goal is presented in a form of a denoising function. In this paper we
focus on expectation-driven learning where contextual information is used to predict and denoise the
features. This promotes the development of features that can be predicted. We report results from
nonlinear feature extraction, discuss how this may be related to sensory processing in the neocortex
and present a hypothesis about how goal-related information can be propagated in hierarchical
models.

2 Denoising source separation

Source separation methods are often described in signal-processing context as algorithms for ex-
tracting a source signal or a set of source signals from a mixture of signals. Since complex environ-
ments typically generate plenty of data and structured patterns, many of these methods are also
useful as feature extraction algorithms. In other words, the distinction between signal separation
and feature extraction is rather a question of the input data than the methods themselves.

In this section, we introduce DSS and explain how it is able to perform linear source separation
and feature extraction. We also demonstrate the use of DSS in a computationally demanding
problem with real-life climatological data.

2.1 DSS in source separation

Consider a linear mixing of independent sources. Each source causes correlations between the dif-
ferent mixture components and the total correlations are the sums of the individual correlations.
Hebbian learning can be used to identify the direction with maximal variance. This can be imple-
mented neurally [see for instance, Oja, 1982] but classical statistical methods such as the power
method are available, as well. In order to learn a sub-space or maximal variances, anti-Hebbian



learning may be used to keep the different directions separate. This induces a competition between
the projections and leads to uncorrelation of the projected components.

Consider the two-dimensional input in Fig. 1a where two independent sources have been mixed.
The dashed lines indicate the mixing directions. Some clear correlations exist between the dimen-
sions and this becomes visible in the nut-shaped curve that describes the variances of the projections
in each of the directions. In order to identify a single source, one needs to find the projection that
cancels the contribution of all the other sources. This would happen, when the projection is or-
thogonal to all the other projections. However, the largest variance direction, identifiable using
Hebbian learning, does not usually identify any of the sources, but a mixture of them.
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Figure 1: (a) Scatter-plot of the mixtures, the nut-shaped curve indicates standard deviations in
each projection direction and the solid line the direction of the largest variance. The dashed lines
indicate the mixing projections of the original sources. (b) Whitened data. (c) Effect of denoising
of the whitened data. (d) Effect of the denoising of the original data.

Assume now that the source corresponding to the dash-dot line is known and the corresponding
projection should be learned. Learning of the projection converges to the dash-dot line, but the
projection does not identify the source. This is because the other sources contribution has not been
cancelled. Thus it seems more important to be able cancel the contribution of the other sources
than to identify the projection of the needed source. But this would lead to a situation where all
the sources should be known.

On the other hand, should the mixing be orthogonal, the identification of the projection would
lead to separation. The orthogonality can be achieved by whitening (decorrelation and normalisa-
tion of variances). The result of this operation is shown in Fig. 1b. Knowing of the source would
now result in finding the projection that identifies it. However, this requires that the source is
known completely.

Assume instead that there is some known structure in the source (for example temporal) that
is enhanced by a filtering (or denoising) operation. This is illustrated in Fig. 1c). The variance of
the whitened data is unity in all directions. However, the denoising operation changes the variance
structure, The denoising operation usually loses information of the desired source. However, it is
only needed that the operation cancels even more the other sources. In that case, the desired source
can be identified by another Hebbian learning stage, as indicated by the alignment of the solid line
and the dash-dot line in Fig. 1c). Thus the whitening made the data sensitive to subtle operations
such as the denoising. If no whitening had been used before the denoising, the results would have
been almost identical to simple Hebbian learning without any denoising. This is illustrated in
Fig. 1d)

The above source separation scheme had three stages: 1) decorrelation of the inputs and normal-
isation of their variances (whitening, anti-Hebbian learning), 2) denoising and 3) Hebbian learning



(PCA). We call such a procedure denoising source separation (DSS). The second and third stages
are separate only if the denoising is linear that is it can be realised by matrix multiplication. If
the denoising is nonlinear, the latter stages are molded into one, and DSS resembles nonlinear
PCA [Oja et al., 1991]. The third stage has to be accompanied by some kind of anti-Hebbian
learning as well, otherwise the different sources converge to the same solution. In the first stage,
the anti-Hebbian learning made the following sensitive to subtle operations (denoising). DSS was
first realised as a batch algorithm [Särelä and Valpola, 2005], but by using neural Hebbian and
anti-Hebbian methods accompanied with online denoising, it can be implemented neurally as well.

2.2 DSS in climatology

In this section, we review one application of DSS in climatology. The data are dense-grid global
measurements of surface temperature, sea level pressure and precipitation during several tens of
years, resulting in a large dataset with tens of thousands of dimensions and thousands of time
points. The aim is to demonstrate the capacity of DSS to adapt to the tasks at hand and to
find the important information from the large dataset containing myriad structures. To be able to
deal with large datasets, we have as well developed several speed-up and stabilisation methods [see
especially Valpola and Särelä, 2004].

El Niño Southern Oscillation (ENSO) is a global-scale phenomenon in the ocean and atmo-
sphere, known as one of the most prominent sources of interannual variability in weather and
climate around the world. Its oceanic component (El Niño—La Niña events) can be defined as
a Pacific basin-wide increase (El Niño) or decrease (La Niña) in the sea surface temperatures in
the central and/or eastern Pacific Ocean [Glantz, 1996]. The warm El Niño events are known
to be accompanied by the decrease in the sea level atmospheric pressure in the western Pacific,
which is the atmospheric component of ENSO called Southern Oscillation (SO). SO can be de-
fined as a large-scale oscillation of the air mass between the southeastern tropical Pacific and the
Australian-Indonesian regions.

Ilin et al. [2005] searched for physically meaningful states with slow, interannual time course
from climate data. Diurnal and annual variability in solar radiation means that the climate system
has daily and annual cycles but climate events such as ENSO whose time course is slower than
the annual cycle are in evidence that the climate system has intrinsic interannual dynamics. They
showed that the basic ENSO events (El Niño and SO) appear as the component with most prominent
interannual variability from the global measurements of surface temperature, sea level pressure and
precipitation. Some of the results are reproduced in Fig. 2.

2.3 DSS in feature extraction

To exemplify feature extraction, we shall consider a set of images taken from natural scenes. Now
the question becomes: what kind of features could be used to describe the content of the images.
In the primary visual cortex (V1), simple cells have been shown to have Gabor-filter-like receptive
fields [Olshausen and Field, 1996]. Such features would thus offer a good starting point.

First, let’s consider the features achieved by simple (symmetric) anti-Hebbian learning or decor-
relation. We sampled 19 × 19 patches from an image picturing a natural scene. One decorrelating
projection is shown in Fig. 3a. The gray levels correspond to the forward projecting weights imple-
menting decorrelation. The feature effectively takes the middlepoint and subtracts its neighbours
to achieve decorrelation. This kind of feature resembles the on-center-off-surround cells of retina
and thalamus. The inverse of the decorrelation filter is shown in Fig. 3b. This corresponds to the
input image that activates only this feature.



−3
0
3

−3
0
3

−3
0
3

−3
0
3

−2
0
2
4

1950 1960 1970 1980 1990 2000
−3

0
3    0o    60oE  120oE  180oW  120oW   60oW    0o  

  90oS 

  60oS 

  30oS 

   0o  

  30oN 

  60oN 

  90oN 

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

(a) (b)

Figure 2: (a) Climatological slow components. The first is caused by the El Niño effect. (b) The
spatial map corresponding to the El Niño component.

(a) (b) (c) (d)

Figure 3: a) A simple feature from a natural image using symmetric decorrelation (decorrelation
projection). b) The signal which activates the feature (a). (c) An edge-detector feature found by
DSS (projection weights). (d) The input signal corresponding to (c).

Combining the decorrelation with the other two DSS steps, denoising and PCA, produces struc-
tured features, one of which is shown in Fig. 3c. The feature responds to an edge across the image
patch. This result is in concordance with using ICA as feature extraction technique and as a model
of the simple cells in V1 (see, for instance [Olshausen and Field, 1996, Hyvärinen et al., 2003]). The
corresponding signal which activates the feature is shown in Fig. 3d. Here a so-called shrinkage
function was used for denoising. With this denoising function, DSS becomes close to ICA and
sparse coding.

Now that we have discussed DSS as a source separation technique and a feature extraction
technique, it becomes useful to summarise the method schematically. This is depicted in Fig. 4.
As mentioned before, nonlinear denoising has to be put inside the PCA stage.

3 DSS and nonlinear separation

In the methods shown so far, denoising was nonlinear in the edge-filter example, but all examples
used linear mappings to produce the features or extracted source signals. In order to create complex
features, nonlinear mappings need to be employed. One possibility is to use feedforward networks
with hidden layers that have nonlinear output mappings. Such networks are often used in machine-
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Figure 4: A schematic illustration of DSS.

learning community for supervised learning, such as classification and pattern recognition. In this
section we show that multi-layer perceptron (MLP) networks can also be used in DSS but the
applicability seems to restricted to low dimensions. In high-dimensional problems, methods related
to nonlinear regression seem to be more reliable and efficient.

3.1 Nonlinear separation using an MLP network

Consider the two images in Fig. 5a. The data are two scanned 435x322 images. Before scanning,
the images have been printed on two-sides onion-skin paper. Since onion-skin paper is transparent,
this produces a nonlinear mixture (Fig. 5b) of the original images. Nonlinear ICA has been used to
solve this problem [Almeida and Faria, 2004]. The images have been preprosessed with symmetric
whitening, which tries to preserve the original dimensions as well as possible. For this reason the
images are relatively well identifiable already (Fig. 5c).

(a) (b) (c) (d)

Figure 5: (a) Original images. (b) The nonlinear onion-skin-paper mixtures. (b) Results after
symmetric whitening. (d) Results using the MLP-DSS and wavelet denoising.

As a first separation step, DSS with linear observation mapping was used. The denoising was
as follows: The mixtures were transformed into a sparse wavelet basis with suitable detail. Then,



in the wavelet space, a competition was introduced between the sources. No other decorrelation
criteria were imposed on the sources. After convergence, the denoised output was used as the target
to learn an MLP mapping. Finally, MLP-learning and denoising were alternated for 10 times. At
each iteration the MLP learned until it converged. The results in Fig. 5d show that this procedure
was able to learn a reasonable nonlinear separation mapping. However, learning is not very stable
and with more iterations the results gradually degrade.

It is difficult to have nonlinear feed-forward networks to learn complex nonlinear mappings,
even when there exists correct supervised output. This is because the model can learn almost any
nonlinear mapping and thus overfits easily. Learning unsupervised MLP-DSS is even more difficult,
because learning cannot be guided by a correct output, but instead one has to resort to imperfect
denoising mechanisms.

3.2 Nonlinear feature expansion

In addition to already mentioned difficulties, the simple MLP approach to nonlinear mapping does
not work well in large dimensions: the learning becomes extremely slow and overfitting even more
probable.

Another possibility is to make some kind of a feature expansion before the Hebbian learning
and the denoising. Such an approach have been used by Blaschke and Wiskott [2005] to get a
nonlinear ICA algorithm, and comes close to nonlinear regression. Another nonlinear expansion
was used by Valpola [2004]: a shrinkage function that was restricted to give positive outputs.

In this paper, we speculate about a general method for creating the needed nonlinearity. It is
at least necessary to restrict oneself to only mild nonlinearities, especially in high dimensions. This
restriction is needed to avoid overfitting, as well. The aim of the nonlinear feature expansion is to
make it possible to learn complex features that are composed of simple features. This is more than
what can be achieved by simple linear models.

The computations on layer four in the neocortex resemble the idea of feature expansion (see e.g.
Thomson and Bannister [2003], for a discussion of the connections between different layers in the
neocortex). The computation is based on an interplay between pools of excitatory and inhibitory
neurons. The inhibitory pool of neurons induces a competition between the excitatory neurons
making only few of them active simultaneously. We propose that this method can be used for the
nonlinear feature expansion in DSS. Additionally it is necessary to require that the output of the
feature expansion is positive.

A schematic illustration of the whole DSS process with the nonlinear feature expansion is given
in Fig. 6.

4 Hierarchical models

Packing a hierarchy of linear modules is a waist of time: layers of linear mapping stay linear. With
the nonlinear feature expansion layer, hierarchical systems become powerful tools. Slow feature
analysis [Wiskott and Sejnowski, 2002] is an example of such a hierarchical model. However, its
problem is that in no part of the system, the learned features are guided by the task at hand.
And this would ultimately be the goal of the feature extraction. For instance, in some cases there
exist data from several modalities. Then it would be useful to extract features that integrate
information between the modalities. Another, more general way of putting this would be to say
that it is necessary that expectations guide the formation of the features.

In this section, we first suggest a hierarchical model where expectations are used to guide the
learning. One experiment reported in Valpola [2004] is reviewed. The results show that the grouping
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Figure 6: (a) DSS layer with the feature expansion, The pools of excitatory and inhibitory neurons
are shown inside the dashed-line box. (b)A schematic illustration of context-guided learning in DSS.

of simple features into more complex ones can be guided by expectations. Then, in Sec. 4.2, we
speculate the role of attention in guiding learning by modulating the expectations.

4.1 Context-guided learning

Every learning situation has a context in which it happens. It is reasonable to assume that the
context creates expectations of what is present in the data. As the context is part of the environment
and thus part of the data itself, it is natural to use the features extracted in one part of the model
as the context of the other parts and other time instants. The system can thus be symmetric,
every part of the data being used as the context for the other parts. Because the different parts
process different information, the context-guidance makes each part to learn new things. Though
the learning of the features is guided, this is not supervised feature extraction, since the guidance
comes from the input itself.

In neuroscience, many researchers have suggested that feedback (top-down, lateral or recurrent)
connections, from other parts of the brain (context), have an important role in learning [see, e.g.
Marr, 1982, Becker and Hinton, 1992, Parga and Rolls, 1998]. Recurrent feedback would correspond
to temporal and lateral to spatial information.

An illustration of how the context can be used for learning is shown in Fig. 6. The crucial
difference to the feature expansion is another denoising phase guided by the expectation-creating
context. Then the sub-sequent PCA-stage finds directions where the driving input from the feature
expansion has something in common with the context. Blocks with this structure can be assembled
in a fully hierarchical DSS systems. One such is pictured in Fig. 7. The contextual input is denoted
by colored lines: red for top-down, blue for recurrent and green for lateral.

Valpola [2004] has shown that spatial context alone is sufficient for developing invariant features
(in SFA and related models temporal context has been used). We review the results here.

In the experiment, 9 laterally connected units were used on one layer. The contextual-guidance
was realised by simply adding the context vector to the feature vector outputted from the feature
expansion. 10% share of weights was assigned to the lateral contextual inputs.

The results are summarised in Fig. 8. In the top left, the whole image is shown. The data was
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Figure 7: Hierarchical feature extraction using DSS.

7 × 7 patches sampled from it. Three such samples are shown in the rest of the top row. In the
second row, there are activations of four out of 100 nonlinear features at the feature expansion level
of one unit when scanning over the entire image. The third row shows the corresponding 7 × 7
receptive fields. The last row shows activations of a feature developed on the output layer under
spatial contextual guidance. The strongest bottom-up connections were made to the four features
shown on the previous rows. This feature is more invariant than any of the more elementary
features.

Figure 8: Features extracted from a natural scene using context-guided DSS with spatial information.



4.2 Role of attention in goal-directed learning

In the beginning we mentioned that one of the main purposes of the feature extraction is to facilitate
the task at hand, such as object recognition or motor control. From psychophysical experiments it
has become clear that attention plays a significant role in learning. Some researchers even claim
that there is no learning without attention. This is controversial but it is nevertheless clear that
attention is very important. In this section, we speculate how attentive mechanisms could be used
in hierarchical DSS to guide learning. This hypothesis is more extensively discussed in [Valpola,
2004, 2005].

Contextual (predominantly top-down) biasing of local lateral competition has been proposed as
a model of covert attention in humans [Duncan and Humphreys, 1989]. It seems that attention is re-
alised by a competitive binding process that forms dynamically functional networks[Reynolds et al.,
1999, Reynolds and Desimone, 1999]. This dynamical binding has been shown to gate the coher-
ence between cortical areas, thereby affecting the associations learned between these areas [Miltner
et al., 1999]. Moreover, attention is strongly influenced by goals and motivation.

We hypothesize that these featurs make attention a suitable mechanism for converting goals and
motivation into teaching signals that guide the development of feature extraction. If attention can
influence what type of information reaches a given cortical area, it can presumably also influence
what kind of expectations are generated and thus control learning in context-guided DSS.

The role of attention in learning is illustrated in Fig. 9. The nodes represent different cortical
areas, for instance sensory processing areas for different modalities or different parts of the visual
field. The anatomical connections between the areas are represented by thin lines. The functional
network dynamically created by attention is illustrated by the thick lines: these parts of the cortex
are temporally functionally connected. Assume that the information passing in the primary cortical
areas 1 and 2 are A and B, respectively. Primary cortical area 3 receives bottom-up inputs (not
shown) which carry both types of information (A+B), so it could potentially try to extract both
types of information. However, if attentional filtering routes either type of information to area 3
during learning, area 3 would be biased to extract that type of features in the future. Thus, if
attention is focussed on A during learning, area 3 will learn to extract A-type information and
vice versa. Specifically, our hypothesis is that attention can influence learning by modulating the
expectations which in turn guide the development of feature extraction.

A

B

C = A+B
A

B

C = A+B

A B

Figure 9: Attention.

Deco and Rolls [2004], Deco and Schürmann [2000] have concentrated on modelling the attention
process without direct implication on how the representations would be learned. However, the
structure of the model is compatible with Fig. 6 and our suggestion would thus integrate learning
in the the attention process.



5 Conclusion

In this paper, we discussed denoising source separation (DSS) and especially its use for feature
extraction. We showed that with simple combination of Hebbian and anti-Hebbian learning and
suitable nonlinearity, powerful feature extractors can be realised. Additionally, we speculated
how attention can be implemented in this framework. This would probably make it possible to
implement even deep hierarchies of large-scale networks.

We have recently released a flexible MATLAB DSS package for source separation and feature
extraction [DSS, 2004]. Most of the experiments in this paper can be implemented with it rather
easily.
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