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Abstract

We showed in a previous work that an artificial evo-
lutionary system whose task was to track a light source
was able not only to evolve and grow a neural net-
work, but was also able to evolve learning mechanisms.
The evolved neural network was then transferred to
a robotic system consistent of a camera mounted on
the gripper of a robot arm with results comparable to
the ones achieved by the simulation (Eggenberger et
al.[1]). In this paper we continued testing the evolved
controller in the real-world increasing the sensory-
motor capabilities and the robot’s task as follows: (a)
The visual system was enhanced to detect color and
movement in the environment and a proprioceptive
system was added to have feedback of the arm move-
ments. (b) The number of degrees of freedom (DOF)
of the robot was increased from two to three. (c) The
position of the cameras was fixed and the same under-
lying principles were used to teach the robot arm in
front of the cameras to move a colored object from an
initial location at the periphery of the visual field to
the center of it. The arm could solve the task not only
for two DOF, but also for three DOF.

1 Introduction

In evolutionary robotics the standard approach is
to take a particular robot and use a genetic algorithm
to evolve a control architecture for a particular task.
Changes in the sensory-motor capabilities of the robot
or in its task imply that a new control architecture
must be evolved. Most of these approaches use direct
genotype-to-phenotype encodings, where each synap-
tic weight is represented by a genetic parameter. As
such an encoding scheme scales quadratically with net-
work size, considerable effort has been put into the
development of indirect encoding schemes, where the
genome is a developmental program specifying pro-
cesses which in their turn grow the neural structures
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and fine-tune the synaptic weights according to the
tasks specified by the designer. Here, a more biological
approach is propose to evolve large neural networks,
which are able to grow and learn; in this method the
genetic information no longer directly encodes for spe-
cific properties (in this case a neural network), but
controls developmental processes generating the func-
tioning structures. This will be explained in the fol-
lowing section. In section 3 the robustness of the learn-
ing mechanism is tested, the neural structure and its
connections to the robot are described, then the ex-
periments and results are shown in section 4 and we
conclude with a discussion in the last section.

2 Evolutionary methods and develop-
mental processes

To be able to explore both, growth and learning, the
concept of selective recognition between entities, we
call it ”]ligand-receptor interactions” played a crucially
important role ( Eggenberger[2]). This concept allows
(a) a neuron to recognize more or less specifically an-
other partner neuron, (b) an axon to follow cues in
the environment and (c¢) a neuromodulator to diffuse
in the environment and influence specific synapses to
change their weights. In this way learning rules can
be evolved and have not to be pre-specified by the
designer of the system.

2.1 Growth mechanisms

By varying axonal receptor types different influ-
ences can be easily explored by the evolutionary strat-
egy (ES) and growth patterns resulting in topologi-
cal maps between interneurons and the sensory input
emerged. Figure 1 illustrates the mechanisms by which
the gene activities of the cells will determine the types
of receptors expressed on their axons and finally de-
termine if a source of signaling molecules has an at-
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tracting or repelling influence. Similar ligand-receptor
interactions will control which cells will stick together
or which will build up synapses or which neuromodu-
lator will change the synaptic weight. By varying the
expression of different ligand-receptor interactions the
ES can easily explore different connectivity patterns
with a small load of genetic information.

Axonal attraction to a source

Gradient

Figure 1: Overview of the most important biological mecha-
nisms used in the proposed artificial evolutionary system.

To illustrate the proposed evolutionary approach a
retinal structure was evolved, the task of the system
was to evolve a neural network that could move the
eye in such a way that an incoming peripheral sen-
sory stimulus falls in the center of the “eye”. The
fitness function depended on the number of cells, on
the movements, and on the precision of the movements
measured by the deviation of the position of a stimulus
from the center of the eye after peripheral stimulation.
More details about how this controller was evolved and
transferred to the robot can be found in the following
references: Eggenberger[3] and Eggenberger et al.[1].
Figure 2 gives a schematic overview of the neural net-
work at different stages of evolution.

2.2 Learning mechanisms

The exploration of learning mechanisms is based on
the expression of artificial receptors on the synapses
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Figure 2: Schematic overview of the growing neural network.
(a) Growing neural network. (b) The final neural network con-
trolling a foveating retina.
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Figure 3: Two different evolved foveating systems.

and the interactions with signaling molecules. (In Ishig-
uro et al.[4], this concept was also explored by us to
simulate the evolution of a biped robot). In general
the change of the weights depends on the activity of
different ligand-receptor complexes. By varying the
place and time of these interactions, the ES is able
to explore learning mechanisms without the need of
the designer to declare a set of learning rules (e.g.,
Hebbian, Anti-Hebbian), because such rules can be
evolved. The following example gives a solution of how
a Hebbian learning rule could be evolved: Neurons can
link the emission of a signaling molecule to their neural
activity. Depending on their specific differentiation,
the cells produce and emit signaling molecules, the
synaptic weight changes if ligands emitted from other
cells have a strong enough impact on the synapse.
Let us suppose that a neuron emits a substance and
the emitted transmitter has an affinity to one of two
receptors on a particular synapse and a second neu-
ron emits a substance for a second receptor on that
synapse, then the weight will be increased in an AND
fashion, a Hebbian learning rule is found. The AES
evolved two neuromodulatory systems able to teach
the robot about the success of its exploratory move-
ments. The first mechanism localized in the center
of the retina cells able to emit neuromodulators when
they where activated. This had the effect that the
system could learn to move the camera correctly (see
figure 3 a). The second mechanism was more sophis-
ticated and efficient: the neuromodulator was emitted
if at any given position the movement of the robot
brought the light source closer to the center (see fig-
ure 3b). This evolved mechanism is quite similar to a
value system (Edelman(5], Friston et al.[6] and Sporns
et al.[7]). In contrast to their hand-designed meth-
ods, where the value system is located in other brain
parts, our evolved value system is located directly in
the network performing the task.
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Figure 4: Neural structure and its connections to the robot
arm. Neuronal areas: (a) RedColorField. (b) RedMovement-
ToRightField. (c) ProprioceptiveField. (d) RedMovement-
ToLeftField. (e) NeuronalField. (f) MotorField. (g) MotorAc-
tivites.

3 Testing the robustness of the learn-
ing mechanism

There is an intimate linkage between the neural
controller, the sensory-motor system and the task-
environment. Therefore to test the robustness of
the learning mechanism we increased the sensory-
motor capabilities of the robot as well as its task-
environment,.

3.1 Increasing the complexity of the
robot’s task

At the beginning of each experiment the active vi-
sion system was initialized looking at the center of the
visual scene and the position of its motors were held
still. The robot arm was placed at a random position
at the periphery of the robot’s visual field and a col-
ored object was put on its gripper. The robot’s task
was then to learn how to move the arm in order to
bring the object from the periphery of the visual field
to the center of it.

3.2 Increasing the neural structure

In figure 4 a somewhat geometric looking overview
of the evolved neural net is given, because the paths
of the axons searching for their targets are omitted.
The neural network was enhanced to couple with more
sensory input and with more degrees of freedom of the
motor system.

Figure 5: Robotic setup performing an experiment moving
an object from the bottom-left corner of its visual field to the
center of it.

3.3 Increasing the sensory-motor capabil-
ities of the robot

In the previous work the sensory input consisted of
the intensity channel (i.e., I = (r + g + b) / 3) and two
degrees of freedom were used. In these set of experi-
ments we augmented the sensory-motor capabilities to
use visual and proprioceptive feedback as follows: (a)
A 7broadly” color-tuned channel was created for red:
R =r- (g +b) /2 This channel yields maximal
response for the fully-saturated red color, and zero re-
sponse for black and white inputs. The negative values
were set to zero. Each pixel was then mapped directly
to neuronal units of area redColorField (see figure 4a)
which activity was calculated as:

o 1.0 if Ry >0
Si= { 0.0

otherwise

Where S; is the activity of the i-th neuron on area
RedColorField; R; is the value of the red color-tuned
channel for the pixel i-th; and 6, is a threshold value.
(b) Motion detectors were created to detect move-
ments of red objects in the environment. These
motion detectors are based in the well-known elemen-
tary motion detector (EMD) of the spatio-temporal
correlation type (Marr[8]). Motion detectors reacting
to red objects moving to the right side of the image
were mapped directly to neuronal units of the area
RedMovementToRightField (see figure 4b) and the
motion detectors reacting to red objects moving to
the left side of the image were mapped directly to
neuronal units of the area RedMovementToLeftField
(see figure 4d). The activities of the neurons in these
areas were calculated as:

si={ 00 @

Where S; is the activity of the i-th neuron;
EM DOutput; is the output of the motion detector

(1)

if |EMDOutput;| > 0o
otherwise
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at position i-th; and 6, is a threshold value.

(¢) Sensors to encode the position of the joints: JO
(”shoulder”), J1 (?shoulder”) and J2(”elbow”) of the
arm were also created. See figure 4c.
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Figure 6: Position of the center of the object in the visual field
during the experiments. (a) Random exploration. (b) Sensory-
motor coordinated experiment.

4 Experiments and results

Our experiments were performed using the experi-
mental setup showed in figure 5. In order to compare
the effects of the learning mechanism different sets of
experiments were performed. The result of a non-
sensory motor coordinated experiment can be seen in
figure 6a, in this experiment the learning mechanism
was not activated and therefore the robot arm made
only random movements without being able to solve
the task. In contrast when the learning mechanism
was activated, the robot was engaged in a sensory mo-
tor coordinated loop, as can be seen in the figure 6b.
In this experiment the robot was able to solve the task
bringing the object to the target position several times
in a stabilized trajectory.

5 Discussion

With the above results we could show that the
evolved learning mechanism can be transferred to a
robot arm and that the task could be learned by the
robot and that the eyes can teach the robot arm to
bring an object to the center of the visual field. These
results point to a new direction of how to overcome

the reality gap: the goal should be to evolve learning
mechanisms (not fixed neural networks) that can con-
trol the performance of a robot interacting with the
real-world.
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