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This paper describes a developmental approach to the design of a humanoid robot. The robot, equipped 
with initial perceptual and motor competencies, explores the “shape” of its own body before devoting its 
attention to the external environment. The initial form of sensorimotor coordination consists of a set of 
reflexive and explorative motor behaviors coupled to an ensemble of visual routines providing a bottom-
up attention system. The developmental path leads the robot from to construction of a “body schema” to 
the exploration of the world of objects. The “body schema” allows controlling the arm and hand to reach 
and touch objects within the robot’s workspace. Eventually, the interaction between the environment and 
the robot’s body is exploited to acquire a visual model of the objects the robot interacts with. In turn 
object models can be used to guide a top-down attention system. We discuss the implications of our 
approach in the study of cognition and our effort to build a cognitive artificial system. 
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1. Introduction 

In the past few years there has been significant technological advance in computer 
technology and robotics. Today computers are much more powerful than they used to be 
and they can be interconnected through fast networks, which allow efficient parallel 
computation. At the same time digital cameras have higher resolution, better quality and 
higher frame rate. This notwithstanding, we are still far from achieving the dream of 
artificial intelligence. Artificial systems (computer programs, expert systems or robots) 
are not able to face the challenges of the real world. We are still not capable of building 
devices which are able to cope with the variability of the world where, on the other hand, 
even the simplest animal can thrive. Likewise there is a growing interest in the scientific 
community to the study of cognitive systems with the aim of implementing cognitive 
abilities in artificial systems.1 However, the study of cognition is still in the pre-
paradigmatic stage and, indeed, little agreement has been reached even in defining it (see   
Clark2 for a review). According to cognitivism, cognition is “a computational process 
carried out on a symbolic representation of the world”. Symbols represent the world and 
can be shared across different entities (artificial or biological); they are a complete 
characterization of the world in which the entity is located, and as such are independent 
of the entity itself and its past experience. Somewhat at the other extreme, emergent 



  

approaches define cognition as the result of the interaction and co-development between 
the agent’s body and the environment in which it lives.3-5 

Although the definitive answer is still to be found, the observation of biological 
systems provides hints to plausible solutions. Two aspects look crucial: i) the existence of 
a body (embodiment) and ii) the fact that the internal representation of the world is 
acquired by acting in the environment. The two requirements are obviously intertwined, 
as the interaction between the agent and the environment is possible only by means of a 
physical body. As a consequence, the internal representations become function of the 
particular embodiment and, perhaps more importantly, of the experience of the agent. For 
example the space-variant visual system of primates forces them to move the eyes to 
fixate the objects of interest by placing the fovea at those locations. Attention is 
modulated so that only one stimulus is selected among the wealth of possible choices; the 
importance that is assigned to different stimuli is influenced by experience. 

Significantly, subscribing to the emergent approach implies that internal 
representations cannot be forced into the system “by design”; instead the cognitive 
system has to be able to create these representations by directly interacting with the 
environment or, indirectly, with other agents. Through action, the embodiment and 
environment co-determine the resulting representations. 

Motivated by these considerations this paper proposes a developmental approach to 
the realization of a number of cognitive abilities in a humanoid robot. Although a fair 
amount of cognitivism is still present, especially in the realization of the visual system, 
learning permeates the implementation at various levels. Learning and a certain degree of 
adaptation is clearly the prerequisite to a fully emergent design, although not yet an end 
or a definite answer. 

We identified the minimum requirements for our robot as having a sophisticated 
oculomotor system, an arm, and a hand. Although simplified this configuration is enough 
to allow active manipulation of the world through reaching and grasping. The robot 
follows a developmental route that goes initially through the exploration of its body and 
ends into the characterization of external objects (e.g. segmentation) by effect of 
grasping. 

Conceptually this process can be divided in three phases. The first stage is devoted to 
learning the internal models of the body (learning a body-map) which provides basic 
motor and perceptual skills like gaze control, eye-head coordination and reaching. Based 
on these abilities the interaction with the external world is investigated in the second 
phase where the robot discovers properties of objects and ways of handling them 
(learning to interact). The robot tries simple stereotyped actions like pushing/pulling and 
grasping of objects; this allows it to start acquiring information about the entities that 
populate its environment and simultaneously discover new more efficient ways of 
interaction (for example different grasp types). Finally the third stage concerns learning 
to understand and interpret events; the robot has associated its actions with the resulting 
perceptual consequences. Interpretation is achieved by inverting this association; 



  

perceptions are projected into the corresponding actions which work as a reference frame 
to give meaning to what happens in the environment. 

In our past work we have addressed some of the aspects related to the third phase.6, 7 
In this paper we focus on the two first phases: learning a body-map and learning to 
interact. We show how the robot can acquire an internal model of its hand which allows 
the robot to localize it and anticipate its position in the visual scene during action 
execution. The hand internal model is then used to learn to reach a point in space and to 
accommodate the position of the hand with respect to the object during grasping. The 
robot uses these abilities to build a visual model of the objects it grasps. Once an object is 
grasped, in fact, the robot can move and rotate it to build a statistical model of its 
appearance. 

The remainder of the paper is organized as follow. Section 2 describes the 
experimental setup used in the experiments. Section 3 details the robot’s visual system 
and, in particular, the visual attention system. Section 4 deals with the problem of 
learning the body-schema and describes the procedure to learn how to reach visually 
identified objects. Section 5 describes the probabilistic modeling of objects and the object 
recognition algorithm. Finally Section 6 presents a full experiment where all the modules 
described previously are integrated in a meaningful behavior. Section 7 draws some 
conclusions and highlights future directions. 

2. Experimental Platform 

The experiments reported in this paper were carried out on a robotic platform called 
Babybot (Figure 1). The Babybot is an upper torso humanoid robot which consists of a 
head, an arm and a hand. The head has 5 degrees of freedom, two of which control the 
neck in the pan and tilt direction, whereas the other three actuate two eyes to pan 
independently and tilt on a common axis. The arm is the well known Unimate PUMA 
260, an industrial manipulator with 6 degrees of freedom; it is mounted horizontally to 
better mimic a human kinematics. The hand has 5 fingers; each finger has three 
phalanges, the thumb has an additional degree of freedom which allows it to perform a 
rotation toward the palm. Overall the number of joints is 16 but for reasons of space and 
weight they are controlled by using only six motors. Two motors are connected to the 
index fingers: they are linked to the first (proximal) and second phalanges. The distal 
(small) phalange is mechanically coupled to the preceding one so that the two bend 
together (see Figure 1). Two motors control the motion of middle, ring and little finger. 
As in the case of the index finger, the proximal phalanges are actuated by a single motor, 
while the second and third phalanges are actuated by a second motor. The mechanical 
coupling between the joints is realized by means of springs to allow a certain degree of 
adaptation. For example, during a movement of flexion of the fingers toward the palm, if 
the middle finger were to be blocked by an obstacle the others would continue to bend up 
to the equilibrium of the motor and the spring torques (Figure 1 b) and c)). Likewise, the 



  

same would happen in case the distal phalanges had hit the obstacle. The thumb is 
different as one motor controls the rotation around an axis parallel to the palm and a 
second motor is connected to the three phalanges, whose independent motion is permitted 
by elastic coupling as for the other fingers. 

The sensory system of the Babybot consists of two cameras and two microphones for 
visual and auditory feedback. Tactile feedback is provided by 17 force sensing resistors 
mounted on the hand, five of which are placed on the palm and the remaining 12 evenly 
distributed on the thumb, index, middle and ring fingers. A JR3 force sensor provides 
torque and force feedback at the wrist. Further proprioceptive information is provided to 
the robot by optic and magnetic encoders mounted on all motors and by a three-axis 
gyroscope mounted on the head. More details about the Babybot architecture can be 
found elsewhere.8 

 
Figure 1. a) the experimental setup, the Babybot. Left: details of the hand. b) and c): elastic compliance. d)-f): 

mechanical coupling between phalanges. 

3. Visual System 

One of the first steps of any visual system is that of locating suitable interest points in the 
scene (“salient regions” or events) and eventually direct gaze toward these locations. It 
was already recognized years ago that the ability to move the cameras helps in solving a 
range of computer vision problems.9, 10 This paradigmatic shift was so important that led 
to the development of “active vision” as a modus operandi for a good part of the 
computer vision community. Human beings and many animals do not have a uniform 
resolution view of the visual world but rather only a series of snapshots acquired through 
a small high-resolution sensor (e.g. our fovea). This leads to two questions: i) how to 
move the eyes efficiently to important locations in the visual scene, and ii) how to decide 
what is important and, as a consequence, where to look next. 

The literature follows two different approaches in the attempt of accounting for these 
facts. On the one hand, the space-based attention theory holds that attention is allocated 
to a region of space, with processing carried out only within a certain spatial window of 
attention. This theory sees attention as a “spotlight”, an internal eye or a sort of “zoom 



  

lens”. The most influential evidences for the spatial selection come from the experiments 
of Posner, Snyder and Davidson 11 and Downing and Pinker.12 In a pointing experiment, 
they showed that anticipating the appearance of a target with a cue (for example an 
arrow) sped the response of the subjects. The opposite occurred, that is the subjects’ 
responses were significantly slowed down, when the cue was in the wrong direction 
(invalid cue). This means that attention might be directed to a region of space even in 
absence of a real target. Moreover on invalid cues, the response slowed down 
monotonically as the distance between the cue and the actual target increased. These 
results suggest that attention is deployed as a spatial gradient, centered on a particular 
location. 

On the other hand, object-based attention theories argue that attention is directed to an 
object or a group of objects, and that the attention system processes properties of 
object(s), rather than regions of space. Growing behavioral and neurophysiological 
evidence has shown, in fact, that selective attention frequently operates on an object-
based representational medium in which the boundaries of segmented objects, and not 
just their spatial position, determine what is selected and how attention is deployed (see 
Scholl 13 for a review). In other words, the visual system seems optimized for segmenting 
complex three-dimensional scenes into representations of (often partly occluded) objects 
for recognition and action. Indeed, perceivers must interact with objects in the world and 
not with disembodied locations. For example, attention to one part of an object confers an 
attentional advantage to other parts of that object.14 Similarly, attention to one aspect of 
an object (e.g. its shape) enhances the cortical response to other aspects of that object 
(e.g. its color or motion); thus, all the attributes of an attended object seem to be bound 
together into a single entity. This concept holds even when the attended and ignored 
objects are spatially superimposed. O’Craven et al.15 have observed the effects of object-
based attention using fMRI. In this study, observers viewed a display containing a 
sequence of semitransparent grayscale images of spatially superimposed faces and 
houses. At any given moment, either the house or the face moved with an oscillatory 
motion. Observers were asked to decide whether the currently visible house (or face) 
matched the one immediately preceding it; this required them to attend closely to the 
relevant object type. A spatial “spotlight of attention” could not select one of the two 
superimposed objects; it would necessarily select both or neither. 

Finally, another classification can be made depending on which cues are actually used 
in modulating attention. One approach uses bottom-up information including basic 
features such as color, orientation, motion, depth, and conjunctions of features. A feature 
or a stimulus catches the attention of the system if it differs from its immediate 
surrounding in some dimensions and the surround is reasonably homogeneous in those 
dimensions. However higher level mechanisms are involved as well; a bottom-up 
stimulus, for example, may be ignored if attention is already focused elsewhere. In this 
case attention is also influenced by top-down information relevant to a particular task. 

In the literature a number of attention models that use the first hypothesis have been 
proposed;16-18 most of them are derived from Treisman’s Feature Integration Theory  



  

(FIT)19. This model employs a separate set of low-level feature maps which are combined 
together by a spatial attention window operating in a master saliency map. An important 
alternative model is given by Sun and Fisher,20 who proposed a combination of object- 
and feature-based theory. 

While it is known that the human visual system extracts basic information from 
images such as lines, edges, local orientation etc., vision not only represents visual 
features but also the items that such features characterize. But to segment a scene into 
items, objects, that is to group parts of the visual field as units, the concept of “object” 
must be known by the system. In particular, there is an intriguing discussion underway in 
vision science about reference to entities that have come to be known as "proto-objects" 
or "pre-attentive objects".21 These are steps up from mere localized features, and they 
have some but not all of the characteristics of "objecthood". The visual attention model 
we propose starts by considering the first stages of the human visual system, using then a 
concept of salience based on “proto-objects” defined as blob of uniform color in the 
images. Then, since the robot can act on the world, it can do something more: once an 
object is grasped, in fact, the robot can move and rotate it to build a statistical model of 
the color blobs, thus effectively constructing a representation of the object in terms of 
proto-objects and their spatial relationships. This internal representation feeds then back 
to the attention system of the robot in a top-down way; as an example we show how the 
latter can be used to direct attention to spot one particular object among others that are 
visible on a table in front of the robot. 

We propose an object-based approach that integrates bottom-up and top-down cues; 
in particular bottom-up information suggests/identifies possible regions in the image 
where attention could be directed, whereas top-down information works as a prime for 
those regions during the visual search task (i.e. when the robot seeks for a known object 
in the environment). 

3.1. Log-polar images 

Figure 2 shows the block diagram of the first stage of the visual processing of the robot. 
The input data is a sequence of color log-polar images.22 The log-polar transformation 
models the mapping of the primate visual pathways from the retina to the visual cortex. 
The idea of employing space-variant vision is derived from the observation that the 
distribution of the cones, i.e. the photoreceptors of the retina involved in diurnal vision, is 
not uniform: cones have a higher density in the central region called fovea, while they are 
sparser in the periphery. Consequently the resolution is higher and uniform in the center 
while it decreases in the periphery proportionally to the distance from the fovea. This 
particular distribution of the receptors seems to influence the scan-paths of an observer,23 
so it has to be taken into account to better model the overt visual attention. 
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Figure 2. The visual attention system: block diagram (see text for details). 

The radial symmetry of the distribution of the cones can be approximated by a polar 
distribution, whereas their projection to the primary visual cortex is well represented by a 
logarithmic-polar (log-polar) distribution mapped onto a rectangular-like surface (the 
cortex). Here the representation of the fovea is expanded several times, i.e. more neurons 
are devoted to the fovea while the periphery is represented at a coarser resolution. 

From the mathematical point of view the log-polar mapping can be expressed as a 
transformation between the polar plane (ρ,θ) (retinal plane), the log–polar plane (ξ,η) 
(cortical plane) and the Cartesian plane (x, y) (image plane), as follows:22 
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where ρ0 is the radius of the innermost circle, 1/q is the minimum angular resolution of 
the log-polar layout and (ρ,θ) are the polar co-ordinates. These are related to the 
conventional Cartesian reference system by: 
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Figure 3 illustrates the log-polar layout as derived from equation (1) and (2). Figure 3 
shows a Cartesian image and its log-polar counterpart. It is worth noting that the flower’s 
petals, that have a polar structure, are mapped horizontally in the log-polar image. 
Circles, on the other hand, are mapped vertically. Furthermore, the stamens that lie in the 
center of the image of the flower, occupy about half of the corresponding log-polar image 
(the cortical magnitification). 



  

 
Figure 3. Log-polar mapping. The original image (left) and the result of the log-polar mapping in the cortical 

plane (right). 

3.2. Visual attention 

As a first step the input image is smoothed, by taking the average between the current 
frame and the output of the color quantization (see later) on the previous frame. Then the 
red, green, and blue channels of each image are separated, and the yellow channel is 
calculated as the mean of the red and green one. These four channels are combined to 
generate three color opponent channels, similar to those of the retina. Each of these 
channels, typically indicated as (R+G-, G+R-, B+Y-), has a center-surround receptive 
field (RF) with spectrally opponent color responses. That is, for example, a red input in 
the center of a particular RF increases the response of the channel R+G-, while a green 
one in the surrounding decreases its response. The spatial response profile of the RF is 
expressed by a Difference-of-Gaussians (DoG) function. Each pixel is considered as the 
center of a RF, so that the output of the RF filtering is simply obtained by a convolution 
of the whole image with a DoG kernel, generating an output image of the same size of 
the input. This computation, considering for example the R+G- channel, is expressed by: 

 ( ) ( ) ( ) ( ) ( ), , .c c s sR G a R b Gγ σ γ σ+ − = ⋅ ⊗ − ⋅ ⊗x x x x x  (3) 

The two Gaussian functions ( ),c cγ σx  and ( ),s sγ σx  are not balanced and the ratio b/a 
is 1.5, consistent with the study of Smirnakis et al.24 Similarly to what happens in the 
human retina25 the unbalanced ratio implicitly code the achromatic information. It is 
worth noting that filtering the log-polar images with a standard space-invariant filter 
corresponds to a space-variant filtering in the original Cartesian image.26 

Edges are then extracted on the three channels separately by employing a 
generalization of the Sobel filter due to Li et al.27 The resulting edge maps are combined 
together to generate a single map as follows: 

 ( )( ) ( )( ) ( )( ){ }( ) max , , .RG GR BYE abs E abs E abs E=x x x x  (4) 



  

It has to be noted that the log-polar transform has the side effect of sharpening the 
edges near the fovea due to the already mentioned magnification factor. To compensate 
for this effect the edge map is multiplied by an exponential function, and normalized to a 
fixed range (0-255). 

It has been speculated, that synchronizations of visual cortical neurons may serve as 
the carrier for the observed perceptual grouping phenomenon.28, 29 The differences in 
oscillator phase between spatially neighboring spiking cells could be used in principle to 
label different objects in the scene. We have used a watershed transform (rainfalling 
variant)30, 31 on the edge map to simulate the result of this synchronization and to generate 
the proto-objects. The activation is spread from the center of the image (in the edge map) 
until all spaces between edges are filled in. As a result the image is segmented into blobs 
with either uniform color or uniform gradient of color. 

Each blob is then tagged with the mean color of the pixels within its internal area (this 
leads to a sort of quantized image). The result is blurred with a Gaussian filter and stored: 
it will be averaged with the next frame to obtain a temporal smoothing and reduce the 
effect of noise. After an initial startup delay of 4-5 frames, the number of blobs and their 
size stabilizes. 

As discussed above, it is known that a feature or stimulus is salient if it differs from 
its immediate surrounding area. We chose to calculate the bottom-up salience as the 
Euclidean distance in the color opponent space between each blob and the average color 
in a ball surrounding it. The radius of the ball (the spot or focus of attention) is not fixed: 
it changes with the size of the objects in the scene. In the same way the definition of 
“immediate surrounding area” should be relative to the size of the focus of attention. For 
this reason the greater part of the visual attention models in the literature uses a multi-
scale approach and filters the salience map with suitable filters, or “blob” detectors.32 
These approaches lack continuity in the choice of the size of the attention focus. We 
propose instead to vary dynamically the region of interest depending on the size of the 
blobs. In other words, we compute the salience of each blob in relation to a neighborhood 
region whose size is proportional to that of the blob itself. In our implementation we use 
a rectangular region 3 times the size of the bounding box of the blob. The choice of a 
rectangular window is not incidental, it was chosen because filters over rectangular 
regions can be computed efficiently by employing the integral image as in.33 Blobs that 
are too small or too big are discarded from the saliency computation and will not be 
considered as possible candidates to be part of objects (proto-objects). 

The bottom-up saliency is computed as: 
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where  indicates the average of the pixel values over a certain area (as in the 
subscripts). 



  

The top-down influence on attention is, at the moment, calculated in relation to the 
visual search task. When the robot has acquired a model of the object and begins 
searching for it, it uses the visual information of the object to bias the saliency map. In 
practice, the top-down saliency map is computed as the distance between the average 
color of each blob and that of the target: 
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The total salience is simply estimated as the linear combination of the two terms above: 

 .top down bottom upS S Sα β− −= ⋅ + ⋅  (7) 

The total salience map S is eventually normalized in the range 0-255, as a consequence 
the salience of each blob in the image is relative to the most salient one. The target of the 
next saccade is the center of mass of the most salient blob. 

3.3. IOR 

Local inhibition is transiently activated in the salience map. This prevents the focus of 
attention to be redirected immediately to a location that was previously attended. Such an 
“inhibition of return” (IOR) has been demonstrated in human visual psychophysics. 

Posner and Cohen,34 for example, favor the hypothesis that the IOR does not function 
in retinal coordinates but it is instead represented in an allocentric reference frame. 
Together with Klein,35 they proposed that the IOR is required to allow an efficient visual 
search by discouraging shifting the attention toward locations that have already been 
inspected. Static scenes, however, are seldom encountered in real life: objects move and a 
“tagging system” that merely inhibited environmental locations would be almost useless 
in any real situation. Tipper et al.36 were among the firsts to demonstrate that the IOR 
could be attached to moving objects, and this finding has been replicated and extended 
ever since.37-39 These results bring to the conclusion that in humans the inhibition of 
return works by anchoring tags to objects as they move; in other words this process 
seems to be coded in an object-based reference frame. 

Our system implements a simple object-based IOR. The robot maintains a list of the 
last five positions it has visited,40 coded in a body centered coordinate system. The color 
information of the relative blobs is also stored in the list which is updated with a First-In 
First-Out policy. When the robot moves its gaze – for example by moving the eyes or the 
head in coordination – it keeps memory of the blobs it has visited earlier. Inhibition 
occurs only if the blob presents the same color that is stored in the list; in case the object 
moves or its color changes the location becomes available for fixation. 



  

4. Learning about the Self 

Internal models are thought to be available to the brain and responsible for formulating 
predictions about the world or simulating the body.41 In general the collection of the 
internal models required to represent the body is called the body-schema: it involves, for 
example, the relative positions of the limbs, and their weight and size. The existence of a 
body-schema in the brain has been proven, for example, by Graziano and colleagues42, 43 
who found neurons in the primate’s motor cortex (area 5) coding the position of the hand 
in the visual field. More precisely, these neurons had receptive fields anchored to the 
body that responded to visual stimuli and to the placement of the limbs at certain 
positions. Some of them were sensitive to visual cues only, and fired when the hand was 
visible in a particular region of space. The pure visual nature of these neurons was proven 
by a control experiment where the neural response was elicited with a mockup similar in 
appearance to the arm of the monkey. A second class of neurons, however, relied on 
proprioceptive cues only: that is, they responded even when the arm was invisible, and 
only if it was placed in a particular position (a barrier was used to occlude the view of the 
arm). Taken together these neurons represent an example of an internal model of the arm. 
The visual response corresponds to a model of the appearance of the arm (e.g. its shape, 
texture, color) whereas the proprioceptive model reflects an internal simulation of the 
spatial position of the arm. Although it is not clear how the two models are combined, it 
is clear that together they provide the brain with the ability to localize the arm in space 
with high accuracy and robustness to the environmental conditions (e.g. in dark vs. light). 
The fact that area 5 projects directly to the primary motor cortex and the spinal cord 
suggests also that this representation contributes to the control of limb movement. 

In humans and biological systems the internal representation of the body is shaped 
during development and maintained adapted to the physical modification occurring in 
life. In artificial agents (where the body does not change with time) adaptation can spare 
the tedious operation of manually tuning the system’s internal models and their 
calibration. The latter might be required to compensate changes in the visual appearance 
of the body or drift in the sensors (e.g. the motor encoders). In infants this sense of the 
body emerges a few months after birth; indeed experiments have shown that, for 
example, five-month-old infants are already able to recognize the movement of their own 
legs on a mirror.44 However this ability is not present at birth but it is acquired during 
development. 

This is a cause-effect problem because on the one hand the brain uses internal models 
to recognize the body whereas on the other it has to acquire the body-schema and 
maintain it up to date. To solve this problem, the brain needs a “bootstrapping” 
mechanism which allows the identification of the body and, in this way, the acquisition 
of the internal representation. To distinguish the body from the rest of the world the brain 
is thought to take advantage of extra information. For example, while a child waves the 
hand in front of his eyes, his brains “knows” what kind of motion is producing since it 
has exclusive access to the motor commands it sends to the muscles and the relative 



  

proprioceptive feedback. Pattern similarities between this information and other sensory 
feedback (mainly vision) may allow the brain to identify the hand (or any other body 
part) and distinguish it from other entities that move differently. The identification of 
similarities between different sensory channels, that is the perception of intermodal 
forms, is a possible candidate for this purpose. Other factors could be used as well, like 
timing or time coincidence of events (two events happening at the same time are more 
likely to have been originated by the same source). However detection of intermodal 
forms seems to play a dominant role whereas timing has a more flexible contribution 
during development. In other words, events happening in a relatively long time window 
are often considered by the brain as if they were originated from the same cause. The 
reason for this is that, probably, coincidence in time is used to detect causalities at 
different time scales and link more complicated actions with their relative perceptual 
consequences (consider for example the action of switching on a neon light).44 

In robotics there have been attempts to replicate self-recognition mechanisms. 
Yoshikawa and colleagues45 exploit the invariance of the body with respect to the 
external world to train a neural network to segment the arm of the robot. Their idea is that 
during learning, when the robot moves in the environment, the background changes, 
whereas the arms remain stationary with respect to the proprioceptive feedback. 

Instead, the active behavior of the robot is used by Metta and Fitzpatrick;46 in this 
case the robot identifies its body because it moves with respect to the background. Since 
motion alone is not sufficient to segment out external objects that move in the 
environment, the system seeks similarities between proprioceptive and visual feedback. 
Among the others, periodic actions may add robustness because offer the possibility to 
exploit repeatability.47  

4.1. Segmentation of the hand 

We propose here an approach similar to Fitzpatrick and Arsenio47 and Metta and 
Fitzpatrick46 for visually segmenting the hand of the robot from the background. 
Repeated, self-generated actions were performed by the robot during the learning phase. 
In particular the robot was programmed to execute periodic movements of the wrist. The 
resulting motion of the hand was detected by computing image difference between the 
current frame and an adaptive model of the background. The period of motion of each 
pixel in the resulting motion image was then computed with a zero-crossing algorithm; 
similar information was extracted from the proprioceptive feedback of each motor 
encoder. As a result, the hand of the robot was segmented by selecting, among the pixels 
that moved periodically, those whose period matched that of the wrist joints. Conversely 
non-periodic pixels or pixels moving with different periods were identified as being 
externally originated and discarded. Figure 4 shows an example of the detection for two 
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Figure 4. Correlated versus uncorrelated motion, an example. The plots represents the time course of the 

variables involved in the detection procedure for two exemplar pixels whose motion matched (a) and did not 
match (b) that of the hand. (a1) and (b1) show the value of the motion for the pixel (normalized between 0 and 
1). The result of the zero-crossing algorithm is reported in (a2) and (b 2). The same procedure is replicated for 

the wrist proprioceptive feedback: (a3) and (b3) show the speed of the joint (normalized arbitrary scale), 
whereas (a4) and (b4) show the result of the zero-crossing algorithm. Compare (a2) to (a4) and (b2) to (b4). 

different pixels whose motion was (a) correlated and (b) uncorrelated with that of the 
robot’s hand. Low-pass filtering and a threshold was applied after the detection to obtain 
a dense segmented image (see Figure 5). 

This algorithm forces the robot to stop and wait until the periodic movement of the 
wrist is performed. For this reason it is not useful during action or to drive a feedback 
control loop; it is instead ideally suited as a bootstrapping mechanism to acquire an 
internal model of the hand which can provide faster localization. In practice this was 
implemented with two neural networks: one trained to compute the position of the hand 
in the visual field given the current arm and head posture, and another to estimate the 
hand’s shape and orientation (in this case the hand was represented as an ellipse). Indeed, 
these neural networks can also predict the expected location and the (simplified) 
appearance of the hand in the visual field given the current posture of the robot (its “felt” 
position). 

4.2. The hand internal model, expectation and prediction 

To gather the training data the robot moved the arm randomly and then waved the hand 
for a few seconds; for each spatial location the segmentation of the hand was performed 
as described in the previous section. For each trial the center of mass of the segmented 
area was computed along with the best fitting ellipse parameters. The complete algorithm 
 



  

 
Figure 5. An example of the detection procedure. From left to right: the original image at the beginning of the 
procedure, the result of the detection (that is the pixels whose motion was correlated with that of the hand), the 
result of the low-pass filtering, the segmentation after the ellipse fitting. Notice that the ellipse tends to collapse 

towards the center, because the log-polar transformation gives more weight to the pixels close to the fovea.  

is reported in Figure 6. The resulting ( ),x y  coordinates were used to train the first 
neural network whereas the ellipse parameters (orientation, major and minor axis) 
constituted the training samples for the second neural networks. It is important to take 
into account that the position of the hand in the visual field depends both on the posture 
of the arm and hand (this is not true, for example, for the orientation and size of the hand, 
if we do not consider translational effects). Unfortunately this enlarges the learning space 
and increases the time required for exploration (to collect the training set) and learning 
(higher dimensionality). For this reason the position of the hand was projected into an 
egocentric reference frame before being used to train the neural network. This last 
operation significantly reduced the dimensionality of the input space of the neural 
network. When necessary the output of the neural network is projected back to the 
retinocentric reference frame. Both projections (back and forth from egocentric  
 

Motion
detector

Low-pass
filters

masking ellipse fit

camera

armq

segmentation

,x y
, ,a b θ

 
Figure 6. Detection algorithm, block schema. Images are captured from the camera. The “motion detector” 

block compares the motion in the image with the proprioceptive feedback from the arm (the wrist). A series of 
low-pass filters identify the blob which contains the hand. The blob is used to mask the result of the “motion 
detector” to remove possible outliers. An ellipse shape is fitted on the remaining pixels and, eventually, the 

hand is segmented. 
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Figure 7. Left: hand position predictor. Right: hand shape predictor. 

and retinocentric reference frame) require knowledge of head inverse and direct 
kinematics. In the experiments reported here they were hardwired in the system, a 
possible procedure to learn a model of them is suggested by Arsenio48.   Figure 7 reports 
the block diagrams of the two models. 

Learning was performed on-line by using the Schaal et al. model which is especially 
suited for incremental learning.49 The learning process was validated by testing the ability 
of the network to predict new samples; when a new sample was obtained, and before 
being used to perform a learning step, the network was used to predict the output given 
the input. The resulting output was compared to the current sample and the error 
computed. The increasing ability of the network to predict new samples proved that 
learning was effective. Figure 8 (left) reports the plot of the error during an experiment 
(in this case the error is computed in the image plane to simplify understanding).  

At the end of the exploration phase the robot had trained an internal model of the 
hand by which it could i) localize its center of mass ii) estimate its orientation and 
approximate size. The output of these models is not based on actual visual feedback, but 
on the mere projection of the proprioceptive information about the hand: they represent 
the expectation the robot possesses about its body (in this case, the hand).  These 
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Figure 8. Hand localization error trend (left). As new examples are presented to the network the performance 
improves. Example of the localization after learning (right). The cross corresponds to the position of the hand, 

whereas the ellipse represents its approximate shape and orientation. 



  

measures were used in numerous ways. The center of mass was employed to close a 
visual loop to direct gaze towards the hand (see Figure 8 right). For this task the internal 
model was addressed with the proprioceptive feedback of the arm. Another possibility 
was to address the model with the arm motor command (final joint position) to obtain 
where the hand would be at the end of the movement. In general this model offers a 
means of computing a prediction of the position, size and orientation of the hand from a 
given arm configuration or, in other words, of simulating a motor action. In the next 
section this will be used to learn the reaching map and estimate the visuomotor Jacobian 
matrix for a reaching task. 

4.3. Reaching 

The solution we propose is based on the use of a direct mapping between the eye-head 
motor plant and the arm motor plant.50 Flanders and colleagues51 suggested that the 
information about gaze direction might be employed by the brain to establish a reference 
point for reaching. They analyzed the error when reaching in the dark and showed how 
this correlates to the error of the gaze (the gaze drifts away from the target in the dark). 
Accordingly one premise we make is that the position of the fixation point coincides with 
the object to be reached. In other words, reaching for an object starts by looking at it. 
Under this assumption, the fixation point can be considered as the “end-effector” of the 
eye-head system. The position of the eyes with respect to the head, determines uniquely 
the position of the fixation point in space relative to the shoulder. The arm motor 
command can be obtained by a transformation of the eye-head motor/positional variables. 
We called this approach “motor-motor coordination”, because the coordinated action is 
obtained by mapping motor variables into motor variables: 

 ( ).arm headq f q=  (8) 

where headq  and armq  are head and arm posture respectively (joint space).  
What is interesting in this approach is not equation (8) per se, which, after all, 

implements the inverse kinematics of the arm, but the mechanisms used to learn it. In 
fact, this mapping can be easily learnt when the tracking behavior described in the 
previous section is active. The robot explored the workspace by moving the arm 
randomly, while simultaneously, it tracked its hand; whenever the eyes fixated the hand a 
new sample consisting of the arm and head joint angles was acquired and used to train a 
neural network approximating equation (8). The exploration was conducted in two ways. 
A first movement of the arm was performed by sampling a random uniform distribution 
within the part of the arm workspace in front of the robot. Small subsequent movements 
were performed randomly with Gaussian distribution with zero mean and standard 
deviation equal to 5 degrees. This last step while not strictly required sped up learning by  
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Figure 9. Reaching error (left). As new examples are gathered and presented to the network the performance 

increases. This improvement is less remarkable; we believe this is due to noise in the training data which affects 
not only learning, but also the measure of performance. An exemplar sequence of a reaching action after the 

learning is reported on the right. 

sampling quickly large portions of the arm’s workspace: i.e. for small movements of the 
order of 5 degrees the arm fixation was achieved rapidly and thus a new sample was 
added to the training set. When a sufficient number of samples were acquired, the robot 
started using the motor-motor map to actively reach for visually identified objects while 
learning could continue.  

Learning can be further improved by reducing the dimensionality of the input vector 
headq . In fact, only three variables are needed to code the position of the fixation point; 

for this purpose we decided to use azimuth, elevation, and distance – in substitution for 
the five angles of the head joints. This transformation is motivated by practical reasons, 
but it is also biologically plausible.52 

Similarly to the previous section, learning was tested by comparing every new sample 
to the output of the network (see Section 4.2 for details). The graph of the error during 
learning is reported in Figure 9 (left) for each sample (dotted line) and the moving 
window average over 20 samples. From the first plot it is hard to determine a real 
increment of performance as several samples at the end of the learning session present 
relatively large errors. This is due to noise in the training data, which affects not only 
learning, but also the measure of performance. In particular noise is higher in those 
configurations of the arm where the hand is closer to the head and the system fails to 
control the angle of vergence between the eyes. In these situations the error is large 
because the position of the fixation points varies significantly (from very far to very 
close). The average error, however, has a distinguishable uniform trend. Figure 9 (right) 
shows a sequence of images taken from the robot left eye during an exemplar reaching 
action. 

It is worth mentioning that there is no need to separate the exploration/training phase 
and reaching (exploitation). An initial “reflex” can be employed as substitute for the 
reaching map at the very beginning; this simple behavior could, for example, populate the 
robot workspace with three positions (left, center and right). Exploration in this case 



  

would still be guaranteed by a random procedure, similar to the one described earlier. 
This approach was followed by Metta et al. and Metta.50, 53 

The reaching problem can also be solved in the image plane. Consider the planar case 
(i.e. no 3D information is available) and suppose to measure the position of the end point 
in the image plane ( ),x y . We want to control the arm to reach a target point ( ),x y∗ ∗ . 
We can solve the problem by means of a closed loop controller, by following a fairly 
standard visual servoing approach: 

 k= − ⋅∆q J(q)∆x . (9) 

where: 

 x x
y y
− ∗⎡ ⎤

= ⎢ ⎥− ∗⎣ ⎦
∆x . (10) 

0k >  is a scalar and J(q)  is the Jacobian of the transformation between the image plane 
and the arm joint space. For a 2 dimensional arm J(q)  is a 2 by 2 matrix whose elements 
are a non-linear function of the arm joint angles. Given the Jacobian of the manipulator it 
is possible to drive the endpoint toward any point in the image plane. At least locally, the 
Jacobian can be approximated by a constant matrix. In our case: 

 ( ) 11 12

21 22

a a
k k

a a
⎡ ⎤

− ⋅ = − ⋅ ⎢ ⎥
⎣ ⎦

∆q J q ∆x ∆x . (11) 

Convergence is guaranteed if the following condition is met: 

 ( ) ( )1 0J q J q− > . (12) 

Since following the procedure of Section 4.2 the robot has learnt a direct 
transformation between the arm joint angles and the image plane (see for example 
Section 4.2, Figure 7), it can now recover the position of the endpoint in the image plane 
from a given joint configuration: 

 ( )
x

f q
y
⎡ ⎤

=⎢ ⎥
⎣ ⎦

. (13) 

Indeed, to compute a local approximation of the Jacobian, a random sampling of the 
arm joint space around a given point ( ),x q  can be performed: 

 .=i iq q +∆q  (14) 

with 

 .=i∆q η(0,σ)  (15) 

and where η(0,σ)  follows a normal distribution of zero mean and standard deviation of 
5 degrees. 



  

For each sample, by applying equation (13) we obtain a new value = +i ix x ∆x  that 
can be used to estimate the Jacobian around q  with a least squares procedure: 
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( )J q  can then be used in the closed loop controller to drive the arm toward a specific 
position in the image plane. However, there is no need to close the loop with the actual 
visual feedback. By using the map in equation (13), in fact, we can substitute the actual 
visual feedback with the internal simulation provided by this model. From the output of 
the closed loop controller we can estimate the position of the arm at the next step, by 
assuming a pure kinematic model of the arm; in this way the procedure can be iterated 
several times to obtain the joint motor commands required to perform a reaching 
movement. The flowchart below explains this procedure. 
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Figure 10. Closed-loop approach to reaching, flowchart. See text for further details. 

 
 



  

 
Figure 11. Arm trajectories for two reaching actions (a) and (b). T0 marks the position of the hand at the 

beginning of the action. Crosses correspond to the position of the palm; circles show the position of the fingers. 
The action is divided in three phases. From T0 to T1 arm prepositioning. From T1 to T2, reaching: in this case 

the motor-motor map is used to move the palm towards the center of the visual field (the target). A small 
adjustment with the arm Jacobian is performed to position the fingers on the target (T2 to T3). 

The main limitation of this approach is that we do not make use of three-dimensional 
visual information; while this is a clear limitation of this implementation, the same  
approach can be easily extended to the full 3D case. The implementation is consistent 
with the hand internal model which provides the position of the hand in the image plane 
of one of the eyes only (left). Since in the Babybot the hand position is uniquely 
described by three degrees of freedom (the first three joints of the Puma arm), this 
technique was used to control only two of them (arm and forearm). Given the kinematics 
of the Puma arm this allowed to perform movements on the plane defined by the shoulder 
joint. Another point worth discussing is that the closed loop controller does not use real 
visual feedback, and, therefore, its accuracy depends on the precision of the hand internal 
model. To achieve better performances, visual feedback might be required.  

Let us summarize what we have described in this section. We have introduced two 
approaches to solving the inverse kinematics of the manipulator. The first method uses a 
mapping between the posture of the head (whose fixation point implicitly identifies the 
target) and the arm motor commands; it allows controlling the arm to reach any point 
fixated by the robot.a The second approach uses the hand internal model to compute a 
piecewise constant approximation of the inverse Jacobian and simulate small movements 
of the arm in the neighborhood of the desired target. The procedure is iterated several 
times to compute the motor command required for reaching the target. Reaching in this 

                                                 
a During the learning of the motor-motor map, the robot tracks the palm of the hand. 



  

case is planned in the image plane; however, since the internal model is two dimensional, 
the approach is limited to the plane identified by the shoulder. For these reasons, the two 
methods were mixed in the experiment reported in the next section. The motor-motor 
mapping is employed to plan a first gross movement to approach the target, whereas the 
“closed-loop approach” allows a finer positioning of the fingers on the target. This 
second part of the movement is planned by considering the point of the ellipse at 
maximum distance from the robot’s body (which corresponds to the fingers) as the arm 
endpoint (Figure 11). This strategy proved successful because it substantially increased 
the probability to grasp the objects on the table. 

Once the robot has computed the final arm posture it is still required to plan the actual 
movement. This was done with a simple linear interpolation between the current and final 
arm configuration. The trajectory was divided in steps which were then effected by the 
low level controller; to this purpose we employed a low-stiffness PD controller with 
gravity compensation. The gravity load term for each joint was learnt online as described 
in Natale.8 

5. Learning about Objects 

In this section we describe a method for building a model of the object the robot grasps. 
We assume for a moment that the robot has already grasped an object; this can happen 
because a collaborative human has given the object to the robot (as we describe in the 
next section) or because the robot has autonomously grasped the object. In this case the 
robot may spot a region of interest in the visual scene and apply a stereotyped action with 
the arm and the hand to catch it. Both solutions are valid bootstrapping behaviors for the 
acquisition of an internal model of the object. When the robot holds the object it can 
explore it by moving and rotating it. 

In short, the idea is to represent objects as collections of blobs generated by the visual 
attention system and their relative positions (neighboring relations). The model is created 
statistically by looking at the same object several times from different points of view. At 
the same time the system estimates the probability that each blob belongs to the object by 
counting the number of times each blob appears during the exploration. 

In the following, we use the probabilistic framework proposed by Schiele and 
Crowley.54, 55 We want to calculate the probability of the object O given a certain local 
measurement M. This probability P(O|M) can be calculated using Bayes’ formula: 
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where P(O) is the a priori probability of the object O, P(M) the a priori probability of the 
local measurement M, and P(M|O) is the probability of the local measurement M when 



  

the object O is fixated. In the following experiments we carried out only a single 
detection experiment, there are consequently only two classes, one representing the 
object and another representing the background. P(O) and P(~O) are simply set to 0.5 
because this choice does not affect the maximization. 

Since a single blob is not discriminative enough, we considered the probabilities of 
observing pairs of blobs; the local measurement M becomes the event of observing both a 
central (i.e. fixated) and surrounding blobs: 

 ( ) ( )( )| |  and  adiacent .i c i cP M O P B B B B=  (18) 

where Bi is the ith blob surrounding the central blob Bc which belongs to the object O. 
That is, we exploit the fact the robot is fixating the object and assume Bc to be constant 
across fixations of the same object – this is guaranteed by the fact the object is being hold 
by the hand. In practice this corresponds to estimating the probability that all blobs Bi 
adjacent to Bc (which we take as a reference) belong to the object. Moreover the color of 
the central blob Bc will be stored to be used during visual search to bias the salience map. 
This procedure, although requiring the “active participation” of the robot (through 
gazing) is less computationally expensive compared to the estimation of all probabilities 
for all possible pairs of blobs of the fixated object. Estimation of the full joint 
probabilities would require a larger training set than the one we used in our experiments. 
The probabilities P(M|~O) are estimated during the exploration phase with the blobs not 
adjacent to the central blob. The local measurements were considered independent, 
because they refer to different blobs, so the total probability P(M1,…,MN|O) can be 
factorized in the product of the probabilities P(Mi|O). An object is detected if the 
probability P(O|M1,…,MN) is greater than a fixed threshold. 

Our requirement was that of building the object model with the shortest possible 
exploration procedure. Unfortunately, the small training set might give histograms 
P(M|*) with many empty bins zero counts bins. To overcome this problem a probability 
smoothing method was used. A popular method of zero smoothing is Lidstone’s law of 
succession:56 

 ( ) ( )| .
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+
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for a v valued problem. With λ=1 and a two valued problem (v=2), we obtain the well-
known Laplace’s law of succession. Following the results of Kohavi et al.,57 we choose 
λ=1/n where n is equal to the number of frames utilized during the training. Then our 
probability estimator becomes: 

 ( ) ( ) 1/| .
( ) /
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+
 (20) 

When an object is detected after visual search, a possible figure-ground segmentation 
is attempted, using the information gathered during the exploration phase. Each blob is 



  

segmented from the background if it is adjacent to the central blob and if its probability 
to belong to the object is greater than 0.5. This probability is approximated using the 
estimated probability as follows: 

 ( )( ) ( )( )|  and  adiacent |  and  adiacent .i c i c i c i cP B O B B B P B B B B∈  (21) 

As an example Figure 13 shows the result of the segmentation procedure.  
In table 1, results are shown of using a toy car and a toy airplane as target objects; 50 

training sessions were performed for each object. The first column shows the recognition 
rate, the second the average number of saccades (mean ± standard deviations) it takes the 
robot to locate the target in case of successful recognition. 

 

Table 1. Performance of the recognition system measured from a set of 50 trials. 

Object Recognition rate Number of saccades when 
recognized 

Toy car 94% 3.19±2.17 

Toy airplane 88% 3.02±2.84 

 
 

 
Figure 12. Object exploration and corresponding segmentation 1-3 and 4-6 respectively. The segmentation 

consists in the object central blob together with the relative adjacent ones. Notice that fixation is maintained on 
the object by using the hand localization module as explained in Section  4. 



  

 
Figure 13. Visual search. The robot has acquired a model of the airplane toy during an exploration phase (not 

shown); this information primes the attention system. The blue blob at the center of the airplane is selected and 
a saccade performed. (a) and (b) show the visual scene before and after the saccade. (d) and (e) show the output 

of the visual attention system synchronized with (a) and (b) respectively. The result of the segmentation after 
the saccade is in (c). 

6. A Grasping Behavior: where Everything Comes to a Sense 

The modules described in the previous sections can be integrated to achieve an 
autonomous grasping behavior. Figure 14 can be used as a reference for the following 
discussion. The action starts when an object is placed in the robot’s hand and the robot 
detects pressure in the palm (frame 1). This elicits a clutching action of the fingers; the 
hand follows a preprogrammed trajectory, the fingers bend around the object toward the 
palm. If the object is of some appropriate size, the intrinsic elasticity of the hand (as 
described in Section 2) facilitates the action and the grasping of the object. The robot 
moves the arm to bring the object close to the cameras and begins its exploration. The 
object is placed in four positions with different orientations and background (frames 
between 2 and 6). During the exploration, the robot tracks the hand/object; when the 
object is stationary and fixation is achieved, a few frames are acquired and the model of 
the object trained as explained in Section 5. At the end of the exploration the object is 
released (frame 4). At this point the robot has acquired the visual model of the object and 
starts searching for it in the visual scene. To do this, it selects the blob whose features 
better match those of the object’s main blob and perform a saccade. After the saccade the 
model of the object is matched against the blob that is being fixated and its surrounding. 
If the match is not positive search continues with another blob, otherwise grasping starts 
(frames 7-8-9). At the end of the grasp the robot uses haptic information to detect 
whether it is holding the object or the action failed. In this process the weight of the 
object and its consistence in the hand is checked (the shape of the fingers holding the 



  

object). If the action is successful the robot waits for another object, otherwise it 
performs another trial (search and reach). 

It is fair to say that part of the controller was preprogrammed. The hand was 
controlled with stereotyped motor commands. Three primitives were used: one to close 
the hand after pressure was detected, and two during the grasping to pre-shape the hand 
and actually clasp the object. The robot relied on the elasticity of the hand to achieve the 
correct grasping. To facilitate grasping, the trajectory of the arm was also programmed 
beforehand; waypoints relative to the final position of the arm were included in the joint 
space to approach the object from the top. 

 
Figure 14. A sequence of the robot grasping an object. The action starts when an object is placed on the palm 

(1). The robot grasps the object and moves the eyes to fixate the hand (2). The exploration starts in (3) when the 
robot brings the object close to the camera. The object is moved in four different positions while maintaining 

fixation; at the same time the object model is trained (3-6). The robot drops the object and starts searching for it 
(7). The object is identified and a saccade performed (7-9). The robot eventually grasps the toy (10-12). 

7. Discussion and Conclusions 

In this paper we have presented a developmental approach to the realization of cognitive 
abilities in a humanoid robot which starts from the exploration of the body and unfolds 
by eventually exploring the external world. The robot starts from a limited set of initial 
motor and perceptual competencies and autonomously develops more sophisticated ways 
to interact with the environment. This knowledge is used to begin the exploration of the 
environment and build a visual model of the objects that are grasped. 



  

We have presented an implementation of a visual attention system properly taking 
into account top-down and bottom-up information. The top-down system divides the 
visual scene into color blobs; each blob is assigned a saliency depending on the ratio 
between its color and the color of the area surrounding it. The robot actively explores the 
visual appearance of the objects it grasps: every time an object is placed on the palm a 
statistical model of the blobs that are part of it is constructed. This information is 
subsequently fed to the attention system as a bottom-up primer to control the visual 
search of the same object. Thus the robot experience allows it to build a representation of 
the object with which it interacts while, at the same time, modulates the visual attention 
system. The robot’s ability to act is used together with the body internal model to drive 
the exploration of the environment. This facilitates learning in different ways. Firstly it 
helps the robot to focus attention both in space and in time. During the acquisition of the 
object visual model, in fact, the robot can track the object because it knows the position 
of the hand from its proprioceptive feedback. The latter is also useful to detect when the 
acquisition of the model can be initiated because the object does not move and the eyes 
have acquired a stable fixation on it. Finally, the fact that the object is being held by the 
hand guarantees the link between different sensory modalities (for example the sight of 
the object and the kinesthetic information from the hand). The object model makes use of 
visual information; in Natale at al.58 we show how it is possible to build a model of the 
objects based only on haptic information. In the future we would like to investigate the 
integration of the two approaches. 

We support the enactive view of cognition in showing how much the body and the 
ability to build the representation of the external world through the interaction between 
the body and the environment can be useful for an autonomous agent. Even a simple set 
of behaviors (such as the one initially provided to the robot) is sufficient to begin the 
exploration of the environment and acquire an internal representation of it. On the other 
hand it is fair to say that much of the system presented in this paper is still “cognitivist” 
and more or less carefully handcrafted into the robot. For practical reasons, our 
implementation lays in between a full emergent and a cognitivist approach although 
biologically informed choices were made when possible. 

We have also shown how this initial body-environment interaction is sufficient to 
start linking actions with their resulting consequences to form prediction about the 
behavior of the robot. Very often prospective control is required to plan a successful 
action. During grasping, for example, the correct timing of preshaping and closure of the 
fingers is required; the lags in the sensory streams (visual and tactile) typical of artificial 
and natural systems make feedback control ineffective. To be able to anticipate the 
impact of the hand with the object, the robot is required to control the timing between 
preshaping and actual grasping; clearly this cannot be based only on visual and tactile 
feedback. Prospective control, however, is not only important for action. It gives an agent 
the possibility to create expectations on which to base the interpretation of the world and 
the actions performed by others. By means of the interaction with the world the agent 
builds a model of the behavior of external entities (objects, people, etc.) and the 



  

associated sensory feedback. This link can be used afterward to anticipate the 
consequences of a similar action and, eventually, to compare them with the real feedback. 
In the same way new situations can be interpreted by matching them against the robot’s 
past experience. For example, the event of a ball that falls on the floor (and the resulting 
visual and auditory sensations) can be associated to the action of dropping it. 
Anticipation and predictions enhance the agents’ ability to understand and interact with 
the environment and, for this reason, are important aspects of cognition. The results of 
this paper represent the first steps into the implementation of cognitive abilities in an 
artificial system. It is difficult to think, at least from an emergent perspective, of a 
shortcut that prescinds from sensorimotor coordination in achieving cognitive skills to be 
used in the real world. 

To conclude, we would like to comment on the effort required to build a complete 
robotic platform on the one hand, and the software architecture on the other. Presently the 
Babybot is an integrated robotic platform where it is extremely easy for software modules 
controlling different subparts (arm, head or hand to mention just a few) to exchange 
information and coordinate with each other.59 This is not very common, as usually in the 
literature papers report single experiments where the robotic platform is specifically 
programmed to perform the desired task, but care is not taken to realize a system which 
can grow in complexity as new modules are added. The experiment reported in Section 6 
does not only show the integration between the visual attention system and the motor 
system but also the complexity of the system as a whole. We believe that this is a 
necessary prerequisite to carry out research in humanoid robotics as the complexity and 
number of skills increase. 
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