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Abstract— Humans perceive the world using five senses.
Research results suggest that this multisensorial perception may
be of fundamental importance for development and learning,
as well as for creating cognitive capabilities. Moreover, humans
have the capacity to create intersensorial expectations to guide
attention and perception. We are interested in comprehending
how these capabilities may improve robot perception. In this line
of research, we present a cross-modal perceptual architecture
that can segment objects based on visual-auditory sensorial cues,
construct an associative sound-object memory, and create visual
expectations of objects (attentional priming) using a sound
recognition algorithm.

Index Terms— Prediction, attention, MFCC, anticipation, mu-
tual information, expectations, mixelgram

I. INTRODUCTION

Though machine vision is a long and well established

scientific discipline the several decades of intensive research

were not enough to resolve a problem that humans seem to

pass by almost intuitively. During the early days of computer

vision, i.e. 1960’s and 1970’s, the research efforts were

concentrated in the passive processing of single images. The

visual cortex was believed to process all the information

in the field of view and to do so in a sequential and

increasingly complex process. This doctrine influenced the

vision computational models of that time that tried to create

general descriptions of the visible scene [7]. This period

culminated with the publication of the influential Marr’s work

Vision [8], where computer vision was formalized as a pure

information processing task.

In the late 1980’s and early 1990’s a new approach to

computer vision appeared : Active Vision [1], [4]. During

the late 1990’s the concept of active vision was exploited,

improved and expanded. A strong emphasis was made in the

simplification of the early stage vision problems by exploiting

the explorative capacities of vision systems. During this pe-

riod, there was also an approach between “cognitive sciences”

and robotics that yielded to epigenetic approaches to robotics

and the investigation of the perception-action paradigm where

the artificial system is able to act in the world and modify

it (see [11] for an example).

More recently, the perception-action paradigm has been

explored further in the area of humanoid robotics. For

example, Metta and Fitzpatrick [10] have shown how to

segment an ambiguous object from the background by active

manipulation. Several researches stress that an agent could

construct a self image by actively exploring and manipulating

[2], [14].

However, though the learn by doing approach [5] is provid-

ing encouraging results, we think that further development is

still necessary. Particularly, the exploitation of intersensorial

relations for the improvement of perception has not been

sufficiently explored, e.g. the interrelation between sound

and vision. In this paper this problem is addressed studying

audio-visual causal interrelations. In particular, it is studied

how these interrelations may improve object perception and

how they could be exploited to create intersensorial expecta-

tions.

The paper is organized as follows: first, we propose

a conceptualization of crossmodal perception; second, we

analyze the research in automatic sound recognition and show

how traditional speech recognition techniques can be used

to parametrize sounds produced by objects; third, we discuss

how an approximation of a statistic called mutual information

can be used to create a common intersensorial space for

sound and vision; fourth, we present how the latter informa-

tion can be used to segment an object from the background

with the assistance of a color back-projection technique; and

finally we show how the system: a) creates a sound-object

associative memory, b) uses this memory to recognize sounds

(through a dynamic time warping algorithm) and c) extracts

from the memory a visual expectation associated with a

sound auditory event.

II. TOWARD CROSS-MODAL PERCEPTION

Neuroscience research is actively studying cross-modal

relations in the human brain and several researchers suggest

that perception is a multisensorial experience. However, still

many questions remain unanswered, for example:

• How cognitive pathways may dominate perception (top-

down approach).

• How different sensorial modalities are integrated.

• How these sensorial interrelations may guide develop-

ment and learning.

• How sensorial modalities may influence each other.

There is little understanding on how these mechanisms

may work in the human brain. However, some conclusions



can be advanced: a) sensorial interrelations seem to be funda-

mental for the development of high level cognitive abilities,

b) perception seems to depend strongly on multisensorial

cues.

In the robotics research field, we can categorize these

assumptions in the context of the crossmodal perception par-

adigm. We conceive crossmodal perception as an extension

of the active-vision/perception-action paradigms. The cross-

modal perceptual agent uses multisensorial cues to reinforce

its explorative perception and creates actively synchronized

multisensorial inputs (e.g. by hitting repeatedly an object on

the ground producing a change in both the visual field and

the auditive input).

We attempt the first steps toward this kind of perception

by trying to solve, in the context of a humanoid robot

architecture, two problems: a) object segmentation using mul-

tisensorial cues, and b) sound classification for attentional

priming. More formally, we suggest that these two problems

could be conceptualized into two distinct phases:

• Synaesthetic Phase: From syn “co” and aisthanesthai to

perceive. This yields to an etymological interpretation

as joint perception or to perceive simultaneously. In

this particular experiment, this phase corresponds to an

object segmentation based on the integration of sound

and visual cues.

• Synesthetic Phase: A concomitant sensation; especially,

a subjective sensation or image of a sense (as of color)

other than the one (as of sound) being stimulated.

In this experiment, this phase is formed by a sound

classification algorithm that can remember the visual

aspect of an object.

Notice that synaesthetic and synesthetic are very similar

(there is only a letter “a” difference), they have a common

etymological origin, however, the meaning is slightly differ-

ent in our interpretation. Moreover, it is worth noting that

these words have been used interchangeably in the literature;

particularly, synaesthetic is used in cognitive neuroscience

to address an unusual mixing of the senses that affects

certain people (see [18] for a review). This unusual mixing

of senses interpretation stress the “strength” how senses

interrelate, and also the non relation with the real world.

For example, patients experience visual hallucinations (i.e.

they see colors) when hearing a particular noise or they have

smell hallucinations when they see a particular number.

We adopt a slightly different interpretation; we believe

that most humans have subjective sensations activated by

crossmodal interrelations. The differences with respect to the

cognitive neuroscience point of view are: a) the “intensity” of

the interrelations, and b) that they correspond to real sensorial

experiences. In our view, the interrelations are related with

sensorial expectations and not with sensorial hallucinations.

Thus, paraphrasing Fermüller and Aloimonos (see [7]

chap.9), we may say that:

Now, it has become clear that image understanding

should also include the process of selective acquisi-

tion of data in space and time from multisensorial

cues.

III. SYSTEM ARCHITECTURE AND EXPERIMENTAL SETUP

Sound could be considered as important as vision. How-

ever, comparatively, little research has been done in the

field of sound recognition. The research has been mainly

concentrated in the recognition of speech and music and

in the study of orienting behaviors [13]. More recently,

the sound research has included works in scene analysis,

detection of talking faces [6] and rhythm detection [3].

In a work related with the segmentation of objects by

a humanoid robot, Arsenio and Fitzpatrick [3] address the

problem of object detection based on the rhythm properties of

movements, both in sound and vision streams. They address

the recognition of toys designed for infants. We use a similar

approach, but we do not exploit the rhythmic characteristics

of movement but the intrinsic common information created

in both sensorial streams when the toy is squeezed or shaked

by the experimenter in front of the robot.

We will show that a combination of speech recognition

techniques and statistics can be used to create a crossmodal

perceptual architecture that can create associations between

the images of toys and the sounds the toys produce; and, in a

second stage, evocate the toy’s visual image by recognizing

the sound associated to the toy, and consequently, have the

potential to exploit this visual expectation in explorative

movements.

In Figure 1 we present the architecture of the crossmodal

perceptual system. This system was implemented in YARP

(Yet Another Robotic Platform) [9]. YARP is a framework for

humanoid robotics development that provides support, among

other things, for distributed computation and multi-operating

system communications.

The proposed system was running in a rack of standard

PC’s, either with Microsoft Windows or QNX installed on the

PC’s. The system received its inputs from the environment

through a PAL camera and two microphones. A standard PCI

framegrabber, based on the Conexant Bt848 chip, digitalizes

the images which are converted utilizing a log-polar mapping

by a software conversion algorithm [19]. A standard audio

PCI card digitalizes the sound signal obtained by the mi-

crophones. Both cards use a Direct Memory Access (DMA)

mechanism to transfer the data streams into the computer

main memory.

A fundamental problem was how to synchronize in time

the video and sound streams. The standard acquisition cards

do not employ any hardware synchronization line, so we

developed a special device driver in the Windows operating

system that controls the acquisition of both cards. The driver

initializes the acquisition cards in a sequential manner using a
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Fig. 1. The architecture of the crossmodal perceptual system

software critical region (i.e. a code execution flow that is not

interrupted). Consequently, the acquisition software needs to

run in a single process being executed by a single computer.

However, the previous mechanism does not guarantee a

perfect synchronization, and for this reason, the computer

internal clock (timestamps) was employed to monitor the time

alignment between the data streams. Using this technique we

measured a time difference that in average of several tests was

less than one millisecond with different CPU loads.

The sampling frequency for the sound was 44100 Hz,

whilst the precision was 16 bits and the transfer memory

was 1764 samples/frame. This produced a sound framerate

of 25 frames per second at a rate of one frame each 40

milliseconds, exactly the same as the frame sequence rate

of the PAL video images.

(a) (b) (c)

Fig. 2. Experiment objects as perceived by Eurobot: (a) A deformable
plastic yellow duck, (b) a hollow hard plastic blue pig filled with plastic
bottle caps, and (c) a hollow hard plastic red pig filled with chickpeas.

For the experiment, we used an upper torso humanoid

robot called Eurobot and a set of three baby toys acquired

in commercial stores. Figure 2 shows the group of toys as

seen by the robot. Figure 2(a) is a deformable yellow plastic

duck; it produces a high frequency sound when squeezed

with the hand. The hollow hard plastic toy pigs shown in

Figures 2(b) 2(c) are the same toy; the differences are: they

have different colors and we have filled them with different

materials. Therefore, the sound produced by each toy pig was

slightly different.

IV. SOUND PARAMETRIZATION

The goal of the sound parametrization module was to

obtain a low dimensional representation of sound. In the

speech recognition literature this module is known as the

signal-processing front-end. The idea is to have a sequence

of measurements of the input signal, usually the output

of some type of spectral analysis technique, that yields a

“pattern” that represents the sound; though we prefer the term

sound template for this representation. This sound template

is a sequence of spectral vectors. Each of these vectors

represents the frequency transformation of the sound in a

short period of time; in our system, this period of time has a

duration of 40 milliseconds. Therefore, the sound template is

a representation of the sound both in time and in frequency.

To implement this sound parametrization module, we re-

viewed the most popular techniques used in speech recog-

nition and, based on several research reports, we chose a

technique called mel-frequency cepstral coefficients (MFCC).

The MFCC algorithm can create a compact representation of

sound into a vector of few parameters. We tested the MFCC

algorithm in the Matlab environment using the auditory

toolbox developed by Malcolm Slaney [21] and then we

implemented a C++ version based on his algorithm for the

YARP environment.

Algorithm 1 Calculate MFCC

loop

Window the data with Hamming window

Apply Fast Fourier Transform

Compute the magnitude of the FFT

Convert the magnitude into filter bank outputs

Find the log10

Find the cosine transform to reduce dimensionality

end loop

Algorithm 1 shows the steps suggested by [21] to compute

the MFCC transformation. In the next sections we explain in

detail the parts of the algorithm.

A. Short-Time Fourier Transform (STFT)

The traditional approach to spectral analysis of the sound

signal consists in applying a set of filter-banks (see [17]).

According to [17], the filter bank computation can be

conveniently implemented by applying first a short-time

fourier transform (STFT) to the incoming data:

Sn(e
jwi) = ∑

m

s(m)w(n−m)e− jwim (1)

where s(m) is the sound sequence, and w(n−m) is in our

case a Hamming window.

The STFT produces a representation of the sound stream

both in time and frequency domains that facilitates the

application of the filter-bank in the frequency domain. Ra-

biner [17] proposes that the filter-bank can be implemented

by varying adequately the frequency in the exponential term

of equation (1); in the simplest case, this frequency has



an uniform distribution choosing fi = i(Fs/N), where Fs is

the sampling frequency. However, non-uniform frequency

distributions can be used; in particular, neurophysiological

studies propose numerous models of the human auditory

system. One of those is the mel-frequency scale where the

filter-banks are distributed linearly in low frequencies and

then they decrease logarithmically in higher frequencies. As

suggested in [21], we constructed the filter-bank using 13

linearly-spaced filters (133.33 Hz between center frequen-

cies) followed by 27 log-spaced filters (separated by a factor

of 1.0711703 in frequency).

B. Mel-Frequency cepstral coefficients (MFCC)

The formula for the mel-frequency cepstral transform is as

follows:

ci =
2

N

N

∑
k=1

Yk cos[i(k +0.5)
π

N
], i = 1,2, . . . ,M (2)

where ci is the cepstral coefficient, and Yk are the outputs of

the filter-bank discussed in the previous section.

In our system, the MFCC transform reduces the dimen-

sionality by transforming the output of 40 filter-banks into a

compact representation of 13 cepstral coefficients. Figure 3

shows a graphical 3D representation of a MFCC transform

applied to the sound produced by toy 2(a).
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Fig. 3. Three dimensional representation of a MFCC Transform

After applying equation (2) we packed the cepstral coef-

ficients in the sound template data structure. This template

contains the cepstral coefficients associated to a sound pro-

duced by a toy. To detect the presence of an object producing

a sound, we measure empirically the background sound level

and we use it as a threshold to activate the template recording

procedure.

V. MULTISENSORY OBJECT SEGMENTATION

(SYNAESTHESIS)

Once the sound is parameterized, the level of synchrony

of the sound and visual data streams needs to be measured.

For this purpose, we use the method suggested by Hershey

and Movellan based on the mutual information [6].

A. Mutual Information

Hershey and Movellan define the temporal synchroniza-

tion of a video and sound channels as an estimate of the

mutual information between both streams. Their algorithm

was originally applied to the problem of finding a vocalizing

person in a video sequence [6]. They consider that a(t) ∈ Rn

is a vector describing the acoustic signal at time t and that

v(x,y, t) ∈ Rm is a vector describing the video signal at the

same time instant. They assume that these vectors form a set S

of audio-visual vectors and that these vectors are independent

samples from a joint multivariate Gaussian process. Under

these assumptions, Hershey and Movellan affirm that an

estimate of the mutual information can be calculated as

I(A(tk);V (x,y, tk)) =
1

2
log2

|∑A(tk)||∑V (x,y, tk)|

|∑A,V (x,y, tk)|
(3)

where |ΣA(tk)| is the determinant of the covariance matrix

of the audio stream, |ΣV (x,y, tk)| is the determinant of the

covariance matrix of a pixel of the image (e.g. the RGB

values), and |ΣA,V (x,y, tk)| is the joint covariance of both the

audio and visual signals (see [6] and [20] for details about

how to derive (3)).

To compute equation (3) different sound and images para-

metrizations can be used. In a first experiment, we calculated

equation (3) using 13 mel-frequency cepstral coefficients

(the parameters of covariance matrix ΣA(tk)) and three RGB

values of the pixel (the parameters of the covariance matrix

ΣV (x,y, tk)) during 0.6 seconds (S = 15). Consequently, the

combined audio-vision covariance matrix ΣA,V (x,y, tk) com-

prises 15x15 elements. The computation of the determinants

of these matrices exhibits a considerable computational cost,

because the determinants are calculated for each pixel in the

image. This produces a considerable degradation of the sys-

tem performance. Although this algorithm can be improved

by having a distributed computation, we decided to use a

simplified version of the mutual information as suggested by

[6]. This is the special case when the data streams are in a

one dimensional representation (i.e. n = m = 1). Then, the

mutual information can be expressed as

I(A(tk);V (x,y, tk)) = −
1

2
(1−ρ2(x,y, tk)) (4)

where ρ2(x,y, tk) is the Pearson correlation coefficient

between A(tk) and V (x,y, tk) (see [15]). To obtain this one

dimensional representation, we used for the sound the root

mean square (RMS) of the short-time Fourier transform

coefficients (see the arrow connection between the STFT box

and the RMS box in figure 1) and a gray level value of the

color RGB components. Notice that the MFCC transform was

still used to form the sound template representation.



B. The Mixelgram

To conceptualize the output of the mutual information

between sound and vision, Prince et al. [16] introduced

the mixel; that is a combination of the words mutual and

pixel. They proposed that the mixels form a topographic

representation called mixelgram. These can form shapes that

are perceptually relevant for human observers [16]. There-

fore, the mixelgram is to be considered a common space

representation for both visual and audio sensorial channels.

Figure 4 depicts an example of the mixelgram of the

toy 2(a). It is possible to distinguish the shape of the duck.

Fig. 4. The mixelgram of the duck toy. Notice that the mixelgram inherits
the same log-polar geometry used in the original image.

C. Improved object segmentation

The original image and the mixelgram maintain a direct

geometric correspondence, therefore the mixelgram can be

used to segment the object by segmenting the pixel in the

original image which position corresponds to an activated

mixel. However, the segmentation obtained with this method

has a low quality because many pixels of the object are not

segmented at all. To improve the object segmentation, we use

a technique based on color segmentation. We assume that

the activated mixels belongs to a uniformly colored object.

Then, we use a back-projection technique to improve the

segmentation results.

The back-projection technique is implemented as follows:

(i) the pixels segmented with the mixelgram are used to

create a HS (Hue-Saturation) histogram, (ii) the HS histogram

provides information about the object predominant color;

then by applying a convenient threshold, the HS histogram

can be used to segment by color the object in the original

image (back-projection), (iii) the pixels segmented using

the back-projection technique are then combined with the

pixels segmented by the mixelgram to create an improved

segmentation of the object.

Our implementation is similar to that described in [12].

However, in our system, the object is originally detected

using the mutual information and we do not use a model

of the background to segment the object.

As an example, figure 5 shows the HS histogram for the

segmented object 2(b).
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Fig. 5. The resulting HS histogram of the segmented blue pig toy

In figure 6 we present the results of the discussed seg-

mentation process for the three toys used in the experiment.

These were among the best segmentations obtained during

the present experiment.

(a) (b) (c)

Fig. 6. The segmented toys

D. Associative memory

After an object is segmented, the segmentation results are

stored in a dynamic lookup table. Each element in the lookup

table contains the segmented image and the sound template

associated to that object. To create the memory we appear the

object in front of the robot several times squeezing or shaking

the object with different speeds and strengths. This way, we

produced slightly different sounds that were associated to the

same object in the memory. This provided some robustness

to the process of recognizing the sound.

VI. ATTENTIONAL PRIMING (SYNESTHESIS)

This module performed basically a pattern classification

for sound identification. When the system hears an unknown

sound, the sound is parametrizated using the MFCC algo-

rithm explained in section IV. Then, the sound template

is compared with the memorized sound templates using a

measure of similarity (distance).

To compare the sound templates it is necessary to compute

both a local distance measure between the spectral vectors,

and a global time alignment procedure [17]. To compute the

local distance, we used the truncated cepstral distance d2
c (L)

(see [17] page 195).



Experiment Duck Blue pig Red pig

Segmentation (Synaesthesis) 64% 70% 75%

Classification (Synesthesis) 99% 88% 83%

TABLE I

SEGMENTATION AND RECOGNITION RESULTS FOR THE SYSTEM

A. Dynamic Time Warping

The global time alignment procedure is necessary because

the automatic sound recognition system has to take into

account: a) time alignment and b) time normalization. This

can be done using a Dynamic Time Warping (DTW) algo-

rithm [17]. We used the DTW algorithm to compare the heard

sound to those stored in the associative memory discussed in

previous section. During the experiment we produced these

sounds outside the robot field of view. The system was

able to recognize the sound and remember the object image

associated with the sound. Then, the recovered toy image was

presented to the experimenter for verification.

VII. RESULTS AND DISCUSSION

Table I presents the empirical results obtained during the

presented experiment. In the case of the segmentation results,

the table shows the percentage of segmentation trials with

similar results of those presented in figure 6. Because a

color segmentation is used, lighting conditions influence the

segmentation. The results presented were obtained with good

lighting conditions.

In the case of the sound recognition results, we did the

experiment in a quiet laboratory environment with only

some computer generating background noise. The results in

both cases degraded significantly when we performed the

experiment in noisy conditions, as for example, with people

talking in the room.

For the recognition module we used only the c1 . . .c12

cepstral coefficients. The use of the c0 cepstral coefficient

degraded the capacity of the system to distinguish between

similar objects. This was the case with the two pig toys that

are made of the same material. This result make us suggest

that the c0 cepstral coefficient could be used to implement

an algorithm to distinguish classes of objects. This may be

convenient when the classification needs to be done among

a big number of different sounds.

VIII. FUTURE WORK

This paper has presented the first steps to endow a hu-

manoid robot with an attention priming mechanism based on

crossmodal expectations. The final goal is to have an active

robot with robust segmentation and classification algorithms

that can actively create its own associations. Therefore, future

work will include : robustness improvement, integration with

sound orienting behavior algorithms and integration with

other sensor modalities (e.g. touch).
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