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Abstract

In evolutionary robotics artificial neural networks
are often used as controllers. As the process to evolve
such controllers in the real world is time-consuming,
one usually uses simulators to speed up this process.
By doing so a new problem arises: The evolved con-
trollers in simulation show often not the same fitness
as those in the real world. In order to close this real-
ity gap we propose to evolve networks able to change
with experience allowing to adapt to unforseen per-
turbations. This paper reports on experiments with
a robot arm for which a controller was evolved able
to adapt to changes of the robot’s morphology. The
controller was not specified but grown using a devel-
opmental approach in which the cells were controlled
by artificial genomes.

1 Introduction

In Evolutionary Robotics(ER) artificial neural net-
works are widely used to construct controllers for au-
tonomous mobile agents [6]. As the evolution in the
real world is time-consuming, simulations are used to
evolve the controller in a simulated environment and
the best individuals are tested in the real world. The
flaw of this combined approach is that evolved agents
in simulated environments show often a significantly
different behavior in the real world due to unforeseen
perturbations. A gap between the simulated and real
environments exists. Therefore, evolved controllers
should adapt not only to specific environments, but
should be robust against environmental perturbations.

Other authors tried to overcome the gap between
simulations and real-world by different methods [8, 9,
11]. Here, a more biological approach is proposed to
evolve large neural networks, which are able to grow
and learn; in this method the genetic information no

longer directly encodes for specific properties (in this
case a neural network), but controls developmental
processes generating the functioning structures. This
will be explained in the following section. In section 3
the robustness of the learning mechanism is tested, the
neural structure and its connections to the robot are
described, then the experiments and results are shown
in section 4 and we conclude with a discussion in the
last section.

2 Evolutionary methods and develop-
mental processes

In order to create the neural controller a develop-
mental evolutionary approach was chosen. The used
simulator was developed over the last years starting
with simple growth control, neural growth [5], pattern
generation and morphogenetic processes [4]. Each cell
in the simulator has its own genome, in which each
gene is regulated by its own set of regulatory units.
A gene will encode either a simple chemical (most im-
portant signalling molecules and receptors) or a prede-
fined developmental process such as cell division or ax-
onal outgrowth. Although all the cells have the same
genome they become different by exchanging signals.
For instance, a cell contains since the beginning a sig-
nalling molecule able to activate the cell division gene.
If such a signal is distributed asymmetrically during
cell division, only one cell will grow, because its cell
division gene is active. The other cell will not contain
this signal and therefore its cell division gene is silent
and no cell division will occur. By selecting for devel-
opmental processes able to perform tasks defining the
value for the fitness, it is possible to create genomes
able to grow meaningful structures such as different
shapes (see Figure 1) or neural controllers for robots
(see Figure 2).

To be able to explore both, growth and learning, the
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Figure 1: Evolving the shape of an artificial optical lens.

concept of selective recognition between entities, we
call it “ligand-receptor interactions” played a crucially
important role ( Eggenberger[2]). This concept allows
(a) a neuron to recognize more or less specifically an-
other partner neuron, (b) an axon to follow cues in
the environment and (c) a neuromodulator to diffuse
in the environment and influence specific synapses to
change their weights. In this way learning rules can
be evolved and have not to be pre-specified by the
designer of the system.

Growth mechanisms By varying axonal receptor
types, different influences can be easily explored by
the evolutionary strategy (ES) and growth patterns re-
sulting in topological maps between interneurons and
the sensory input emerged. Figure 2 illustrates the
mechanisms by which the gene activities of the cells
will determine the types of receptors expressed on
their axons and finally determine if a source of sig-
naling molecules has an attracting or repelling influ-
ence. Similar ligand-receptor interactions will control
which cells will stick together or which will build up
synapses or which signalling molecule will change the
synaptic weight. By varying the expression of different
ligand-receptor interactions the ES can easily explore
different connectivity patterns with a small load of ge-
netic information.

To illustrate the proposed evolutionary approach a
retinal structure was evolved, the task of the system
was to evolve a neural network that could move the
eye in such a way that an incoming peripheral sen-
sory stimulus falls in the center of the “eye”. The
fitness function depended on the number of cells, on
the movements, and on the precision of the movements
measured by the deviation of the position of a stimulus
from the center of the eye after peripheral stimulation.
More details about how this controller was evolved and

Figure 2: Evolving a neural network for controlling a foveating
retina. (a) Growing neural network. (b) Final neural network.

transferred to the robot can be found in the following
references: Eggenberger[3] and Eggenberger et al.[5].
Figure 2 gives a schematic overview of the neural net-
work at different stages of evolution. Figure 5a shows
the robotic setup and Figure 5c shows the robot track-
ing a light source.

Learning mechanisms The exploration of learning
mechanisms is based on the expression of artificial re-
ceptors on the synapses and the interactions with sig-
naling molecules (in Ishiguro et al.[7], this concept was
also explored by us to simulate the evolution of a biped
robot). In general the change of the weights depends
on the activity of different ligand-receptor complexes.
By varying the place and time of these interactions,
the ES is able to explore learning mechanisms with-
out the need of the designer to declare a set of learn-
ing rules (e.g., Hebbian, Anti-Hebbian), because such
rules can be evolved. The following example gives a so-
lution of how a Hebbian learning rule could be evolved:
Neurons can link the emission of a signaling molecule
to their neural activity. Depending on their specific
differentiation, the cells produce and emit signaling
molecules, the synaptic weight changes if ligands emit-
ted from other cells have a strong enough impact on
the synapse. Let us suppose that a neuron emits a
substance and the emitted transmitter has an affinity
to one of two receptors on a particular synapse and a
second neuron emits a substance for a second recep-



tor on that synapse, then the weight will be increased
in an AND fashion, a Hebbian learning rule is found.
The AES evolved two neuromodulatory systems able
to teach the robot about the success of its exploratory
movements. The first mechanism localized in the cen-
ter of the retina cells able to emit neuromodulators
when they where activated. This had the effect that
the system could learn to move the camera correctly.
The second mechanism was more sophisticated and
efficient: the neuromodulator was emitted if at any
given position the movement of the robot brought the
light source closer to the center. This evolved mecha-
nism is quite similar to a value system (Edelman[1] and
Sporns et al.[10]). In contrast to their hand-designed
methods, where the value system is located in other
brain parts, our evolved value system is located di-
rectly in the network performing the task.

Figure 3: Neural structure and its connections to the robot
arm. Neuronal areas: (a) RedColorField. (b) RedMovement-
ToRightField. (c) ProprioceptiveField. (d) RedMovement-
ToLeftField. (e) NeuronalField. (f) MotorField. (g) MotorAc-
tivites.

Figure 4: Ligand-receptor concept.

Figure 5: Increasing the sensory-motor capabilities of the
robot. (a) First robotic setup. (b) Second robotic setup. (c)
First robot task, tracking a light source with the camera. (d)
Second robot task, moving a colored object from the periphery
to the center of the visual field.

3 Testing the robustness of the learn-
ing mechanism

There is an intimate linkage between the neural
controller, the sensory-motor system and the task-
environment. Therefore to test the robustness of
the learning mechanism we increased the sensory-
motor capabilities of the robot as well as its task-
environment. In our previous work, the task was that a
camera which was actuated by two motors should learn
to track a light source in a dark environment (see Fig-
ures 5a and 5c). We continued testing the evolved con-
troller in the real world increasing the sensory-motor
capabilities and the robot’s task as follows: (a) The
visual system was enhanced to detect color and move-
ment in the environment and a proprioceptive system
was added to have feedback of the arm movements. (b)
The number of degrees of freedom (DOF) of the robot
was increased from two to three. At the beginning of
each experiment the active vision system was initial-
ized looking at the center of the visual scene and the
position of its motors were held still. The robot arm
was placed at a random position at the periphery of
the robot’s visual field and a colored object was put on
its gripper. The robot’s task was then to learn how to
move the arm in order to bring the object from the pe-
riphery of the visual field to the center of it (see Figures
5b and 5d). Figure 4 shows “where” and “when” the
synaptic connections between the neuronal areas Neu-
ronalField (see Figure 3e) and MotorField (see Figure
3f) were changed. The active neurons controlling the
robot arm were “rewarded” if the movement of the
arm brought the colored object closer to the center of
the visual field and “punished” otherwise.



4 Experiments and results

Our experiments were performed using the experi-
mental setup showed in Figure 5b. In order to compare
the effects of the learning mechanism different sets of
experiments were performed. The result of a non-
sensory motor coordinated experiment can be seen in
Figure 6a, in this experiment the learning mechanism
was not activated and therefore the robot arm made
only random movements without being able to solve
the task. In contrast when the learning mechanism
was activated, the robot was engaged in a sensory mo-
tor coordinated loop, as can be seen in the Figure 6b.
In this experiment the robot was able to solve the task
bringing the object to the target position several times
in a stabilized trajectory.

Figure 6: Position of the center of the object in the visual field
during the experiments. (a) Random exploration. (b) Sensory-
motor coordinated experiment.

5 Discussion

With the above results we could show that the
evolved learning mechanism can be transferred to a
robot arm, that the task could be learned by the robot
and that the eyes can teach the robot arm to bring
an object to the center of the visual field not only
for two DOF, but also for three DOF. These results
point to a new direction of how to overcome the reality
gap: the goal should be to evolve learning mechanisms
(not fixed neural networks) that can control the per-
formance of a robot interacting with the real world.
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