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Abstract 

One of the first steps of any visual system is that of 
locating suitable interest points, “salient regions”, in 
the scene, to detect events, and eventually to direct 
gaze toward these locations. In the last few years, 
object-based visual attention models have received an 
increasing interest in the literature, the problem, in 
this case, being that of creating a model of 
“objecthood” that eventually guides a saliency 
mechanism. We propose here an object-based model of 
visual attention and show its instantiation on a 
humanoid robot. The robot employs action to learn 
and define its own concept of objecthood. 

1. Introduction 

Humans and many animals have a space-variant visual 
system that require them to move their eyes, three 
times a second on average, in order to position their 
foveae onto interesting locations of the visual space. 
This allows taking a series of small “snapshots” at very 
high-resolution. The fact that this is the only way that 
allows clear “vision” implies the existence of an 
attention system which, at any moment in time, selects 
the point to fixate next. 

This leads to two sorts of questions: i) how to move 
the eyes efficiently to important locations in the visual 
scene, and ii) how to decide what is important and, as a 
consequence, where to look next. To answer these 
questions, we should note first that the human visual 
system extracts basic information from the retinal 
image in terms of lines, edges, local orientation etc. 
Vision though does not only represent visual features 
but also the things that such features characterize. In 
order to segment a scene in items, objects, that is to 
group parts of the visual field as coherent wholes, the 

concept of “object” must be known to the system. In 
particular, there is an intriguing discussion underway 
in vision science about reference to entities that have 
come to be known as "proto-objects" or "pre-attentive 
objects" [1]. These are a step above the mere localized 
features, possessing some but not all of the 
characteristics of objects. 

The visual attention model we propose considers 
these first stages of the human visual processing, and 
employs a concept of salience based on “proto-
objects” defined as blobs of uniform color in the 
image. Since we are considering an embodied system 
we will use the output of an instantiation of the model 
to control the fixation point of a robotic head. 
Moreover, through action, the attention system can go 
beyond proto-objects [2]. In fact, once an object is 
grasped, the robot can move and rotate it to build a 
statistical model of the features belonging to it, 
constructing a representation as a collection of proto-
objects and their relative spatial locations. This internal 
representation then generates a top-down signal that 
bias attention toward known objects; as an example we 
will show how the top-down influence can be used to 
direct the attention of the robot to spot a specific object 
among other similar items lying on a table. 

The rest of the paper is organized as follows. 
Section 2 contains an introduction on the modeling of 
human visual attention. Section 3 describes the 
experimental setup used in the experiments. Section 4 
details the robot’s visual system and the 
implementation. Section 5 introduces the probabilistic 
object model and shows how this is used for object 
recognition. Finally in sections 6 and 7 we show 
experimental results and we draw some conclusions. 



2. Human visual attention 

The attempts of modeling human visual attention 
traditionally rest on two assumptions. On the one hand, 
the space-based theory holds that attention is allocated 
to a region of space, with processing carried out only 
within a certain spatial window. This theory considers 
attention as a “spotlight”, an internal eye or a sort of 
“zoom lens”; attention is deployed as a spatial 
gradient, centered on a particular location. 

On the other hand, object-based attention theories 
argue that attention is directed to an object or a group 
of objects, to process specific properties of the selected 
objects, rather than regions of space. There is a 
growing evidence both from behavioral and from 
neurophysiological studies that shows, in fact, that 
selective attention frequently operates on an object-
based representational medium in which the 
boundaries of segmented objects, and not just spatial 
position, determine what is selected and how attention 
is deployed (see [3] for a review). This reflects the fact 
that the visual system is optimized for segmenting 
complex scenes into representations of (often partly 
occluded) objects to be used both for recognition and 
action, since perceivers must interact with objects and 
not with disembodied spatial locations. 

Finally, another classification can be made 
depending on which cues are actually used in 
modulating attention. Bottom-up information, which 
comes only from the input image, includes basic 
features such as color, orientation, motion, depth, and 
their conjunction thereof. A feature or a stimulus 
catches attention if it differs from its immediate 
surrounding in some dimensions and the surround is 
reasonably homogeneous in those same dimensions. 
However, in attention, higher-level mechanisms are 
involved as well. A bottom-up stimulus, for example, 
may be ignored if attention is already focused 
elsewhere [4]. In this case attention is also influenced 
by top-down information relevant to the particular task 
at hand which is not necessarily available in the image. 

In the literature a number of attention models that 
follow the first hypothesis have been proposed [5-7]. 
Most of them are derived from Treisman’s Feature 
Integration Theory (FIT) [8], which employs a separate 
set of low-level feature maps that are combined 
together by a spatial attention window operating on a 
master saliency map. An important alternative model is 
given by Sun and Fisher [9], which propose an 
combination of object-and feature-based theories. 

This paper presents an object-based model of visual 
attention that integrates bottom-up and top-down cues; 
in particular, top-down information works as a priming 
mechanism for certain regions in the visual search task. 

3. Setup 

The experiments reported in the paper were carried out 
on a robotic platform called Babybot. This is a 
humanoid upper torso which consists of a head, an arm 
and a hand. The head has 5 degrees of freedom, two of 
which control the neck pan and tilt, whereas the other 
three actuate two eyes to pan independently and tilt on 
a common axis. The arm is the well known Unimate 
PUMA 260, an industrial manipulator with 6 degrees 
of freedom; the hand has 5 fingers for a total of 6 
degrees of freedom. 

From the point of view of the sensors, the head is 
equipped with two cameras and two microphones for 
visual and auditory feedback. Proprioceptive 
information is provided to the robot by optic and 
magnetic encoders mounted on all joints of the head, 
arm and hand. More details about the Babybot can be 
found for example in [10]. 

4. Model 

A block diagram of the model is shown in Figure 1; 
the input is a sequence of color log-polar images [11]. 
The use of log-polar images comes from the 
observation that the distribution of the cones, i.e. the 
photoreceptors of the retina involved in diurnal vision, 
is not uniform. This distribution seems to influence the 
scanpaths during a visual search task and so it has to 
be taken into account to better model overt visual 
attention [12]. In addition, the lower resolution of the 
periphery of the field of view reduces the images’ size 
and thus reduces the computational load. 

G+R-R+G- B+Y-

Combined
edges

WatershedColor 
quantization

Log-Polar
color image

Smoothing

Saliency
computation

Top-Down 
information

Edge detection

+

 
Figure 1. Block diagram of the model. 



 
Figure 2. Log-polar transform of an image. 

4.1. Log-polar images 

The log-polar mapping is a model of the topological 
transformation of the primate visual pathways from the 
retina to the visual cortex. Cones have a higher density 
in the central region called fovea (approximately 2° of 
the visual field), while they are sparser in the 
periphery. Consequently, the resolution is higher and 
uniform in the center while it decreases in the 
periphery, moving away from the fovea. 

From the mathematical point of view the log-polar 
mapping can be expressed as a transformation between 
the polar plane (ρ,θ) (retinal plane), the log–polar 
plane (ξ,η) (cortical plane) and the Cartesian plane 
(x,y) (image plane), as follows [11]: 
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where ρ0 is the radius of the innermost circle, 1/q is the 
minimum angular resolution of the log-polar layout 
and (ρ,θ) are the polar co-ordinates. These are related 
to the conventional Cartesian reference system by: 
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Figure 2 shows a Cartesian image and its log-polar 
counterpart as derived from Equations (1) and (2). 

4.2. Feature extraction 

As a first step the input image at time t is averaged 
with the output of a color quantization procedure (see 
later) applied to the image at time t-1. This is to reduce 
the effect of the input noise. The red, green, blue 
channels of each image are then separated, and the 
yellow channel is constructed as the arithmetic mean 
of the red and green channels. Successively these four 
channels are combined to generate three color 
opponent channels, similar to those of the retina. Each 
channel, normally indicated as R G+ − , G R+ − , B Y+ − , 

has a center-surround receptive field (RF) with 
spectrally opponent color responses. That is, for 
example, a red input in the center of a particular RF 
increases the response of the channel R G+ − , while a 
green one in the surrounding will decrease its 
response. The spatial response profile of the RF is 
expressed by a Difference-of-Gaussians (DoG) over 
the two sub-regions of the RF, ‘center’ and ‘surround’. 
A response is computed as there was a RF centered on 
each pixel of the input image, thus generating an 
output image of the same size of the input. This 
operation, considering for example the R G+ −  channel 
is expressed by: 
 ( ), c sR G x y R g G gα β+ − = ⋅ ∗ − ⋅ ∗  (3) 
The two gaussian functions, cg  and sg , are not 
balanced: the ratio /β α  is chosen equal to 1.5, 
consistent with the study of Smirnakis et al. [13]. The 
unbalanced ratio preserves the achromatic information: 
that is, the response of the channels to a uniform gray 
area is not zero. Hence the model does not need to 
process achromatic information explicitly since it is 
implicitly encoded, similarly to what happens in the 
human retina’s P-cells [14]. The ratio σs /σc, the 
standard deviation of the two gaussian functions, is 
chosen equal to 3. To be noted that by filtering a log-
polar image with a standard space-invariant filter leads 
to a space-variant filtered image of the original 
cartesian image [15]. 

Edges are then extracted on the three channels 
separately using a generalization of the Sobel filter due 
to [16], obtaining ERG(x,y), EGR(x,y) and EBY(x,y). A 
single edge map is generated combining the tree 
outputs: 
 ( ) ( ) ( ){ }( , ) max , , , , ,RG GR BYE x y E x y E x y E x y= (4) 

The log-polar transform has the side effect of 
sharpening the edges near the fovea due to the 
magnification factor of the mapping; this is 
compensated multiplying each pixel by a factor which 
is exponential on the eccentricity. 

4.3. Proto-objects 

It has been speculated, that synchronizations of visual 
cortical neurons might serve as the carrier for the 
observed perceptual grouping phenomenon [17, 18]. 
The differences in the phase of oscillation among 
spatially neighboring cells is believed to contribute to 
the segmentation of different objects in the scene. 

We have used a watershed transform (rainfalling 
variant) [19] on the edge map to simulate the result of 
this synchronization phenomenon and to generate the 
proto-objects. 
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Figure 3. Example of model maps. 

The intuitive idea underlying this method comes from 
geography: a topographic relief is flooded by water, 
watershed are the divide lines of the domains of 
attraction of rain falling over the region. In our view 
the watershed transform simulates the parallel spread 
of the activation on the image, until this procedure fills 
all the spaces between edges. Differently from other 
similar methods the edges themselves will never be 
tagged as blobs and the method does not require 
complex membership functions either. Moreover the 
result does not depend on the order in which the points 
are examined like in standard region growing [20]. As 
a result, the image is segmented into blobs with either 
uniform or uniform gradient of color. 

Each blob is tagged with the average of the color of 
the pixels within its area (this leads to a sort of color 
quantizated image). The result is blurred with a 
gaussian filter and stored: this will be used to perform 
a time-smoothing by simple averaging with the frame 
at time t+1 to reduce the effect of noise and increase 
the temporal stability of the blobs. After an initial 
startup time of about five frames, the number of blobs 
and their shape stabilize. If movement is detected in 
the image (as difference between two consecutive 
frames) then the smoothing procedure is halted and the 
bottom-up saliency map becomes the motion image. 

As already mentioned above, a feature or a stimulus 
catches the attention of the system if it differs from its 
immediate surrounding. We chose to compute the 
bottom-up salience as the Euclidean distance in the 
color opponent space between each blob and its 
surrounding. The size of the spot or focus of attention 
is not constant: it changes depending on the size of the 
objects in the scene. To account for this fact the greater 
part of the visual attention models in literature uses a 
multi-scale approach filtering with some type of “blob” 
detector (typically a difference of Gaussian filter) at 
various scales [21]. We reasoned that this approach 
lacks continuity in the choice of the size of the focus of 
attention. We propose instead to dynamically vary the 
region of interest depending on the size of the blobs. 
That is the salience of each blob is calculated in 
relation to a neighborhood proportional to its size. In 
our implementation we consider a rectangular region 3 
times the size of the bounding box of the blob as 
surrounding region, centered on each blob. The choice 
of a rectangular window is not incidental, rather it was 
chosen because filters over rectangular regions can be 
computed efficiently by employing the integral image 
as in [22]. The bottom-up saliency is thus computed as: 

 

2 2 2
bottom up

blob surround

blob surround

blob surround

S RG GR BY

RG R G R G

GR G R G R

BY B Y B Y

−

+ − + −

+ − + −

+ − + −

= ∆ + ∆ + ∆

∆ = −

∆ = −

∆ = −

 (5) 

where  indicates the average of the image values 
over a certain area (indicated in the subscripts). 

The top-down influence on attention is, at the 
moment, calculated in relation to the task of visually 
searching a given object. In this situation a model of 
the object to search in the scene is given (see Section 
5) and this information is used to bias the saliency 
computation procedure. In practice, the top-down 
saliency map is computed as the Euclidean distance in 
the color opponent space, between each blob’s average 
color and the average color of the target: 
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with a notation similar to the one above. 



Blobs that are too small (1/550 of image area) or 
too big (1/4 of the image area) are discarded from the 
computation of salience and will not be considered as 
possible candidates to be part of objects. The blob in 
the center of the image (currently fixated) is ignored 
also because it cannot be the target of the next fixation. 

The total salience is simply calculated as the linear 
combination of the top-down and bottom-up 
contributions: 
 td top down bu bottom upS k S k S− −= ⋅ + ⋅  (7) 

and normalized in the range 0-255. The center of 
mass of the most salient blob is selected for the next 
saccade. An example of the intermediate and final 
maps of bottom-up salience is shown in Figure 3. All 
the computations are done on log-polar images, but 
input and output images are shown remapped to 
cartesian for clarity. 

4.4. Inhibition of return 

In order to avoid being redirected immediately to a 
previously attended location, a local inhibition is 
transiently activated in the saliency map. This is called 
“inhibition of return” (IOR) and it has been 
demonstrated in human visual psychophysics. IOR 
does not seem to function in retinal coordinates but it 
is instead attached to environmental locations. It has 
been proposed that the IOR is required to allow an 
efficient visual search by discouraging shifting the 
attention toward locations that have already been 
inspected, and it seems to be working also in the case 
of moving objects (for a review see [23]). 

All these findings lead to the conclusion that the 
human visual system works by tagging objects and 
moving tags as objects move, hence the IOR seems to 
be coded in an object-based frame of reference. 

Our system implements a simple object-based IOR. 
A list of the last five positions visited [24] is 
maintained in a head-centered coordinate system and 
updated with a FIFO (First In First Out) policy. The 
position of the tagged blob is stored together with the 
information about its color. When the robot gaze 
moves – for example by moving the eyes and/or the 
head – the system keeps track of the blobs it has 
visited. These locations are inhibited only if they show 
the same color seen earlier: so in case an inhibited 
object moves or its color changes, the location 
becomes available for fixation again. 

5. Learning about objects 

We assume the robot has already grasped the object; 
this can happen because a collaborative human has 
given the object to the robot or because it has 

autonomously grasped the object (even by chance 
initially). Both solutions are valid bootstrapping 
behaviors for the acquisition of an internal model of 
the object. When the robot holds the object it can 
explore it by moving and rotating it. 

Objects are represented by the blobs generated by 
the visual attention system and their relative positions 
(neighboring relations). The model is created 
statistically by looking at the same object for some 
time from different points of view. A histogram of the 
number of times a particular blob is seen is used to 
estimate the probability that the blob belongs to the 
grasped object. 

In the following, we use the probabilistic 
framework proposed by Schiele and Crowley [25]. We 
want to calculate the probability of the object O given 
a certain local measurement M. This probability 
P(O|M) can be calculated using Bayes’ formula: 

 ( ) ( ) ( )
( )

|
|

P M O P O
P O M

P M
=  (8) 

where: P(O) the a priori probability of the object O, 
P(M) the a priori probability of the local measurement 
M, and P(M|O) is the probability of the local 
measurement M when the object O is fixated. In the 
following experiments we only carried out a detection 
experiment for a single object, there are consequently 
only two classes, one representing the object and 
another representing the background. P(O) and P(~O) 
are simply set to 0.5 because they do not affect the 
order of the maxima of P(O|M). Since a single blob is 
not discriminative enough, we considered the 
probabilities of observing pairs of blobs instead. To 
simplify the probability estimation (the number of 
possible combinations) we have chosen to observe 
only pairs composed of the central blob (taken as 
reference) and one surrounding blob as the local 
measurement M: 
 ( ) ( )( )| |  and  adiacent i c i cP M O P B B B B=  (9) 

where Bi is the i-th blob that surrounds the central blob 
Bc that belongs to the object O. That is, we exploit the 
fact the robot is fixating the object and assume the 
central blob will be constant across fixations. The 
color of the central blob will be stored and used to bias 
the visual search (see Section 4.3). The probabilities 
P(M|~O) are estimated during the exploration phase by 
considering the blobs not adjacent to the central blob. 
The local measurements are considered independent 
because they refer to different blobs, so we factorize 
the total probability P(M1,…,MN|O) in the product of 
the probabilities P(Mi|O). An object is considered 
‘found’ if the probability P(O|M1,…,MN) is greater 
than a fixed threshold. When the object is found after 
visual search, a figure-ground segmentation is 



attempted: each blob is selected if it is adjacent to the 
central recognized blob and if its probability to belong 
to the object is greater of 0.5. 

In practice, we estimate the probability of all blobs 
adjacent to the central blob to belong to the object. 
This procedure, although requiring the “active 
participation” of the robot (through gazing) is faster 
than estimating all probabilities for all possible pairs of 
blobs of the fixated object. Estimation of the full joint 
probabilities would require a larger training set than 
the one we were able to use in our experiments. Our 
experimental scenario required the construction of the 
object model on the fly with the shortest possible 
exploration procedure, which naturally leads to 
estimating probabilities with few samples. It is likely 
that many bins in the histograms, used to estimate 
probabilities, are empty. To overcome this problem we 
have used a probability smoothing method. In 
particular we employed as zero count smoothing the 
Lidstone’s law of succession: 
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for a v valued problem. With λ=1 and a two valued 
problem (v=2), we obtain the well-known Laplace’s 
law of succession. Following the results of Kohavi et 
al. [26], we choose λ=1/n where n is equal to the 
number of images utilized during the training phase. 

A first use of the system is to create a visual model 
of the hand of the robot (a special object). By relying 
on this model the robot can distinguish the grasped 
object from parts of the hand that might still be visible. 

6. Results 

The behavior of the robot during the learning phases is 
shown in Figure 5: all the blobs bordering the central 
one (blue) are used for learning the visual appearance 
of the object. 

Two examples of the saliency map are shown in 
Figure 4: in 4.4 there is a purely bottom-up (ktd=0, 
kbu=1 in Equation (7)) map which is the result of the 
processing of the scene in 4.1; in 4.5 there is a purely 
top-down (ktd=1, kbu=0) map output after the 
processing of 4.2. In the latter the robot was instructed 
to search for the toy airplane. After a saccade on the 
object and a successfully recognition the figure-ground 
segmentation is shown in Figure 4.6. The center of 
mass of the segmented object is used to guide the 
grasping action of the robot. 

We have tested the attention system while guiding 
the recognition and grasping of objects in the Babybot. 
In order to qualitatively evaluate the performance, we 
have done a comparison test of the bottom-up attention 

using the database of images by Itti et al. [27] (color 
images with an emergency triangle and relative binary 
segmentation masks of the triangle), which is freely 
available on the Internet (http://ilab.usc.edu/imgdbs/). 
First, the original images and segmentation masks are 
cropped to a square and transformed to the log-polar 
format (252x152 pixels) (see Figure 6.1 and Figure 6.2 
for the cartesian remapped images). To simulate the 
presence of a static camera, the images are presented to 
the system continuously and, after five “virtual” 
frames, the bottom-up saliency map is confronted with 
the mask. In 49% of the images a point inside the 
emergency triangle was selected as the most salient 
(see an example in Figure 6.3). It is worth noting that a 
direct comparison with the results of Itti et al., by 
counting the number of false detection before the 
target object is found, was not possible since after each 
saccade the log-polar image should change completely. 

 
Figure 4. Example saliency maps. In (4) there is the 

bottom-up saliency map of the image (1). In (5) the top-
down saliency map of (2), while searching for the blue 

toy airplane. Image (6) is the figure-ground 
segmentation of the image in (3), after having 

recognized the object. 

 
Figure 5. Some example images during exploration 
phase (1-3) and related segmentations (4-6) used to 

build the statistical model of the object. 



 
Figure 6. Result on a static example image. 

7. Conclusion 

We have presented the implementation of a visual 
attention system employing both top-down and 
bottom-up information. It runs in real time on a 
standard Pentium class processor and it is used to 
control the overt attention mechanism of a humanoid 
robot. This eventually gives rise to a different sort of 
problems compared to the more typical 
implementations that only generate scan paths on static 
images. 

The algorithm divides the visual scene in color 
blobs; each blob is assigned a bottom-up saliency 
depending on the contrast between its color and the 
color of the surrounding area. The robot acquires 
information about objects through active exploration 
and uses it in the attention system as a top-down 
primer to control the visual search of that object. The 
model directs the attention on the proto-object’s or 
segmented object enter of mass (see Section 4.3 and 
Section 6), similarly to the behavior observed in 
humans. In fact it has been observed that the first 
fixation to a simple shape that appears in the periphery 
tends to land on its center of gravity [28]. 

When the camera moves, a new blob will appear in 
the image center. This active behavior simplifies the 
segmentation and the recognition task since there will 
always be a blob in the center that will be segmented 
from the background. 

A similar approach has been taken by Sun and 
Fisher [9] but the main difference with this work is that 
they have assumed that a hierarchical set of perceptual 
groupings is provided to the attention system by some 
other means and considered only covert attention. 

On the other hand, our system has been shown in 
practice to be useful in guiding a humanoid robot in 
selecting objects to be grasped, by helping the visual 
search and recognition task. 

As a possible extension, the watershed transform 
could be extended to additional dimensions in feature 
space (e.g. local orientation) thus providing new ways 
of both segmenting and recognizing objects. 
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