From sensorimotor development to object perception
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Abstract— This paper describes a developmental sequence thatand weight are unlikely to emerge before 6/9 months of age.

allows a humanoid robot to learn about the shape of its body
and successively about certain parts of the environment. We
equipped the humanoid robot with an initial set of motor and
perceptual competencies ranging from simple stereotypedctions
to more sophisticated visual routines providing a bottom-y
attention system. This initial form of sensorimotor coordnation
is sufficient to initiate the interaction with the environment and
allows the robot to improve its motor and perceptual skills by
first constructing a “body-schema” and later by learning abaut
objects. The body-schema allows controlling movements toxtte,
reach and touch objects in the environment. The interactionis
further used to form a visual model of the objects grasped by
the robot which eventually modulate the attention system ina
top-down way. In another experiment we show an initial effot
to study the acquisition of object affordances. We discusshe
importance of sensorimotor coordination as a required stemot
only for the control of action but also, and more importantly, for
perceptual development.

|. INTRODUCTION
Manipulation is a unique opportunity to study the interati

Haptic sensitivity of three dimensional shapes appears eve
later at around 12/15 months. It is perhaps illuminating tha
this timetable fits surprisingly well with the developmerit o
actions in infants: the ability to move the hand is required
for infants to begin manipulating objects and consequently
perceiving certain properties. Lederman and Klatzky [Bleha
shown that adults make use of stereotyped hand movement
(exploratory procedures) to determine certain properties of
objects; different procedures were employed by subjects to
assess different properties. The ability of infants to ecily
execute these procedures can determine their ability to per
ceive the associated object characteristic. Infants tgbid
interact with objects is indeed quite limited at birth; garl
reaching in newborns is pretty inaccurate and only raredylte

in actual contact with the object [7]. At the age of three nhent
infants are more reliable in grasping objects, althouglsmgra
is usually with the full hand open (as in the power grasp).
Only later on at 6/9 months of age infants become skilled

between an artificial system and the environment. We focus ion handling objects and grasping them with differentiated
manipulation not only as a means to perform useful practiogdasp types [8]. Accordingly, perception of propertieselik
tasks but, also and in particular, because it offers theiposgemperature, size and hardness can occur relatively early i

bility to investigate active learning. Active learning ee$, for

development, whereas properties requiring more dexterous

example, to the ability of an agent to autonomously perforactions like texture or three dimensional shape would emerg
and guide the exploration of the environment. At a deepenly later on.

level, action can contribute to change the environment in aSimilarly, we are pursuing a developmental approach for
direction that is best suited to the agent's goal, for exanpthe design of a humanoid robot. Development of the robot

to facilitate perception. In this context manipulationoats

unfolds along three phases: learning about the body, legrni

the agent to collect information about objects by perfognirto interact with the environment, and learning to interpret
specific actions on them [1]. Even very simple forms of actiogvents. In the first phase the robot learns properties of its
like poking or pushing an object can be sufficient to thibody, which allow recognizing and controlling movement.

purpose [2].
The sensorial experience of a humanoid robot can

For example, the robot controls reaching movements by first
bEarning the weight of its arm and to recognize the hand. &hes

quite rich including, for example, the possibility of multi abilities are used in the next phase to initiate the int@vact
sensory perception: some features of objects are moreatigiturwith the environment and to learn about it. The robot begins
perceived through senses other than vision. For example this exploration by reaching for objects and learning their

smoothness of a surface, the weight of an object and
three dimensional structure are naturally determineduidino
tactile experience. This information is extracted by appiaie

exploratory actions. The importance of motor activity farp

pihysical properties when it manages to grasp them [9]-[11].
The robot’s experience acquired during this interactiomsisd

in the third phase to interpret events around the robot by
matching expectations and perceptions (as for exampld)n [1

ceptual development has been emphasized in developmeXialfocus here on the two first phases: learning about the body
psychology [3], [4]. Many researchers agree on the fact thatd learning to interact with the environment. We descrie h
motor development during infancy determines the timing dfie robot builds an internal model of its hand which allows
perceptual development (for a review see [5]). For exampecalizing it in the visual scene. The hand internal model is
perception of object features such as volume, hardnegsréexused to direct gaze towards the hand and to learn an inverse



Fig. 2. Details of the hand of the Babybot.

of compliance and elasticity. Magnetic potentiometervigl®
position and force feedback at each joint whereas forcarsgns
resistors on the palm and fingers provide tactile feedbagdk (s
figure 1 and figure 2). A more detailed description of the hand
can be found in [12].

Fig. 1. The robotic platform: The Babybot.

IIl. VISUAL SYSTEM

model which can be used to control how to reach a point m;’heﬂr}ob?t \_/|su|al syste;n employs Iogl?p((j)le.\r |r:]1_ages as n
space. The robot uses these abilities to build a visual mufdel ] € l0g-potar trans Qrmatlon, applied in this case to
the objects it happens to grasp. The robot's ability to exer thg 'gradmona}l rt_actqngular Images coming fr(_)m the cameras
with the environment influences the visual attention systerW'mICS the distribution of the photoreceptors in the reana

the visual model of the object grasped by the robot, in fact tihe topological mapping from the retina to the primary visua
' 'cb%tex. Log-polar images have a small central area with maxi

then used as a top-down primer during the search of graspa X . .
objects. mum resolution (fovea) and a continuously decreasing numbe
f pixels moving toward the periphery. In humans and primate

The rest of the paper is organized as follow. Section Il de- s th dt th to take hiah luti
scribes the robotic platform. Section Il describes thergtbn ere 1s the need lo move the sensor 1o take high resofution
pshots of important points in the environment. Likewiise

system of the robot, the used model of objects and the metrt

to extract three-dimensional information about objectst®n E;:;;Oma;\?eu':ﬁeln;g:nrlarlg:na:gm Ig]cee et?]\é'r?gvrgzn;'t ti?w?errtzggn
IV describes how the robot acquires its motor skills. Sexcti P 9

V presents an experiment where we show how the modu 8gaé|olns '?hthe wsgaltﬁceng pt?]SSIbly gctcorr]dlng to th(; a;ls':h ¢
described in the paper are integrated in a complete belzdvi and. in other words there 1S the need o have a module tha

system. Finally in Section VI we draw the conclusions. selects m_f(_)rmatlon for fL_thher visual processing. .
In addition, another important requirement for a visual

Il. THE ROBOTIC PLATEFORM system apt to guide manipulation is that of segmenting ob-
'%cts from a possibly cluttered background. That is, we need
Pth the localization of the object and its segmentatiore Th
roblem of segmentation is directly related to the probldm o

The experiments reported in this paper were perform
by using an upper torso humanoid robot called Babyb

(Figure 1). The Babybot consists of a head, an arm and a ha . hat biect is. that is to defi hich "
The head has five degrees of freedom, and it is equipped Ining what an object IS, that IS to deline which properties
inguish an object from the background.

two cameras, two microphones and a set of gyroscopes. % o L o . ]
cameras can pan independently and tilt around a common axis; ur definition of “objecthood” is created in two steps:
the remaining degrees Of freedom a"ows the head to pan and the selection of a set of visual features that combined
tilt at the level of the neck. The arm is an industrial PUMA  appropriately can characterize any object of a certain set
260 manipulator. The hand is mounted on the arm end point. and allow to segment it from the background;

It consists of a total of 16 degrees of freedom actuated by onl * the selection of a criterion for grouping features that
6 motors. Its five fingers are thus largely underactuated: the Segment and identify the objects uniquely;

thumb and index are controlled independently by two motovghich means, in practice, that we selected certain features
each, whereas the remaining two motors are connected to émel a method for deciding when a specific feature belongs
middle, ring and small finger which form a single virtual jbin to an object. The features we chose for our implementation
The coupling between each joint and the motors is achievack colored blobs while the criterion is a consequence of
by means of springs which give the hand a certain degréee action of the robot onto objects. In fact, by grasping an



object the robot has the possibility of observing it at withrh
many points of view and likely with different backgrounds. | " ~\” — {1

is consequently easy to imagine a procedure that selects the

constant features across consecutive views of the sametobje l
By selecting blobs as features we do not propose to define
what is an object directly, but rather to consider a sort of ;
“proto-objects”. They are a step above the mere featurgs (e. / <
edges), possessing some but not all the characteristica of a
object; “proto-objects” in this view are clusters of poirs Qb @
the image “naturally” grouped together. The idea of proto- =
(_)bjeCtS has its rO_OtS in psychological [14] and neurObih_ﬂ@Ig Fig. 3. A section of the graph: the columns have constantdisp(m —n).
literature. In fact it has been proposed that the synchatioiz
of visual cortical neurons can be the carrier of the peradptu
grouping phenomenon [15], [16]. especially when running on a small portion of the image (a
In our implementation, we decided that the grouping actgghir of images).
on color and intensity information and thus the grouping of with respect to the original formulation of the algorithm
elementary feature leads to the extraction of colored b&®s e relaxed the hypothesis of similar extension (over the
we mentioned earlier. To simulate the results of the prooéssscan“ne) of the pixel patterns: something that makes sense
grouping, we employed the watershed transform (rain@llifyhen the cameras are quasi-parallel, but on the other hand
variant) [17] on the edge map resulting from a preliminanjls dramatically when the cameras are converging and the
feature extraction stage. As a consequence the image is $§9ects are very close compared to the interocular distance
mented in regions of constant color or a constant gradient-fe consequences in this last conditions are that a suréace ¢
color. A segmentation of this type has been demonstratedy@ yery different in shape between the two images of thetere
happen in humans before the attention is deployed to thescggir. As a result of our changes a short sequence of pixels in
[18]. one image can match a long one in the other image, which is,
Further, following our definitions, the identity of an objec5 we said, reasonable in the case of our robot.
cannot be known without active manipulation, unless SOmegach node of the graph represents a pixel pair, one on the
other prior knowledge is inserted into the system. One ptessi |t scanline(L,) and one on the right ong?,), starting from
route for Iearning something about an object autonomowsslyihe nodes containing eithdt.) or (Ro) or both (the first
by means of action. The robot can go beyond the conceptpfe|s of the scanline) and ending with the nodes containing
proto-objects, learning a model of any object that is mani[l—N, Ry or both, where N is the length in pixels of the

ulated. In particular, objects are seen here as a collediongcanline. Each node is connected with all the following sode
proto-objects and their spatial relations. Our solutioegby according to these rules:

allowing the robot to manipulate objects and acquire déffer
views of them, and, using the probabilities of occurrence,
calculate the probability the collection of blobs beingreatly
fixated is one of the objects the robot is searching for. Then
using these same probabilities, the f|gure-gr(_)und segrtiemta nodes containingL..1) or (R,.) that respect the
can be attempted. The complete description of the visual : ]
. : . previous two constraints

attention model and segmentation procedure can be found in i
[19]. Each arc has an associated cost:

_The. segm.enta_tion mas_k is use_d together with a binocular ¢ = [lum(Ly) — lum(R,)| + kB + a
disparity estimation algorithm which can be used to extract
three-dimensional information about the object. The maskherelum represents the luminance of a pixél,is a cost
defines a region of interest around the object, where a deffihear) associated to disparity jumps (if a node has digpar
map is estimated, and eventually the orientation in space &fand the following one has disparity, thenk = |5, — J,|)
the object can be extracted and used to guide the behaviomaofia takes into account the differences along the vertical di-
the robot. mension (to penalize large discontinuities in the final digty

In order to achieve a good detection of the object oriemap). Once the graph is built, the minimum cost to traverse it
tation, we developed a fast and robust binocular dispariiyom beginning to end is found using dynamic programming.
estimation algorithm, which can work in real-world condits. The disparity map is then constructed by considering the
The algorithm is based on the work by Van Meerbergen et alairing of pixels along the minimum cost path. An example of
[20], where, given a scanline, all the possible matches éetw the construction of the graph when considering two suceessi
pixels are analyzed by exploring a graph (using dynamievels is shown in figure 3.
programming) built by assigning a cost to each position pair Since the complexity of dynamic programming, for each
and each occlusion. The algorithm works at nearly frame rajeaph (i.e. each scanline), @(m) — wherem is the total

1) D|5pa“ty Range: §min <x- Yy < 6maw
2) Ordening: Given another paifL,/, R,/), if 2’ > « then

y' >y, assuming that there cannot be duplicate nodes
'3) Continuity: the nodes following(L,, R,) are all the



Fig. 5. Hand segmentation: an example.

On the other hand, developmental psychologist have been
trying to understand the mechanisms which allow the brain to
acquire such a representation. As roboticists we are stenle
in the same mechanisms as they allow the system (biolog-
ical or artificial) to autonomously acquire and maintain all
Fig. 4. The Disparity Algorithm Left: The Stereo Pair, Rigfithe Final parameters required to the control of action and avoid manua
Disparity Map, masked. The mask image comes from the attemigorithm.  estimation and calibration. For this reason the problem has
been studied by many authors [1], [23], [24].

. i . We follow here an approach similar to the one of [1],
number of arcs in the graph and it is proportional to th 4] where repeated self-generated actions are exploded f

loefn?rfz i?;ath: as:zjinr:gletﬁe_o\t,)\{gcf%?silgtee rreeitoglg :]:nt?r?rtlt Qearning. We programmed the robot to perform a periodic
obiect itselfgb using the inforrlnation comin f’romgt]he saii 9 Mfovement of the wrist. This motion is observed by the robot
) Y 9 9 ¥ visually andmotorically. In the former case the visual motion

algorithm. This reduces botim and the total number of I|nesiS computed by image differencing with an adaptive model

to be_ progessed. To increase the robustnes_s, once compL(J)tfe e background. In the latter case the robot computes the
the disparity mapD,_,. (displacement of the pixels in the left

image compared to the ones in the right one). we used itErSt derivative of the encoder feedback. The period of mmotio

. " L . P each pixel in the motion image is compared to that of the
?oertriztlaihe object position on the right image, accordindieo tencoder. Pixels whose motion is periodic and whose period

matches that of the joints are selected and grouped togtether
Di—y(z) = Dr—i(z — Di-r(2)) @ formthe segmentation of the hand. Figure 5 shows an example
This result is then used to segment the object on the righit the result of this procedure. .
image. The images are swapped (left with right) and the \We uggd this procedure_ to train a neu_ral ne.twork to estimate

to validate and correct the previous one. An example ofgbot posture (arm and head joint configuration). Another
masked depth map is shown in figure 4. neural network learns the approximate shape and orientatio

of the hand given the same segmentation information. Figure
IV. THE BoDY 6 show the result of this procedure.

Humans become skillful at controlling their own body after The role of vision during reaching is still debated [25],
a long period of postnatal development and probably thalsarflthough experimental results suggest that the sight of the
of trials. As we discussed in the introduction, however, anot"and is not required for children to start reaching for areobj
development is extremely important and enables the corr&$l [27] and it is used only relatively late in developmént
perceptual development of the child. For this reason thetroctually adjust the trajectory of the hand during action]{28
spends the first phase of its artificial development learhing ~ Sight of the hand, however, might be used to acquire eye-
to correctly control the head and the arm to perform variofi@nd coordination. By tracking the hand the robot builds

tasks such as visual tracking and reaching for a visuafly M@pPping between the position of the arm and the corre-
identified target. sponding head configuration when fixation is achieved. The

Control of the body requires implicit knowledge of itshYPOtheses is that reaching starts by first fixating the objec
structure (relative position of the limbs, their size, s well 11 this condition the fixation point coincides with the targe
as its dynamical characteristics (e.g. the weight of theybo@nd uniquely identifies its position with respect to the body
segments). The ensemble of this knowledge is caltiedy- The arm motor command can b_e obtained by a_transformat_lon
schema; experiments in neuroscience have given support Rgtween the head and arm joint angles, that is by mapping
the existence of a body-schema in the primate brain [21], [23"0tOr variables into motor variables:

Graziano and co-workers have found neurons in the motor dorm = f(Ghead) )
cortex of the monkey, which code the position of the hand in
the visual field. whereqq, andgreq.q are head and arm posture respectively.
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Fig. 6. Learning to localize the hand in the visual field. Thewergence of
the approximation error as result of training of the neurtiwork (left) and
a few exemplar frames of the subsequent prediction (right).

This mapping implicitly implements the inverse kinematiés
the arm and it can be learnt when the robot looks at its hand:
that is, the robot can maintain the fixation of the hand while
moving the arm randomly in the workspace. Every time the
arm stops and the eyes have achieved a stable fixation of the Fig. 7. The execution of a grasping experiment.
hand, a new pair of arm-head positions is acquired and used
as a training sample to the neural network approximating the
mapping of equation 2. The robot uses the mapping to reathand its model is matched against the blobs that are now
for visually identified objects as soon as a few samples dirated. If the match is positive grasping starts otherwise t
acquired. search continues. The disparity map of the segmented object
The actual trajectory is computed by linearly interpolgtinis computed to determine the orientation of the object (&am
the motor command and the current joint position. The trajed and 8); two different actions are then attempted to maxmiz
tory results in a set of small changes that are effected by a B2 possibility to successfully grasp the object. If theapipal
controller with gravity compensation. A procedure to letive axis is oriented horizontally the robot moves the hand above

gravity component is explained in [12]. the object, otherwise the hand approaches the object from
the side (frames 6 and 9). To determine if the grasping is
V. INTERACTION successful, the robot checks the weight of the object and its

We present here a grasping behavior based on the moduf1sistence” in the hand (the shape of the fingers around the
described in the previous sections. The interaction with tPPJECt)- In case of failure another grasping trial is attedp
environment starts when an object is placed in the roboP&herwise the robot waits for a new object to be placed in the

hand:; the robot detects the object by using the tactile sensBalm-
on the palm (see figure 7 frame 1). When pressure on the
palm is sensed the fingers close in a stereotyped grasping
action. The intrinsic elasticity of the hand (see section 1l We have shown results on two phases of the acquisition of
facilitates grasping, because the fingers automaticalgptadsensorimotor coordination in a upper body humanoid robot.
to the shape of the object. The robot starts the explorationThe robot includes a visual attention system employing top-
the object by bringing it close to the cameras in four différe down and bottom-up information. The former is introduced in
positions and orientations (frames 2-3). During the exation the system beforehand, whereas the latter is modulatedeby th
the robot keeps fixation on the object by tracking the hanthbot’s interaction with the environment.
At each position a few frames are acquired and processedVe have shown the importance of the interaction between
as explained in section Il to train the model of the objecthe environment and the robot for learning. This was demon-
As the exploration is completed the object is dropped on tisgrated indirectly, when the robot exploited self-prodiice
table. The robot exploits now the visual model of the objeeictions to explore its own body, and directly when the robot
to search for it again (meanwhile the object might have beaurtively explored the visual properties of the objects dtsped.
moved elsewhere by the experimenter) in the visual scene. In the experiment discussed here, we start to link different
The search procedure is driven by a top-down attenti@ttions to different objects to investigate the possipfiitr the
module whose contribution exploits the knowledge the roboibot to autonomously learn which actions are more suitable
just acquired about the object. In practice, this happens foy different contexts (different objects or environmerf)-
selecting the blob whose features better match those of theugh far from completed, this is meant to enlighten us abou
object’s main blob and performing a saccade motion towarttee possibility of autonomously enriching the robot’s kiow
it. After the saccade the object is in the fovea (frame 4 amdige of the world. This is not only relevant for action, but

VI. DISCUSSION



also from a perceptual point of view. Indeed, actions eghbl [5]

E. Bushnell and J. Boudreau, “Motor development and thedmthe

a link between events and the causes that have generated them potential role of motor abilities as a determinant of aspeétperceptual

In other words by acting in the world an “active” agent cang
link the actions it performs with their consequences. Tinik |
can be used in two ways i) for planning, to select the pasicul 1
action required to bring about a desired consequence afud i)
interpretation, to understand the meaning of an attendendtev [8]

development,"Child Dev., vol. 64, no. 4, pp. 1005-21, 1993.

S. J. Lederman and R. L. Klatzky, “Hand movements: A windoto

haptic object recognition,Cognitive Psychology, vol. 19, no. 3, pp.
342-368, 1987.

C. von Hofsten, “Eye-hand coordination in the newbomgv. Psychol-

ogy, vol. 18, no. 3, pp. 450-61, 1982.

C. von Hofsten and L. Ronnqvist, “The structuring of nat arm

In the first case, the advantage to use such a representatjon movements,Child Dev, vol. 64, no. 4, pp. 1046-57, 1993.

is that, sometimes, it might be convenient to express goals
perceptual terms. For example pushing an object in a p&aticu
direction can be represented by means of the resulting lvist#&!
motion in the image plane [2]. In the second situation, thig on

available information is the sensorial experience assedtia[11]
with the event. In this case the robot can search its own
experience for an event that closely matches what is obderYﬁ]

9] L. Natale, G. Metta, and G. Sandini, “Learning haptic nesentation of

objects,” in International Conference on Intelligent Manipulation and
Grasping, Genoa, ltaly, July 2004.

L. Natale, F. Orabona, G. Metta, and G. Sandini, “Exipigrthe world
through grasping: a developmental approach Pinceedings of the 6th
CIRA Symposium, Espoo, Finland, June 2005.

E. Torres-Jara, L. Natale, and P. Fitzpatrick, “Tajgpimto touch,” inFith
International Workshop on Epigenetic Robotics (forthcoming). Nara,
Japan: Lund University Cognitive Studies, July 22-24 2005.

L. Natale, “Linking action to perception in a humanoidbot: a

and can select the action(s) that generated those perteptua developmental approach to grasping,” Ph.D. dissertatibwiversity of

experience. For example the sound of an object that hijts
the floor can be associated with the action of dropping ﬁfl
Either problems, planning and interpretation, are intérgs
and challenging, and luckily the solution to both appears
be tightly intertwined with sensorimotor development. [15]

It is fair to say that the system developed so far, although
complex, still manifests a certain degree of brittleneshaes
associated to the amount of “handcrafted” components weg;
were nonetheless forced to use to reach this level of fumctio
ing in a reasonable amount of time. For instance, the choi[ci%
of color blobs as features clearly limits the visual systena i
way that sometimes prevents the robot from perceiving icerta
object characteristics. Also, in some other circumstaribes
residual error in reaching goes unnoticed to the robot ﬂ‘l[%l%]
eventually fails to grasp the object reliably. On the object
recognition side, objects composed of only a few blobs aé!
easily mistaken for other blobs in the background since a
single color (or certain blob combinations) is clearly not
discriminative enough (the background might present gimil(20]
combinations).

We are aware of many of these limitations and, in fact,
our ongoing work is exactly aimed to improving the overalf!!
performance of the robot both motorically and perceptually
with a particular emphasis on the manipulation abilities we2]
deem fundamental for autonomous development. [23]
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