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From behaviour-based robots to motivation-based robots3
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Abstract8

The appearance on the market of entertainment robots for children and families has ipso facto created the new category
of motivation-based robots. A taxonomy of the architectures of different robot categories is proposed. The architecture of
motivation-based robots is phylogenetic and ontogenetic. A tentative architecture for a specific experimental setup is described.
The results of the experiment show that a new motivation arises from the interaction between the robot and the environment.
Motivation-based robots equipped with ontogenetic architecture might provide the foundation for a new generation of robots
capable of ontogenetic development.
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. Introduction

Manufacturers design entertainment robots capable
f interacting with humans. This interaction occurs at
everal levels: from the selection of a set of in-built
ehaviours to the capability of being independent and
cting on its own. Entertainment robots learn actions

hrough touch sensors, switches and voice recognition
odules. The most sophisticated robots are said to de-

elop unique personalities through the interaction with

∗ Corresponding author. Tel.: +39 010 353 2817/3478257675;
ax: +39 010 353 2948.

E-mail addresses:manzotti@dist.unige.it (R. Manzotti),
incenzo@dist.unige.it (V. Tagliasco).

a specific environment. Robots that go through a s
of development phases (real or simulated from
dler, to child, to adult) appeal to consumers. Moreo
robots must show emotions like happiness, sad
anger and surprise, in different degrees. Entertain
robots must be curious and must be able to explore
surroundings on their own: these robots develop in
lation to their personal history. We define this clas
robots as motivation-based robots because they a
re-creating the motivational structure of biological
ings. The time has now come to move from behavi
based robots[1] to motivation-based robots[2–4].

Recently, in neuroscience and robotics, the p
lem of what motivation is has been investigated in
more general framework of what a subject is[5,6]. We

921-8890/$ – see front matter © 2004 Published by Elsevier B.V.
oi:10.1016/j.robot.2004.10.004
U



T
 P

R
O

O
F

6

2 R. Manzotti, V. Tagliasco / Robotics and Autonomous Systems xxx (2004) xxx–xxx

propose an engineering approach to create motivations42

in robots that does not require such a broad frame-43

work. Behaviour-based robots make use of fixed “mo-44

tivations” hardwired in their structure at design time45

[7–9]. Even systems that are capable of learning new46

behaviours must pursue a target of some kind pro-47

grammed at design time; for instance, if a robot has48

to learn to reach a given target with its arm, it will learn49

to move according to a predefined “motivation”. On50

the contrary, the motivation-based robots must be able51

to perform actions driven by motivations which they52

did not possess at design time, but which they have53

developed by interacting with the environment.54

For instance, an “intelligent” electronic device like55

a last-generation digital photo camera performs a long56

list of “intelligent” tasks: it selects the best program57

depending on the light, it applies a complex procedure58

for each program in order to select the right exposure,59

the right focus and a long list of related parameters. It60

modifies its behaviour on the basis of the environmen-61

tal conditions in order to optimise the end result. Yet,62

notwithstanding what has been stored in its internal63

memory during a long journey, its behaviour does not64

change. No external event can modify its internal proce-65

dures as they were originally designed. Alternatively,66

if a 3-year-old child came on the same long journey,67

s/he would change. The events that happened to/around68

him/her would change not just his/her memory but also69

his/her future development, his/her internal criteria and70

the way in which future events will modify him/her. On71

a and72

t ork73
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t Ex-89

periences modify both his/her behaviour(s) and his/her90

criteria. 91

From the previous example, it is clear that there92

is a difference between motivation-based beings and93

behaviour-based beings. In the next paragraph this dif-94

ference will be described in detail and a candidate ar-95

chitecture for artificial beings will be proposed. 96

A mallard duckling before its imprinting process has97

no idea of the visual appearance of its mother; however,98

since the bird sees its mother under favourable condi-99

tions, it develops a strong motivation to see the mother100

duck again. Before the imprinting there was no interest101

whatsoever for that kind of visual object, but immedi-102

ately afterwards, the mallard duckling tries to keep the103

image of its mother inside its visual field. The moti-104

vation is ‘to have the mother’s image inside the visual105

field’. All its following actions are performed in order 106

to make this event occur as frequently as possible. If107

that particular mother-bird had not shown itself to the108

mallard duckling, the newborn bird would not have de-109

veloped any interest in it. If a different image had been110

shown instead of the real mother, let us say the face of111

Konrad Lorenz, the newborn bird would have tried to112

maximize the event ‘to have the face of Konrad Lorenz113

inside the visual field’. More complex behavioural pat-114

terns are based on the same concept of repetition of an115

occurred event (motivation). Peter had a nice evening116

with Susan so he invites her again in order to repeat117

the pleasant experience. Mary had a pleasant time in118

Venice and so she plans a new holiday there. 119
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n intermediate level between the 3-year-old child
he camera, there are classic artificial neural netw
mplementations, such as speech recogniser prog
hey are clever devices; they recognize normal sp
ronounced by an average male or female voice. T
tore individuals’ voices and modify their internal p
ameters in order to learn how to improve their per
ance. In this respect they are better than the cam
hat happens to them modifies their behaviour. If

ake two different instances of speech recogniser
rams used by two different individuals, they are

erent: each is specialized on its owner’s voice. On
ther hand, if we take two cameras used by two diffe
hotographers, they are exactly the same. Even cl
rtificial neural networks are lacking something: th
oals remain the same. Independently of their ex
nces they do not change their goals. On the other h

he 3-year-old child develops new goals at any time.
E
D

ROBOT 1197 1–1

. Architectures for building robots: a
axonomy

Not all the motivations of biological systems a
xed at birth: they only possess a very limited, surv
riven, built-in set of motivations. As they grow a
evelop, biological systems continuously generate
otivations on the basis of two separate factors:
enetic background and their past experience. Bot
ecessary in order to select a particular motivatio
allard duckling does not have the motivation to

ow its genetic mother. Yet, via its genetic backgrou
he bird possesses the capability of choosing a bird
electing it as a motivation. That particular bird (ho
ully its mother) will become the motivation that w
ontrol the learning of the bird.
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The behaviour of behaviour-based artificial struc-135

tures depends on experience and motivations (goals)136

defined elsewhere at design time[1,2]. In complex bio-137

logical systems, behaviour still depends on experience138

and motivations; yet, motivations are not fixed. Mo-139

tivations are the result of the interaction between ex-140

perience and a limited number of hardwired instincts141

(the ones provided by genes). In many complex bio-142

logical systems, it is possible to distinguish between143

phylogenetic aspects and ontogenetic ones, nature ver-144

sus nurture[10–12]. In general, phylogeny refers to145

those processes that produce new structures (genes,146

bodily features, behaviours, instincts) in a time scale147

larger than that of single individuals. On the contrary,148

ontogeny is limited to the life span of single individu-149

als [10]. Furthermore, ontogeny can be driven by the150

phylogenetic repository (genes or instincts) or by the151

unpredictable contingencies of the environment. Here152

we endorse the view that is necessary to distinguish153

between goals which are determined before the actual154

development of an agent or subject, and those goals155

which are specified after the birth of the agent. We will156

call the former instincts and the latter motivations. The157

objective of this paper is to illustrate a simple set of158

procedures which produce motivations during devel-159

opment, as in the case of the imprinting procedure of160

birds.161

Is it possible to implement instincts and motivations162

in an artificial system? We propose a taxonomy of ar-163

chitectures: a fixed control architecture, a learning ar-164
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Fig. 1. Three possible architectures. In the first case (top) bothwhat
andhowthe system does is defined a priori; in the second case (mid-
dle) the system modifieshow it behaves but notwhat it is doing; in
the last case (bottom) the system modifies bothwhatandhowit does.

tivation Maker module sets the goals that have to be183

pursued by the Rule Maker module. 184

2.1. Fixed control architecture 185

In this case, the causal structure of the system is186

fixed (seeFig. 1a). There is no ontogenesis whatsoever.187

Notwithstanding the behavioural complexity of the sys-188

tem, everything happens because it has been previously189

coded within the system structure. A mechanical device190

and a complex software agent are not different in this191

respect: both are pre-programmed in what they must192

achieve and how they must achieve it. Nothing in their193

structure is caused by their experiences. Suitable ex-194

amples of this category are Tolam’s artificial sow bug195

[13], Braitenberg’s thinking vehicles[14], Brooks’ ar- 196
U
N
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R
R

E

hitecture and an ontogenetic architecture (Fig. 1). In
he first case (Fig. 1a), the system has no capability
odifying how it does what it does. There is a sim
ecision Maker module, which take the input sig
nd produces the output on the basis of some a
ri hard-wired module. Examples of this structure
imple control devices or machine automata. In the
nd case (Fig. 1b), the system is capable of modifyi

ts behaviour to fulfil some a priori target. The syst
s capable of modifyinghow it behaves. The Decisio

aker module is flanked by a Rule Maker module.
ule Maker module can modify the a priori rules c

ained in the Decision Maker module on the basi
priori hard-wired criteria. Examples of this struct
re reinforcement learning or supervised learning
cial neural networks. In the third case (Fig. 1c), the
ystem is capable of modifying not onlyhow it does
hat it does, but also to definewhat it does. The Mo
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tificial insects[15,16]and recent entertainment robots197

like Sony’s AIBO and Honda’s humanoid ASIMO.198

2.2. Learning architecture199

A different level of structural dependency with the200

environment is provided by the architectures that can201

learnhow to perform a task (seeFig. 1b). Behaviour-202

based robots can be classified in this category. Systems203

based on artificial neural networks are well-known ex-204

amples of this kind of architecture. These systems de-205

termine how to get a given result once they have been206

provided with a specific motivation. The motivation207

can be given either as a series of examples of correct208

behaviour (supervised learning) or as a simple evalu-209

ation of the global performance of the system (rein-210

forcement learning)[17,18]. In both cases some kind211

of learning is applied. These systems lack the capa-212

bility of creating new motivations. By controlling its213

motors a behaviour-based robot can learn how to nav-214

igate avoiding static and dynamic obstacles. However215

the motivation behind this task is defined by thea pri-216

ori design of the system. There are several examples217

of this kind of learning agent: Babybot at LIRA-Lab218

[19,20], Cog at MIT[7,21].219

2.3. Ontogenetic architecture220

A system that learns bothhow to perform a given221

task andwhat task must be performed, corresponds to222

a223

c ri-224
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3. A motivation-based architecture 241

The proposed architecture is ontogenetic according242

to the previously defined taxonomy. The underlying243

idea is to have a physical structure (that implements244

the proposed architecture), which is activated by in-245

coming events and develops motivations on this basis.246

The proposed architecture makes use of elementary as-247

sociative processes, simple Hebbian learning and case-248

based reasoning. 249

The architecture receives an incoming stimulus and250

produces a signal (Relevant Signal) which depends on251

the value the system gives to the incoming stimulus.252

For instance, if the incoming stimulus corresponds to253

the mother’s face, the system will produce a strong254

Relevant Signal. If the incoming stimulus corresponds255

to a dull grey object, the Relevant Signal will be weaker.256

The architecture is made of three main modules:257

the Category Module that is basically a pattern classi-258

fier; the Phylogenetic Module that contains thea priori 259

criteria; the Ontogenetic Module that applies Hebbian260

learning and develops new criteria by using the patterns261

stored in the Category Module. The incoming stimuli262

are stored in the Category Module on the basis of the263

Relevant Signal coming from the Phylogenetic Mod-264

ule and the Ontogenetic Module. At the beginning, the265

Relevant Signal depends on those properties of the in-266

coming signals that are selected by the Phylogenetic267

Module. Subsequently, the Relevant Signal is flanked268

by the new signals coming from the Ontogenetic Mod-269
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n ontogenetic architecture (seeFig. 1c). This is the
ase for most, if not all mammals; it is true for p
ates and for human beings. They are systems ca
f developing new motivations that do not belong

heir genetic background. In the field of artificial s
ems there has been a series of attempts to addre
roblem[22–25]as well as attempts to locate simi
tructures in the cortical architecture of humans[26].
or their development, these systems depend mo

he environment than the previous two categorie
ystem belonging to the first category does not de
n the environment for what it does or for how it do
hat it does. A system belonging to the second c
ory does depend on the environment for how it d
hat it does, but not for what it does, which is phylo
etically determined. A system belonging to the th
nd last category depends on the environment bot
hat and for how it does what it does.
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le.
The architecture is aimed at mimicking the de

pment of motivations in human beings. For insta
human develops an interest for cars even if not

n his/her phylogenetic code is explicitly directed
ards cars. On the contrary, an insect cannot dev
ew motivations but must follow its genetic bluepr

t has no ontogenetic development. One of the issu
his architecture is to explicitly divide the ontogene
art from the phylogenetic part.

.1. Category Module

The category module has the role of grouping
lusters, classes and categories of stimuli coming
he external events. A discrete flow of incoming s
als is the input of the category module. No hypoth

s required for their timing; no hypothesis is requi
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Fig. 2. A scheme for a motivation-based architecture.

for their nature. These signals could be of any kind286

(chunks of auditory signals, visual images, filtered vi-287

sual images). Each signal is represented by a vector�s of288

real numbers (�s∈Rn). CM creates a series of clusters289

Ci grouping classes of stimuli where each clusterCi is290

a set of stored stimuli.291

The process of cluster definition is based on an inter-292

nally built-in criteria for clustering and on the presence293

of a Relevant Signal (seeFig. 2).294

Whenever an incoming signal is received, a Cat-295

egories Vector�c, which is the output of the CM, is296

computed. The Categories Vector contains as many el-297

ements as the clusters inside the CM at the time in298

which the incoming signal is analysed; the elements299

of �c provide an indication of which cluster best repre-300

sents the current stimulus. Theith elementci is equal301

to the normalized difference between the maximum302

possible distance, usually 1, and the actual distance303

dC (which will be explained below in this paragraph)304

between the incoming signal�s and the clusterCi . In305

this way, the elementci with the greatest value corre-306

sponds to the clusterCi that best matches the incoming307

signal:308

�c =




1 − dC(�s, C1)

1 − dC(�s, C2)
...

1 − dC(�s, Cn)


 .309

There is no unique way to determine the distance func-310

tionsdC (dC : (Rn ×D) �→ R, D cluster domain) be- 311

tween a vector and a cluster. The process ofci updating 312

requires the definition of two thresholds: one to define313

the minimum distance from cluster (mcd) and another 314

to define the maximum distance from a cluster (Mcd). 315

The CM tunes its activity on the basis of the Rel-316

evant Signal. As shown inFig. 3, the Relevant Signal 317

(R(t)) is the sum of two different signals: the Relevant318

Ontogenetic Signal (Ron(t)) and the Relevant Phyloge-319

netic Signal (Rph(t)), according to 320

R(t) = max(Ron(t), Rph(t)). 321

If andonly ifthe Relevant Signal is active, every time322

a signal is received, the CM performs the following323

actions: 324

(i) If the stimulus is too similar to the already stored325

stimuli, do nothing (dC(�s, Ci) < mcd). 326

(ii) If the stimulus is sufficiently similar to one of the 327

previously created clusters (mcd ≤ dC(�s, Ci) ≤ 328

Mcd), the stimulus is added to that cluster. 329

(iii) If the stimulus is not sufficiently similar to any of 330

the stimuli already stored, a new cluster is created331

(dC(�s, Ci) > Mcd). 332

By storing a stimulus only if the Relevant Signal is333

active, the system does not assign new resources for334

every incoming signal (the first rule is useful to avoid335

to store equivalent stimuli). 336
U
N

C
 ROBOT 1197 1–1
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Fig. 3. Timing of operations.

3.2. Phylogenetic Module337

The Relevant Phylogenetic Signal,Rph(t) is pro-338

duced by the Phylogenetic Module (PM,Fig. 2). This339

module is the only one that has some built-in criteria340

concerning the relevant properties of the incoming sig-341

nal (for instance, the structure of the Category Module342

does not present any similar feature). Functionally, it343

has the same role as the genetic instincts in biological344

systems. It is similar to saliency systems or attention345

mechanisms[27]: it selects which stimuli are worth the346

attention of the system. A Phylogenetic Module works347

in two different ways: (i) it autonomously produces a348

signal on the basis of some internal criteria; (ii) it pro-349

duces a signal on the basis of some external events. In350

the second case the PM needs some kind of elementary351

capability in order to recognize particular occurrences352

of events in the external environment (the presence of353

the mother, the presence of soft or brightly coloured354

objects).355

For instance, a baby looks with more curiosity at356

brightly coloured objects than at dull colourless ob-357

jects, independently of any past experience. This be-358

haviour requires the existence of a hardwired function359

looking for a relevant property of images (saturated360

colours). This module provides criteria that can be used361

to select correct actions (for instance those actions that362

maximize the presence of the interesting stimuli). 363

The performance of the Phylogenetic Module is im-364

plemented by the functionfphylogenetic: Rn �→ [0,1] 365

applied to the input�s′(t) that is a signal from which it 366

is possible to know if something relevant is happening.367

The signal�s′(t) comes from the external environment.368

For instance it could be a verbal approval for a specific369

event; or it could be a reward/punishment following a370

behaviour. The resulting output is: 371

Rph(t) = fphylogenetic(�s′(t)). 372

A system could contain one phylogenetic function373

for each kind of event the designers want the system374

to react to. For instance, there could be a function to375

detect the presence of round-shaped objects (a proto-376

type for faces), a function to detect the presence of377

objects with highly saturated colours and a function to378

detect the presence of moving objects. At every instant379

there could more than one function to signal that some-380

thing interesting is going on: more than onefphylogenetic 381

function can be evaluated. The output of the Phyloge-382

netic Module is the maximum among the outputs of the383

different fphylogeneticfunctions whose input is always 384
U
N
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�s′(t):385

Rph(t)=fphylogenetic(�s′(t))= max
i=1,...,m

(f iphylogenetic(�s′(t))),386

wherem is the number of kinds of events which the387

system is capable of reacting to from the beginning. So388

m is the number of elementary instincts (each corre-389

sponding to a separate phylogenetic function) that the390

system possesses. It is important to outline that (i) the391

Phylogenetic Module is incapable of adaptability and392

that (ii) the Phylogenetic Functions might be very sim-393

ple because their role is to orient the attention of the394

CM towards certain classes of objects, albeit making395

mistakes.396

In a multisensory system, each sensory modality can397

be used as an alternative source of information for an-398

other sensory modality. In real biological systems, there399

are plenty of sources of information (like pain, skin re-400

ceptors, tactile information) that can be the input�s′(t)401

of the PM. The same sensory modality can be the input402

both for the PM and for the CM. If this happens, it is403

possible to assume that404

�s′(t) = �s(t).405

If the system were composed of just the PM and406

the CM, the system would be a reinforcement learning407

system.408

3.3. Ontogenetic Module409

cri-410

t f the411

i new412

c has413

t ia in414

b415

the416

i -417

d ctor418

�g le-419

m e420

O m-421

p422

t423

R424

the425

l he426

output of the CM to propagate further. If thegi are pos- 427

itive, the correspondingci contribute to the Relevant 428

Signal. Since theci represent the stored categories ac-429

quired during the experiences of the system, theRon is 430

the result of the ontogenetic development. 431

The result of the architecture is to produce a new re-432

inforcement signalRon(t), which depends only on the 433

actual experiences of the system (i.e. on the received434

input signals). HereRon(t) is called the Relevant Onto- 435

genetic Signal because it derives from the actual expe-436

riences of the system. It is the result of the development437

of an individual system and its history; hence it pertains438

to its ontogeny. 439

The vector�g is the result of a Hebbian learning440

implementation with respect to the simultaneous oc-441

currence of signals (h(t), �c(t)); learning happens when 442

h(t) andci(t) fire simultaneously. The value ofgi ap- 443

proaches the value 1 if the signalh(t) and the component 444

ci(t) are correlated in time. A possible function is the445

following: 446

gi = 2

π
arctan

(∫ t

t0

(h(τ) · ci(τ))q dτ

)
, 447

whereq∈ [0,1] can be used to tune the speed of learn-448

ing. The elementci(t) corresponds to theith elements of 449

the output of the CM, andh(t) is the signal that controls 450

the performance of the Ontogenetic Module. 451

Four different choices are possible forh(t): (i) h(t) 452

is set to equal a positive constant; (ii)h(t) is an a priori 453

t ut 454

o e 455

i the456

e 457

458

p ory459

h 460

f s the461

i etic462

S 463

o 464

a 465

s of the466

i r 467

i d 468

t ac-469
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Whereas the Phylogenetic Module has built-in
eria about the nature and the relevant properties o
ncoming signal, the Ontogenetic Module selects
riteria on the basis of experience. Functionally it
he same role as the acquired ontogenetic criter
iological systems.

The Ontogenetic Module acts as a gate for
ncoming output of the CM�c(t). The gating proce
ure is implemented by means of an internal ve
= (g1, . . . , gn)t which has the same number of e
ents as the clusters in CM.�g is contained inside th
ntogenetic Module. The output of the OM is co
uted as the maximum among the elementsgi times

he elementsci of the CM:

on(t) = max
i=1,...,n

(gi · ci). (1)

Thegi have the role of gates (hence the use of
etterg) in order to let or to prevent the effect of t
E
D

ROBOT 1197 1–1

ime variant function; (iii)h(t) is set to equal the outp
f the PM (h(t) = Rph(t)); (iv) h(t) is connected to som

ndependent sources of signals that are linked to
nvironment.

In the first case, sinceh(t) is a constant, eachgi is
roportional to how much the corresponding categ
as been represented in the input stimulus�s. The more

requent and the more intensely a category matche
nput, the greater its effect on the Relevant Ontogen
ignal will be.
In the second case,h(t) varies in time according t

n a priori time variant function. Eachgi will corre-
pond to those categories that are representative
nput during those periods in whichh(t) is larger. Fo
nstance,h(t) might be high in an initial period an
hen it might vanish: the Ontogenetic Module will
ept only those categories that are representative
nput during the initial period.
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In the third case (h(t) = Rph(t)), in an early stage,472

eachgi will be representative of those categories that473

occur at the same time as the activations of the Phylo-474

genetic Functions. Eventually, there can be a drift from475

the categories selected by Phylogenetic Functions to476

the new categories selected by the Ontogenetic Func-477

tions.478

In the fourth case,h(t) is assigned to a separate479

source of signals; different sensor modalities can be480

associated. For instance, the incoming signal�s might481

be visual, whileh(t) might be the result of the tactile482

sensory modality. As a result, thegi would be higher483

when the two different sensory modalities are simulta-484

neously present.485

The OM produces a new reinforcement signals that486

are indirectly related to the phylogenetic structure of487

the system. The interaction between the OM and the488

CM generates a new set of functions, which are the489

ontogenetic equivalent of the phylogenetic functions:490

f iontogenetic(�s) = gi(t)(1 − dC(�s, Ci)).491

At each instant, the ontogenetic functions492

f iontogenetic(�s) compute the relevant ontogenetic signal.493

Their form depends on the information stored in thegi494

and in theCi , which is the result of the past history of495

the system. We can rewrite Eq.(1) as follows:496

Ron(t) = max
i=1,...,n

(gi · ci)497

= max (f i(�s(t))) = fontogenetic(�s(t)).498

499

3500

ruc-501

t xpe-502

r sion503

b and504

t with505

t506

-507

e lus508

( (2)509

a the510

b hen511

t ge-512

n l is513

c the514

Relevant Signal that is sent to the Category Module515

and to the output (5). Only at this stage the Category516

Module modifies its clusters on the basis of both the517

incoming stimuli and the Relevant Signal. If the Onto-518

genetic Module were not active, the architecture would519

stop its development and become a pure feed forward520

network. 521

4. Experimental results: the emergence of 522

motivations 523

To test the architecture, an experiment was car-524

ried on in which a robot embodying the proposed525

motivation-based architecture develops a new motiva-526

tion on the basis of its own experiences. In the exper-527

iment, an incoming class of visual stimuli (not coded528

inside the architecture) produces a modification in the529

system’s behaviour differently from what happens in530

behaviour-based robots. In behaviour-based robots the531

transition between different behaviours elicited by a532

motivation is defined by the designer and does not533

depend on a newly produced self-motivation. By in-534

teracting with the environment, the system adds a535

new motivation that changes not onlyhow(behaviour) 536

but alsowhat (motivation at the basis of behaviour)537

the system is doing. The system has, in this pre-538

liminary experiment, a single behaviour: directing or539

not its gaze towards objects. This behaviour is not540

w the541

a iva-542

t 543

ours544

w pped545

w ery546

c ntly547

o e the548

s rther549

m fer-550

e ule.551

A n-552

m ured553

s apes554

a mo-555

t that556

w esult557

o 558
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i=1,...,n

.4. How the architecture works

The main goal of the architecture is to create a st
ure that can be changed completely by its own e
iences. In the architecture there is a clear-cut divi
etween the phylogenetic part (the a priori section)

he ontogenetic part produced by the interaction
he environment.

As it is possible to see inFig. 3, the timing of op
rations is the following. First the incoming stimu
1) is compared to each cluster of stored vectors
nd, as a result, the output vector is computed on
asis of the current structure of the network (3). T

he Ontogenetic Signal is computed by the Onto
etic Module (4). Finally, the Ontogenetic Signa
ombined with the Phylogenetic Signal to produce
E
D

ROBOT 1197 1–1

hat is learned by the architecture; it is used by
rchitecture to show the effects of its new mot

ion.
A series of different shapes associated with col

ere presented to the robot. The system is equi
ith a phylogenetic motivation that is aimed at v
oloured objects; a colourless stimulus, independe
f the shape, does not elicit any response. Sinc
ystem has an ontogenetic module it develops fu
otivations directed towards classes of stimuli dif
nt from those relevant for its phylogenetic mod
fter a period of interaction with the visual enviro
ent (constituted by a series of elementary colo

hapes), the robot is motivated by colourless sh
lso. The system shows the capability to develop a

ivation (by directing its gaze towards the stimulus)
as not envisaged at design time and that is the r
f the ontogenetic development.
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Fig. 4. The Cartesian (upper row) and log-polar (lower row) images for a cross (a), a wave (b), and a star (c).

4.1. Robotic setup559

A robotic head with four degrees of free-560

dom has been adopted as robotic setup. We561

used the EuroHead developed for navigation (Pan:562

range = 45◦, velocity = 73◦/s, acceleration = 1600◦/s,563

resolution = 0.007◦; Tilt: range = 60◦, velocity = 73◦/s,564

acceleration = 2100◦/s, resolution = 0.007◦) [28]. How-565

ever, we only used two degrees of freedom of the head566

since, for the purpose, of this experiment only a point-567

ing device was needed. Robots characterized by more568

sophisticated morphologies could have been used to569

perform more complex tasks. However, in this prelim-570

inary stage of research, an exceedingly complex com-571

bination of morphological, behavioural and computa-572

tional factors would have been extremely difficult to be573

interpreted.574

4.1.1. Sensory Module575

The robotic head was equipped with a videocam-576

era capable of acquiring log polar images[29,30]. Log577

polar images (Fig. 4) are defined by578

x = ρ cos(θ), y = ρ sin(θ),579

θ = k · η, ρ = r0 · aξ,580

together with 581

ρ =
√
x2 + y2, θ = arctan

(y
x

)
, 582

η = θ

k
, ξ = lna

(
ρ

r0

)
. 583

584

These images offer two main advantages among the585

others: (i) invariance with respect to rotation and scal-586

ing; (ii) reduced number of pixels with wide field of 587

view. Furthermore, in this case the use of log-polar588

images allows an implicit selection of a target (due to589

the space-variant distribution of receptors). In foveated590

visual apparatus, the central part of the image corre-591

sponds to the majority of pixels and thus when an ob-592

ject is fixed, its image is much more important than the593

background. As a result, there is no need to perform594

explicit selection of a target; the direction of the gaze595

implicitly selects its own target. 596

The robotic head has two degrees of freedom: the597

camera is capable of a tilt and pan independent mo-598

tion (Fig. 5). Since the head was able to move only599

in a limited span with the pan and the tilt (40◦ each) it 600

was possible to determine which point on the board was601

looked at. By measuring the angle position of each sac-602

cade is possible to measure which region of the visual603

stimulus is more frequently observed by the head. 604
U
N



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

6

10 R. Manzotti, V. Tagliasco / Robotics and Autonomous Systems xxx (2004) xxx–xxx

Fig. 5. Sensory and motor setup.

Fig. 6. The probability density function on the basis of the control
parameterλ.

4.1.2. Motor Module605

The robotic head is programmed to make random606

saccades; a Motor Module generates saccades on the607

basis of an input signalλ that controls the probability608

density of the amplituder. The motor inputλ is the only609

signal needed by the Motor Module in order to control610

its actions. The probability function of the angle has611

a uniform distribution from 0 to 2π. The probability612

function of the amplitude is equal to613

p(r, λ) = 1∫ +rmax
−rmax

e−λ·ρ2 dρ
e−λ·r2,614

where r is the random variable for the amplitude615

(Fig. 6). If λ is low (near to 0), the probability density is616

almost constant, therefore there is an equal probability617

for each amplitude. Ifλ is higher, a small amplitude is618

more probable.619

The rationale of this probability schema resides on620

the fact that the motor unit should mimic an exploratory621

strategy. When a visual system explores a field of view,622

Fig. 7. The proposed architecture (named ‘Artificial Motivations’)
is independent of the sensor and motor parts. It contains some basic
information about the relevant signal to bootstrap the system.

it makes large random saccades. When it fixates an623

interesting object, it makes small random saccades.624

4.2. Architecture implementation 625

It is important to note that no modification has been626

made to the architecture on the basis of the particular627

properties of the robotic setup. The architecture could628

be used in a completely different robotic setup, with629

completely different input and output signals without630

having to change (Fig. 7). 631

4.2.1. Category Module 632

The Category Module creates clusters of incoming633

stimuli on the basis of the Relevant Signal. Each of634

these clusters corresponds to a category. Further than635

the Relevant Signal, the CM uses an internal criteria636

to control the cluster creation: the distance function637

dC(�v, C) between a vector and a cluster. This distance638

is derived from a distance function between vectors639

d(�v, �w): d : (Rn ×Rn) �→ R, d continuous. must be a 640

distance between vectors. Suitable candidates for this641

function are the Minkowski function or the Tanimoto642

distance or the correlation function[31]. In the exper- 643

iment the function is implemented as such 644

d(�v, �w) = C(�v, �w) 645

= 1

2


1 −

∑
(vi − µv)(wi − µw)√∑

(vi − µv)2 · ∑
(wi − µw)2


. 646
ROBOT 1197 1–1
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The advantages of this function are that it is more647

robust to change in average value, more resistant to648

noise.649

On the basis ofd(�v, �w) it is possible to define the650

distance function between a vector and a set of vectors.651

Two solutions are easily implemented. First, the dis-652

tance between a vector and a cluster is computed as the653

minimum distance between a given vector�v and all the654

vectors belonging to a given setC:655

dC(�v, C) = min
w̄∈C

(d(�v, �w)).656

Yet the above approach is computationally expen-657

sive since it entails that, for a given set, all vectors must658

be stored somewhere. A different approach is based on659

the assumption that it is possible to compute the av-660

erage distance, which is equal to the distance with the661

centre of gravity. IfM is the number of elements of set662

C, and�c is its mean vector:663

dC(�v, C) =
∑

w̄∈Cd(�v, �w)

M
= d(�v, �c).664

This approach has the advantage that is sufficient to665

keep in memory only the mean vector of each set. This666

means that each set can be stored as a vector. The results667

are based on this solution. It is important to note that668

no specific information about the nature of the vectors669

is part of the Category Module.670

4.2.2. Phylogenetic and Ontogenetic Modules671

ri-672

t ilt-in673

c cts.674

T tic675

f
676

R677

ditionin

whereRph is the Relevant Signal, Saturation(η, ξ) the 678

colour saturation at the pixel (η, ξ) in log polar coor- 679

dinates, andN the total number of pixels in the im- 680

age. ThereforeRph is proportional to the average level681

of colour saturation. This phylogenetic function repre-682

sents the only built-in part of the architecture. It cor-683

responds to the phylogenetic contribution to the devel-684

opment of the system. The Relevant SignalRph is used 685

to control the motor behaviour: even if the architec-686

ture were composed only by the phylogenetic module,687

it would drive the system towards highly colour satu-688

rated targets. In the neighbourhood of a coloured object689

oscillations of this function are possible, however there690

will always be a maximum in correspondence of an im-691

age centred on the coloured target. When the target is692

in the fovea of the log polar image, it corresponds to693

the maximum number of pixels. 694

The Ontogenetic Module corresponds to the defi-695

nition we gave in Section3.3; no modifications were 696

needed. 697

4.3. A comparison with Pavlov’s classic 698

conditioning 699

As a final argument, we would draw a compari-700

son with Pavlov’s classic experiment of conditioning701

(Figs. 8 and 9). The reasons for this comparisons are702

two-fold: (i) there are strong similarities; (ii) there is ev-703

idence that many cognitive learning processes could be704

reduced to Pavlov’s associationism[5,32]. In Pavlov’s 705

c the706

r nse.707

A ent708

s on709

t tim-710

u than711

t the712

c

U
N

C
O

R
R

E

The Phylogenetic Module contains the built-in c
eria to bootstrap the system. In this case the bu
riterion consists in selecting brightly coloured obje
his module implements the following phylogene

unction:

ph =
∑

Saturation(η, ξ)

N
,

Fig. 8. The three stages of con
E
D
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g in the classical Pavlov experiment.

ase, the focus was on the capability of modifying
elation between a given stimulus and a given respo
lthough, Pavlov’s dog was able to select a differ
timulus (the ring of the bell), the focus was more
he fact that the dog was capable of linking the s
lus to a behaviour (the salivary response) rather

o the capability of selecting a given stimulus from
ontinuum of the environment.
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Fig. 9. The three stages of ontogenetic development.

In Pavlov’s experiment, there are two hardwired re-713

ceptors for two different kinds of stimuli (sound of a714

bell and meat powder): one is a neural structure capa-715

ble of recognizing the presence of food and another is716

a neural structure capable of recognizing the ring of a717

bell. Before the conditioning process, the behavioural718

response (the salivation) was only connected with the719

presence of food. During the training, the conditioned720

response became stronger, more drops of saliva were721

secreted. The learning consisted in the creation of a722

connection between the conditioned stimulus and the723

response.724

In our case, the conditioned stimulus does not ex-725

ist before the conditioning process. The machine is not726

capable of recognizing the unconditioned stimulus (the727

shape of an object). It only recognizes coloured objects.728

At first sight, our experiment might recall Pavlov’s ex-729

periment. It could be argued that the Phylogenetic Stim-730

ulus corresponds to the Unconditioned Stimulus, and731

the Ontogenetic Stimulus corresponds to the Condi-732

tioned Stimulus; and the Developmental Signal might733

correspond to the Response (first Unconditioned and734

then Conditioned). This is not the case. In the de-735

scribed circumstances, since the colour was presented736

conjointly with the shape of an object, a new ontoge-737

netic stimulus (the shape) is added to the machine’s738

repertoire of stimuli.739

A useful concept is that of theUmweltof a subject740

[33,34]: the set of all events which can interact with a741

subject given its sensory/motor/cognitive capabilities.742

I mo-743

tivations, the Umwelt of the machine is increased and744

enlarged to a new kind of event. Two things have hap-745

pened: (i) the machine has learned to recognize some-746

thing which was previously unknown to it; (ii) the ma-747

chine has linked such new stimulus to a given motor be-748

haviour. Pavlov’s experiment highlighted the fact that749

the dog had learnt a relation between an already as-750

sessed stimulus to a motor response. The goal of our751

experiment is to create the capability of recognizing752

new stimuli. 753

4.4. Experimental results 754

We presented different sets of visual stimuli to the755

system. A first set consisted in a series of colourless756

geometrical figures as shown inFig. 10a on the left. 757

The frequency with which the system was looking at758

different points was measured. The system spent more759

time on stimuli corresponding to its motivations by re-760

ducing the amplitude of its saccades. At the beginning761

the system was looking around completely randomly762

with large saccades since its Ontogenetic Module was763

unable to catch anything relevant and the Phyloge-764

netic Module was programmed to look for very sat-765

urated coloured objects, which were absent in the first766

set. 767

Subsequently we presented a different stimulus: a768

series of coloured figures (Fig. 10b on the left). The 769

difference is shown inFig. 10b. The head spent more770

time on the coloured shapes instead on the white back-771

g rule.772
U
N

C
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Fig. 10. Experimental results.

Finally we presented again the initial stimulus (the773

set of colourless shapes). The system spent more774

time on the colourless shapes than on the background775

(Fig. 10c). The behaviour of the system changed since776

the system added a new motivation (shapes) to the pre-777

vious ones (saturated colours).778

In order to measure the different behaviour of the779

system, the time spent by the system on each shape780

was measured in two different ways: a qualitative one781

(the middle column) and a quantitative one (the right782

column).783

To get a qualitative visual description of how much784

time was spent by the system on each point of its field785

of view, we assigned to each point of the visual field786

an intensity value proportional to the normalized time787

the system gaze spent on it. The images in the centre of788

Fig. 10a–c were generated after 103 saccades (equiva- 789

lent to about 500 s). The field of view of the head was790

divided in a 64× 64 array. For each point (i, j) in the 791

visual field, the amount of time the gaze of the head792

was directed on it was computed: 793

ti,j = total time spent looking at point (i, j). 794

The intensity of the point was then set proportional795

to a normalized value ofti,j . With the first set of vi- 796

sual stimuli, the resulting image is inFig. 10a (mid- 797

dle). The system does not show any polarization to-798

wards a specific part of the field of view. The be-799

haviour of the system is completely different to its re-800

sponse to the coloured stimulus: there are three def-801

inite centres of interest (Fig. 10b, middle). However, 802
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after the interaction with the star has shaped a new goal803

which becomes part of its behaviour. InFig. 10c (mid-804

dle) the original grey stimuli produces a completely805

different response: the grey star became a centre of806

interest.807

To get the quantitative measure (right column), we808

measured the time spent by the head inside the circular809

areas shown in the left column surrounding the stimuli:810

a rough indicator of the time spent looking at a certain811

shape. The region of interest were named according to812

the following notation: the coloured figures (R1), grey813

star (R2), grey cross (R3), grey waves (R4), grey circle814

(R5). In the graphs ofFig. 10 on the right, for each815

region, the normalized time was computed according816

to the following formula:817

ck = 100

∑
(i,j) ∈Ak ti,j∑

ti,j
,818

whereti,j is the same of the previous formula, andAk819

corresponds to a set of region:A1 corresponds—for820

each group of stimuli—to what is not occupied by the821

stimuli;A2 corresponds to the union of the three areas822

occupied by the three coloured stars (R1); whileA2,3,4,5823

correspond, respectively, to the four regions occupied824

by the grey shapes (R2,3,4,5).825

In order to test the efficacy of the architecture pre-826

sented, the experiment was repeated in a simulated827

environment. In this way it was possible to check828

its soundness and generalize its software implemen-829

t nt,830

s aze831

w ge.832
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t838
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v842

hi-843

t ore844
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g ese846

s847

Fig. 11. A simulated version of the experiment: on the left the arti-
ficial stimuli, on the right the measured fixation points.

5. Conclusions 848

Ever since Grey Walters’ wrote about his turtles the849

history of robots has chronicled their efforts to estab-850

lish a relationship with the environment. The transi-851

tion from deliberative robots to reactive robots, then852

to behaviour-based robots bears witness to this trend.853

The recent appearance on the market of entertainment854

robots sheds new light on motivation-based robots. 855

Environment driven motivations provide the inter-856

nal criteria for the development of artificial beings and857

supply their means and goals: how they do what they858

do. 859

Ontogenetic development allows the artificial be-860

ing to elaborate the criteria on which it can associate861

external stimuli. In the aforementioned experiment the862

visual stimuli were associated first on the basis of a phy-863

logenetic criterion (the colour saturation), then on the864

basis of an ontogenetic criterion derived from the sys-865

tem experience (shape). The ontogenetic architecture866

allows to self-associate different stimuli (the colour and867

the shape) on the basis of the interaction with the envi-868

ronment. A new motivation (looking for a shape) is the869

product of the individual history of the architecture in a870

given environment. Recently, self associative learning871

has been identified as the possible key to the develop-872

ment of consciousness[5]. It follows that an ontoge- 873
U
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ation. In the simulated version of the experime
imilar stimuli were presented and a simulated g
as directed towards different points of the ima
he images used were 1024× 768 pixels; the artifi
ial retina had a 64 pixels diameter. InFig. 11, the
xperimental results are visible. All the other par
ters exactly match the Eurohead. Instead of c
uting a frequency density value to each poin

he field of view, a collection of 103 is displayed
or each of the presented stimuli. From a qualita
oint of view, the relevant changes in the behavio
nd motivational property of the system are cle
isible.

In future, we are planning to implement this arc
ecture in more complex robotics setup and in m
ealistic environment. However, we believe that
eneral principle is already clearly illustrated by th
implified experiments.
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netic architecture based on environment-derived moti-874

vations might provide the basis for the development of875

an artificial conscious robot.876

In this paper we have used the intentionalistic men-877

talistic vocabulary to introduce intentional concepts878

such as ‘motivations’ and ‘experience’. A correct defi-879

nition of these terms applied to artificial beings should880

be free from any ontological or linguistic commitment.881

This tenet is evident when instead of biological be-882

ings we have to deal with artificial systems since it is883

not clear whether they possess intentional properties or884

not. For instance, if we are dealing with human beings,885

it is safe to use words like ‘intentions’, ‘motivations’,886

‘experience’. However, if we are dealing with robots or887

other kinds of artificial systems, it is ambiguous to use888

the same terminology. Edelman and Tononi wrote that:889

“to understand the mental we may have to invent further890

ways of looking at brains. We may even have to syn-891

thesize artifacts resembling brains connected to bodily892

functions in order fully to understand those processes.893

Although the day when we shall be able to create such894

conscious artifacts is far off we may have to make them895

before we deeply understand the processes of thought896

itself” [35].897
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