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Abstract— In this paper we describe our ongoing work on the
control of a tendon driven robotic hand by an adaptive learning
mechanism evolved using a simulator developed over the last
years. The proposed neural network allows the robotic hand to
explore its own movement possibilities to interact with objects
of different shape, size and material and learn how to grasp
them. As the evolved neural controller is highly adaptive, it will
allow us in the future to systematically investigate the interplay
between morphology and behavior using the same, but adaptive
neural controller.

I. INTRODUCTION

Previously we have been working with an industrial robot
arm, which exhibits precise, fast and controllable movements
(see [1], [2], and [3]). In this paper we try to apply the same
concepts in a more complex robotic setup: a robotic hand
with 13 degrees of freedom, complex dynamics provided by a
tendon driven mechanism of actuation and different types of
tactile sensors.

We present the “ligand-receptor” concept that can be easily
used by artificial evolution to explore the growing of a neural
network, value systems and learning mechanisms systemati-
cally for a given task. In our implementation, receptors abstract
proteins of specific shapes able to recognize specifically their
partners molecules. Ligands, on the other hand, are molecules
moving around, which also have specific shapes, and are
basically used as information carrier for their receptors. The
shape of a receptor determines which ligand can stimulate
it, much in the same fashion, as notches of jigsaw pieces
fit exactly into the molds of other pieces. When a receptor
is stimulated by a matching ligand (signaling molecule),
the following mechanisms are elicited on a neuron: connect
to a neuron expressing a partner receptor, release a ligand
molecule, express a receptor(see [4] and [5]). As a result
of this evolutionary process, the specification of the neural
network (i.e., number of neuronal fields, size of each neuronal
field, a set of receptors expressed by each neuronal unit, a
set of signals that can be released by the sensor neurons) was
obtained and then embedded as a neural controller for a robotic
hand.

Fig. 1. Tendon driven robotic hand.

In the following section we describe our robotic setup,
the tendon driven mechanism, and the position, type and
number of sensors used. In section III we specify the robot’s
task. In section IV we explain in more detail the “ligand-
receptor” concept and its implications. Then we present some
experimental results as well as a discussion and future work.

II. ROBOTIC SETUP

Our robotic platform can be seen in Fig. 1. The tendon
driven robot hand is partly built from elastic, flexible and
deformable materials. For example, the tendons are elastic,
the fingertips can be covered with deformable materials and
between the fingers there is also deformable material (see [6]
and [7]).

The hand apply an adjustable power mechanism develop
by [8]. The wire’s guide is flexible, and moves proportionally
to the load applied to the fingertip (see Fig. 3). When the
load is small, the guide moves toward the fulcrum and the
fingertip moves faster with low torque. In contrast, when a
big load is applied to the finger the guide moves away from
the fulcrum, resulting in a higher torque motion.



Due to the spring-like characteristics of the wire’s guide,
the finger’s joints gain flexibility likes the human hand fingers.
The relationship between the torque T, which is generated in
the fingertip, and the force F, which pulls the wire, is:

T = LFsin(θ1) (1)

Here, the angle θ1 is defined as an angle θ2 with the
fulcrum-action line and a fulcrum-pulling force line, an angle
β with the fulcrum-guide roll line and a pulling force line, and
a distance x from the fulcrum to a point of lever (guide roll):

θ1 = Tan−1(
xsin(θ2 − β)

L− cos(θ2 − β)
) (2)

If the spring is connected near the fulcrum β is a constant
value. The distance x is given by the following equation:

x =
Fcos(θ1 + θ2 − β)

k
(3)

θ1, θ2 and L are defined in Fig. 2a, respectively. In a
manipulator with multiple joints, the torque needed at the root
joint is larger than those in the extreme joints. In the tendon
driven mechanism, the torque from the other joints interferes
with the torque at the root joint, resulting in a large torque at
the base of the manipulator.

In order to acquire in a simple way the passive motion
function in addition to the adjustable velocity and torque
functions, the current robotic hand uses a spring type wire as
an elastic guide for the inner wire. If the load does not require
the application of a high torque on the finger, the wire remains
straight. In the case of a heavy load that requires more torque,
the outer wire bends drawing the inner wire taut (see Fig. 3).
After performing several tests, we decided on stainless steel
for the outer wire, and nylon for the inner wire, given that
this combination provided with the smallest friction. Figures
2b and 2c, show the configuration of the mechanical parts.

The robotic hand has 13 degrees of freedom that are driven
by 13 servomotors and has been equipped with two types
of sensors: flex/bend and pressure sensors. For the flex/bend
sensor, the bending angle is proportional to its resistance and
responds to a physical range between straight and a 90 degree
bend, they are placed on every finger as position sensors. The
pressure sensors (force-sensing resistor (FSR)) are positioned
on the fingers and on the back of the hand for tactile interaction
with the environment) as detailed in table I.

We control the robot hand using a TITech SH2 controller.
The controller produces up to 16 PWM (pulse with
modulation) signals for the sevomotors and acquire the values
from the bending and pressure sensors. The motor controller
receives the commands through a USB port.

We used two computers: one hosts the neural network
and communicates with the sensorimotor control board to
acquire the sensory data and produce the motor commands,
the other computer is in charge of the visualization of the

(a) schematic design

(b) motion of flexion and exten-
sion

(c) Power module by
using RC servo motor

Fig. 2. Adaptive joint mechanism by using spring coil type of outer tube.

Fig. 3. Three functions of the adaptive joint mechanism.

neural network. When learning takes place, the two computers
exchange the synaptic changes via TCP/IP. The sensorimotor
data was stored in a time series file for off-line analysis.

Using this setup we were able to see the actual behavior
of the robot (observer’s perspective), we had access to the
sensorimotor data generated by the interaction of the hand
and objects in the environment through the sensorimotor
control board and additionally we could see inside the neural
network and investigate how the learning mechanism, the
sensory input and the interaction with the environment were
shaping the neural structure (robot’s perspective).

TABLE I
ROBOTIC SETUP

Number and type Sensor position

5 bending one per finger
1 pressure on the palm
5 pressure one per fingertip
5 pressure on the back of the hand
4 pressure on the middle of the fingers (except thumb)
Total number of sensors 20



III. ROBOT TASK

A typical experiment was performed as follows: at the
beginning, the robot hand was initialized with all the fingers
fully extended (see Fig. 4a). Then an object was placed on its
palm whose weight was high enough to activate the pressure
sensor located in the palm (see Fig. 4b), the hand started to
explore its own movements by randomly moving the fingers,
increasing and decreasing the position of the servo motors
produced the pulling of the tendons, which made the fingers
move back and forth (See figures 2b and 2c). Eventually the
fingers encountered the object, and some pressure sensors
were activated, by comparing the previous pressure readings
with the current ones the learning mechanism taught the
hand about the success of its exploratory efforts and finally
the hand grasped the object successfully (see Fig. 4c). After
that the hand remained grasping the object until it was taken
away from it, in that case the sensory input was reduced to
zero and the hand returned to the initial state with the fingers
fully extended. A typical experiment can be see in Fig. 4.

(a) Initial state (b) Object in the palm

(c) Final state

Fig. 4. Typical experiment.

IV. LIGAND-RECEPTOR CONCEPT

To be able to explore both the connectivity, the learning,
and the value systems, we use the ligand receptor concept (see
[1], [2], and [3]). As can be seen in Fig. 5 a couple of ligand-
receptor such as signal0 and receptor0 can be used to explore
the connectivity, while a couple of ligand-receptor such as
signal2 and receptor2 can be used for learning a specific task.
There is not possible interaction between a couple of ligand-
receptor such as signal1 and receptor3.

We define the probability of an interaction between a ligand
and a receptor as the affinity, which calculates an artificial
binding between the two entities. This affinity parameter aff
determines which molecule (signaling molecule) interacts with

Fig. 5. Ligand receptor concept.

which partner (receptor). To each signal and receptor a real
valued number and a function are assigned. This function is
implemented as follows:

a12 = faff (aff1, aff2) = Exp−α(aff1−aff2)
2

(4)

where:
aff1, aff2 are the real valued numbers representing the
geometric properties of the substances. α is the affinity
parameter with positive values. If α is high, the two
substances have to be very similar (i.e., aff1 ∼ aff2) to get
a high functional faff value, if α is low, the substances can
be more different to still get high faff values. Molecules
compete for a docking site (receptor) and their success of
binding depends on the affinity between the molecule and the
docking site and on the concentrations of the competitors.
Figure 5 shows examples of pairs of ligands and receptors
with low and high affinity as well as their potential use.

A. Exploring the connectivity of the neural network

At the moment of the creation of the neural network, the
system automatically assigns a set of receptors to each neuron
and releases a signal to start connecting the neural network.
Then the system attempts connections between neurons based
on the receptors expressed by each neuron.

For instance, the system will create a synaptic weight to
link a neuron from the hiddenField (see Fig. 6b) to a neuron
in the motorField (see Fig. 6c) only if the two neurons had
expressed the same matching receptors. The same applies
for the synaptic weights connecting the neurons between the
sensorField (see Fig. 6a) and the hiddenField (see Fig. 6b) as
well as the synaptic weights connecting the neurons between
the motorField (see Fig. 6c) and the motorActivities (see Fig.
6d).

The components of the neural structure and its connections
to the robot hand are depicted in Figure 6. The number of



Fig. 6. Neural structure and its connections to the robot’s sensors and
motors. Neuronal areas: (a) sensorField. (b) hiddenField. (c) motorField. (d)
motorActivities.

TABLE II
NEURAL STRUCTURE

Neuronal
Area number of neuronal units

sensorField 16
hiddenField 64
MotorField 64
MotorActivities 10

Total neuronal units 154

neuronal units in each neuronal area can be found in table II.

1) Sensory field: The size of the neuronal area sensorField
(see Fig. 6a) was 1x16.

2) Neuronal field and motor field: The size of the neuronal
area hiddenField (see Fig. 6b) was 8x8 and its neuronal units
had a sigmoid activation function.
The size of the neuronal area motorField (see Fig. 6c) was
8x8.
The size of the neuronal area MotorActivities was 1x10 (see
Fig. 6d), they directly control the fingers of the hand. Each
finger was moved by two pairs of antagonistic neurons, one
causes the finger to contract and the other to extend.

3) Synaptic connections: Neuronal units in the neural net-
work were connected by using the ligand-receptor concept de-
scribed above. All the weights were initialized randomly from
a gaussian distribution with mean=0.0002 and sigma=0001.
See Fig. 7.

B. Value system

Value systems are neural structures that are necessary for
an organism to modify its behavior based on the salience
or value of an environmental cue ( [9], [10]). Such “value
systems” have been implemented in robotic systems to study
their role in adaptive behavior ( [11] and [12]). In our
case, the pressure sensors were the value system that taught
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Fig. 7. Initial weights between the hiddenField and the motorField.
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Fig. 8. Exploration-exploitation trade off (when µ = 0.5, 50% of the motor
neurons can fire randomly). The solid line represents the number of neurons
that randomly fired at each learning cycle. The dashed line represents the
number of motor neurons that learned and are activated by themselves.

the robot about the success of its exploratory movements.
Whenever the pressure sensor on the palm was activated and
this activation exceeded a given threshold (e.g., an object was
put on the palm), the corresponding sensor neuron released
a signaling molecule, the motor neurons that had expressed
a receptor with high affinity to that signaling molecule will
be allowed to fire randomly and therefore the hand will be
in its ”Exploration behavior”. If a finger is in contact with
an object, depending of the force and the direction of the
movement, the reading of the pressure sensor on that finger
will increase or decrease. In either case a corresponding
sensor neuron will release a signal that will be used by the
learning mechanism to reward or punish the active motor
neurons at that particular moment.



C. Learning Mechanism

The proposed neural network allows the robotic hand to
explore its own movement possibilities due to the random
activation of the neurons in the motorField (see Fig. 6c). The
outputs of the motor neurons are determined by the following
formula:

Oi =





1.0 : if σ(
∑n

j=1 ωi,jSj) >= θ1

1.0 : if σ(
∑n

j=1 ωi,jSj) < θ1 and µ <= θ2

0.0 : otherwise
(5)

Where:
Oi output of the i-th neuron,
Sj input of the j-th neuron,
ωi,j synaptic weight between the i-th and the j-th neurons,
σ is the sigmoidal function σ(x) = 1

1+e−αx ,
α is the slope parameter of the sigmoid function,
θ1 is the threshold for the neuron to fire by itself,
µ is a uniform value between 0 and 1 randomly generated,
θ2 is the threshold that determines how many motor neurons
are allowed to fire randomly.

As can be seen, if the output exceeds a certain threshold
(θ1), the neuron will fire by itself. Otherwise the neuron is
allowed to fire randomly, for that purpose an uniform value
(µ) between 0 and 1 is randomly generated. By comparing
µ with a second threshold θ2, only a percentage of the
population of motor neurons is allowed to fire.

The solid line in Fig. 8 represents the number of neurons
that randomly fired at each learning cycle when µ = 0.5
(50% of the neurons were allowed to fire randomly). The
dashed line represents the number of motor neurons that
learned and were activated by themselves. Figure 8 elicits
the exploration-exploitation trade-off. At the beginning of the
experiment about half of the motor neurons are randomly
activated, so the robot hand will explore its environment, over
time, the learning mechanism modified the synaptic weights
causing more neurons to learn, that means more motor
neurons will have an output that exceeds the threshold θ1

and will fire by themselves and less and less motor neurons
will fire randomly, so the more it learns the less than it has
to explore. Around the learning cycle number 160, the object
was taken away from the robot hand, so there is no sensory
input, therefore the robot hand restarted its exploratory activity.

Synaptic modification was determined by both pre and
post synaptic activity and resulted in either strengthening or
weakening of the synaptic efficacy between two neuronal units.
The active neurons controlling the robot hand were ”rewarded”
if the movement of the fingers exerted a higher activation of
the pressure sensors and ”punished” otherwise. In this way the
synaptic connections between the neuronal areas hiddenField
(see Fig. 6b) and motorField (see Fig. 6c) were updated.

Figure 9 gives a graphical explanation of the sequence of

Fig. 9. Learning mechanism. As the robotic hand enclosed an object with its
fingers, some pressure sensors were activated, a signaling molecule was then
released, and eventually a synaptic weight between a pair of active neurons
was updated (only if the respective neurons had expressed a receptor that
matched with the signaling molecule).

Fig. 10. Synaptic changes over time during a typical grasping experiment.

events resulting in the change of a synaptic weight.

V. EXPERIMENTAL RESULTS

Figure 10 illustrates the learning process. The synaptic
changes can be seen in an OpenGL animation resulting from
the real time data exchange between the computer hosting
and running the neural network and the computer visualizing
the learning process. All the synaptic weights were kept
between -1 and 1. A learning cycle (i.e., the period during
which the current sensory input is processed, the activities of
all neuronal units are computed, the connection strength of
all synaptic connections are computed, and the motor outputs
are generated) had a duration of approximately 0.08 seconds.
Figure 11 shows the final states of experiments performed
with several objects of different color, shape and material.



(a) (b)

(c) (d)

Fig. 11. Grasping different objects.

VI. DISCUSSION AND FUTURE WORK

Predefining all possible sensors and movement capabilities
of a robot, will certainly reduce its adaptivity. In order to
be adaptive, a neural controller must be able to reconfigure
itself to cope with environmental and morphological changes
(e.g., additional sensors, not only in number, but different
types of sensors could be added, damaged sensors over time,
additional or fewer degrees of freedom, etc.). As we cannot
predict the above possible changes, the system should be
allowed to explore its own movements and coherently adapt
its own behavior to the new situation; something that cannot
be achieved by a purely reflex-based system.
Until now no engineering methods exist how to tackle with
unforseen changes, we expect to contribute to the solution of
these problems with our approach.

The robustness of the evolved neural controller will be
tested by making systematic changes in the hand’s morphology
(e.g., position and number of the pressure sensors, different
types of sensors, stronger motors, covering materials in order
to increase the friction with objects) to investigate how the
neural controller reacts to unforeseen perturbations.

Now that we have a system able to learn to foveate by using
visual information (see [1], [2], and [3]), and a system able to
learn to grasp objects based on tactile information, it will be
interesting to see how the two systems can be integrated and
how far the system can go to solve more demanding tasks
(e.g., object manipulation, reaching, catching moving objects).
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