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Gabriel Ǵomez1 and Peter Eggenberger Hotz1,2

1Artificial Intelligence Laboratory
Department of Information Technology, University of Zurich, Switzerland

2Emergent Communication Mechanisms Project
Information Sciences Division, ATR International, Kyoto, Japan

gomez@ifi.unizh.ch, eggen@ifi.unizh.ch

Abstract. This paper reports on a continuing research effort to evolve robot controllers
with neural networks and to understand how Nature builds such systems. In an earlier
paper [8] we showed that an artificial evolutionary system was able to evolve and grow
a neural network, which learned to control a camera to track a light source and showed
that the learning mechanisms could perform its task as well as in simulation. In this
paper we continue transferring the evolved controller to the real-world and tested the
robustness of the learning mechanism as follows: Once the system was able to track a
red object with the cameras, we fixed the positions of the cameras and used the same
principles to teach a robot arm to move a colored object from an initial location at the
periphery of the visual field to the center of it, using visual (e.g., color and movement
detection) and proprioceptive (e.g., position of the joints of the arm) feedback. The arm
could solve the task not only for two-degrees of freedom, but also for three degrees of
freedom. These results suggest that to overcome the ”reality gap” between simulation
and the real world one should evolve mechanisms enabling the real-world system to
explore its own possibilities instead of specifying the system precisely in simulation.

1 Introduction

In evolutionary robotics the standard approach is to use neural networks as controllers for the
agents or robots. Such controllers based on neural networks are evolved by evolutionary al-
gorithms. Most of these approaches use direct genotype-to-phenotype encodings, where each
synaptic weight is represented by a genetic parameter. As such an encoding scheme scales
quadratically with network size, considerable effort has been put into the development of in-
direct encoding schemes, where the genome is a developmental program specifying processes
which in their turn grow the neural structures and fine-tune the synaptic weights according to
the tasks specified by the designer.
In an earlier paper [8] we evolved neural networks using genetic regulatory networks con-
trolling grow processes allowing to connect the neurons to designer defined sensor inputs
and motor outputs. At the same time the evolutionary process could not only grow networks,
but could also evolve learning mechanisms. In other words the evolutionary process explored
not only structures of the neural network, but also how to learn. To be able to explore both,



growth and learning, the concept of selective recognition between entities, we call it ”ligand-
receptor interactions” played a crucially important role. This concept allows (a) a neuron to
recognize more or less specifically another partner neuron, (b) an axon to follow cues in the
environment and (c) a neuromodulator to diffuse in the environment and influence specific
synapses to change their weights (see figure 2a). In this way learning rules can be evolved
and have not to be pre-specified by the designer of the system. The task was that a camera
which was actuated by two motors should learn to track a light source. The system was able
to find two different principles of how to learn such a task. The AES evolved neuromodula-
tory systems able to teach the robot about the success of its exploratory movements. The first
mechanism localized in the center of the retina cells able to emit neuromodulators when they
where activated. This had the effect that the system could learn to move the camera correctly.
The second mechanism was more sophisticated and much more efficient: the neuromodulator
was emitted if at any given position the movement of the robot brought the light source closer
to the center. More details about how this controller was evolved and transferred to the real
robot can be found in the following references [7, 8].
In this paper we investigated the evolved neural network for its ability to learn the task in
real-world and we asked ourselves how robust the system was. We hypothesize that the in-
corporation of mechanisms of gene regulation and learning mechanisms potentially leads to
more adaptive neural networks, that can help bridging the above mentioned ”reality gap”. To
test the robustness of the learning mechanism we had the idea that once the eyes had learned
to track a particular colored object, the system should also be able to teach a robot arm to
move an object in the center of the visual field. During the experiments it was indeed the case
that the robot arm could learn this task for two degrees of freedom as for the eyes, but to test
the robustness we increased the degrees of freedom to three and the system was still able to
learn its task.
Although in previous work some authors [12, 1, 4, 2, 9, 5, 20, 15, 17] propose to evolve neural
network structures or learning rules, none of them could combine developmental processes
and learning rules concurrently and could transfer such an evolved working structure on a
working robot.
In the next section the methods allowing to combine developmental processes to grow a neu-
ral network with learning are summarized (for more details consult earlier work [7, 8]). In
section 3 the robotic setup is described, the neural structure and its connections to the robot
are described in section 4, then the experiments and results are shown in section 5 and we
conclude with a discussion in the last section.

Figure 1: System architecture. From left to right: (a) The six degrees of freedom robot arm. (b) The four degrees
of freedom stereo color active vision system. (c) An example of the robot moving an object from the top-left
corner of its visual field to the center of it.



Figure 2: From left to right: (a) Ligand-receptor concept. (b) Gene regulation. By binding to regulatory units
of a gene, specific substances, so-called transcription factors, are able to activate or inhibit a gene. If a gene is
activated a specific developmental process such as cell division, cell death, axonal outgrowth, synaptogenesis or
emission of a neuromodulator is performed.

2 Evolutionary Methods and Developmental Processes

Artificial evolutionary methods are used to optimize a parameter set (usually called a genome)
to encode a problem. By simulated mutation, test of sets and selection of the best sets, a prob-
lem can be automatically optimized. Here, a more biological approach is propose in order to
evolve large neural networks, which are able to grow and learn; in this method the genetic
information no longer directly encodes for specific properties ( in this case a neural network),
but controls developmental processes generating the functioning structures.
Similar to biological cells, the artificial ones can divide, die, move, adhere, produce artifi-
cial molecules, and differentiate. In order to control those processes in space and time, each
cell contains its own genome and its genes can be activated or inhibited by specific signal-
ing molecules (see figure 2b). Each gene is regulated by several regulatory units and can be
activated or inhibited if the impact of incoming signaling molecules is high enough. Each
structural gene is linked to a specific function, which is executed if the gene is activated. The
cells can become different by exchanging signals and activate different subsets of genes in
its genome, which is the basis of cell differentiation. Different cells will perform different
functions such as cell division or another function from the above mentioned functions of
the cells. Artificial evolution can explore possible interactions between cellular entities such
as signaling molecules binding to regulatory units to control gene activities, interactions of
adhesion molecules to bind cells together or to build up synapses, or neuromodulators in-
teracting with specific receptors to control the synaptic weights. By selecting those evolved
structures with the highest fitness, the AES can learn to coordinate these developmental pro-
cesses and build structures (neural networks, organisms), which perform designer specified
functions. In this paper such processes are exemplified by describing a robotic system with an
evolved controller able to learn to track a light source and to control a robotic arm moving a
colored object to the center of its visual field with two and three degrees of freedom. Several
different concepts had to be developed until the system was able to perform these tasks.

2.1 Growth mechanisms

By varying axonal receptor types different influences can be easily explored by the evolu-
tionary strategy (ES) and growth patterns resulting in topological maps between interneurons
and the sensory input emerged. Figure 3 illustrates the mechanisms by which the gene ac-



Figure 3: Overview of the most important biological mechanisms used in the proposed artificial evolutionary
system. Different cell differentiation will lead to a different receptor expression in the cells and allows to pro-
gram the cell to be attracted or repulsed from a source depending on the receptor an axon has expressed.

tivities of the cells will determine the types of receptors expressed on their axons and finally
determine if a source of signaling molecules has an attraction or repelling influence. Similar
ligand-receptor interactions will control which cells will stick together or which will build up
synapses or which neuromodulator will change the synaptic weight. By varying the expres-
sion of different ligand-receptor interactions the ES can easily explore different connectivity
patterns with a small load of genetic information. In figure 5 a somewhat geometric looking
overview of the evolved neural net is given, because the paths of the axons searching for their
targets are omitted (For other illustrations see figure 4 in paper [8]).

Figure 4: The sensory neurons connect to each other in such a way that the axons point in direction to the center
of the retina. If a sensory neuron is activated it will transmit a signaling molecule to its neighbor cell. If this cell
is also activated, a neuromodulator is diffused to the motor field and the weights of the active motor neurons are
change such that the probability to repeat the same movement in the same situation is increased.

2.2 Learning mechanisms

The exploration of learning mechanisms is based on the expression of artificial receptors on
the synapses and the interactions with signaling molecules (often also called neuromodula-
tors), which can specifically combine and control the change of synaptic weights. This mech-
anism is called ”ligand-receptor concept” [6]. (The concept of neuromodulation was explored
by us also in the context of the evolution of a biped robot in simulation [14]). Depending on
their specific differentiation, the cells produce and emit signaling molecules (ligands in the
context of receptors), which induce a change of the weight of a synapse, if the axon has
expressed a receptor able to recognize the signaling molecule. In other words, the synap-
tic weight changes if ligands emitted from other cells have a strong enough impact on the
synapse to elicit a change of its weight. In general the change of these weights depends on
the activity of different ligand-receptor complexes. By varying the place and time of these



interactions, the ES is able to explore learning mechanisms without the need of the designer
to declare a set of learning rules (e.g., Hebbian, Anti-Hebbian), because such rules can be
evolved. To explain a specific example how a Hebbian learning rule could be evolved, one
possible solution will be discussed in more detail. Neurons can link the emission of a signal-
ing molecule to their neural activity. If now the emitted transmitter has an affinity to one of
two receptors on the synapse and the second neuron emits a substance for a second receptor
on the synapse, then the weight will be increased in an AND fashion, a Hebbian learning
rule is found. As a functioning neuron has already a connection only three new parameters
with the right affinities have to be found which is an easy task for an ES. To change now this
solution to an Anti-Hebbian rule only the effect on the weight has to be change and can be
done by a single mutation. In the beginning of the experiments random weights are assigned
to the synapses where the values assigned have a Gaussian distribution. The value system
which was evolved is described in figure 4.

Figure 5: Neural structure and its connections to the robot arm. Neuronal areas: (a) RedColorField. (b) Red-
MovementToRightField. (c) ProprioceptiveField. (d) RedMovementToLeftField. (e) NeuronalField. (f) Motor-
Field. (g) MotorActivites.

As earlier results [7, 8] showed that the system was also able to find learning mechanisms
by influencing other neurons over distance. One of the evolved rules was that active neurons
controlling the robot arm were ”rewarded” (e.g., if the movement of the arm brought the col-
ored object closer to the center of the visual field) by emitting an artificial molecule signaling
the synapses to change their weights. This evolved mechanism (see figure 4) is quite similar
to a value system, which are neural structures that are necessary for an organism to modify
its behavior based on the salience or value of an environmental cue [3, 10, 19]. In contrast
to their hand-designed method, where the value system is located in other brain parts, our
evolved value system is located directly in the network performing the task.

2.3 Evolutionary Strategy

To vary and select the genomes an evolutionary strategy (ES) was used. The ES was devel-
oped by Rechenberg [18]. In the evolutionary experiments a(µ, λ)-evolution strategy with
one global step sizeσ for each individual was used. (The notation indicates that the proce-
dure generatesλ offsprings fromµ parents and that it selects the parents only from the best



Table 1: Neural Structure

Field name Number of neuronal units

RedColorField 64
RedMovementToLeftField 64
RedMovementToRightField 64
ProprioceptiveField 24
NeuronalField 64
MotorField 16
MotorActivities 6

offspring for the next generation).

3 Robotic setup

Our experiments were performed using the experimental setup showed in figure 1. It consists
of an industrial robot manipulator (Mitsubishi MELFA RV-2AJ) with six degrees of freedom
and a stereo color active vision system. The system architecture consists of two computers
Pentium III/600 MHz and the robot arm controller connected together in a private local area
network (LAN) based on the TCP/IP protocol, one computer controls the robot arm and
the other acquires the visual input from the active vision system using two (Hauppauge )
frame grabbers, with a resolution of 128x128 pixels down-sampled at a rate of 20Hz. The
communication between the computer and the motor control board that drives the active
vision system uses the standard RS-232 protocol. The sensory-motor control board is based
on the Hitachi H8/3664 chip from the H8/Tiny series. The operating system is Linux and the
programming language is C/C++.
As can be seen in the figure 5, joint J0 (”shoulder”) is responsible for the rotation around the
vertical axis; joint J2(”elbow”), joint J1 (”shoulder”) and joint J3 (”wrist”) are responsible
for the up and down movements; joint J4(”wrist”) rotates the gripper around the horizontal
axis. The additional degree of freedom comes from the gripping manipulator.

Figure 6: Motion detection. (a) Movement was detected from right to left (negative values are showed in red).
(b) Movement was detected from left to right (positive values are showed in green). (c) and (d) Motion detectors
reacting only to red objects moving in the environment.

4 Neural structure

The components of the neural structure and its connections to the robot arm can be seen in
the figure 5, and the number of neuronal units in each neuronal area can be found in table 1.



4.1 Sensory Field

• Color information. Three receptor types were considered: red (r), green (g), and blue (b).
An attenuation of the influence of changing lighting conditions was achieved through a
color-space transformation, a ”broadly” color-tuned channel of size 8x8 was created for
red:R = r - (g + b) / 2. This channel yields maximal response for the pure, fully-saturated
red color, and yields zero response for black (r=g=b=0 ) and white (r=g=b=255) inputs.
The negative values were set to zero. Each pixel was then mapped directly to neuronal
units of arearedColorField, which activity was calculated according to the following
formula:

Si =

{
1.0 : if Ri > θ1

0.0 : otherwise
(1)

WhereSi is the activity of the i-th neuron on areaRedColorField; Ri is the value of the
red color-tuned channel for the pixel i-th; andθ1 is a threshold value.

• Motion detection. We have developed a cheap bio-inspired motion detection mechanism
that can be seen in the figure 6. It is based in the well-known elementary motion detector
(EMD) of the spatio-temporal correlation type. A description of the model implemented
can be found in [13]. Two motion detectors of size 8x8 were created to detect movements
of red objects in the environment. Motion detectors reacting to red objects moving to
the left side of the image were mapped directly to neuronal units of the areaRedMove-
mentToLeftField, and the motion detectors reacting to red objects moving to the right side
of the image were mapped directly to neuronal units of the areaRedMovementToRight-
Field. The activities of the neurons in areasRedMovementToLeftFieldandRedMovement-
ToRightFieldwere calculated according to the following formula:

Si =

{
1.0 : if |EMDOutputi| > θ2

0.0 : otherwise
(2)

WhereSi is the activity of the i-th neuron;EMDOutputi is the output of the motion
detector at position i-th; andθ2 is a threshold value.

• Propioceptive information. The neural areaProprioceptiveFieldhas a size of 8x3 and
its neuronal units encode the position of the joints: J0 (”shoulder”), J1 (”shoulder”) and
J2(”elbow”).

4.2 Neuronal Field and Motor Field

The size of theNeuronalFieldis 8x8 and its neuronal units have a sigmoid activation function.
The size of theMotorField is 4x4 and its neuronal units have a sigmoid activation function,
which outputs are passed directly to theMotorActivities, which size is 6x1, for controlling
the joints of the arm: J0, J1 and J2.

4.3 Synaptic connections

Neuronal units in the areasRedColorField, RedMovementToLeftField, andRedMovement-
ToRightFieldwere connected retinotopically to the neuronal units in areaNeuronalField. The
neuronal units in the areaproprioceptiveFieldwere fully connected to the neuronal units in



areaNeuronalField. The neuronal units in areaNeuronalFieldwere fully connected to the
neuronal units in areaMotorField, which in turn were fully connected to theMotorActivities.
All the initial connection strengths were set randomly. The maximum number of synaptic
connections is 14,944. See figure 5 and table 1.

Figure 7: Random experiments. Position of the center of the object in the visual field during random exploration.
From left to right: (a) Experiment number 1, with a duration of 881 time steps. (b) Experiment number 2, with
a duration of 1,780 time steps. (c) Experiment number 3, with a duration of 2,500 time steps.

Figure 8: Experiment number 4. From left to right: position of the center of the object in the visual field during
the learning cycles in the interval (a) [1, 300]. (b) [301, 600]. (c) [601, 881].

Figure 9: Experiment number 5. From left to right: position of the center of the object in the visual field during
the learning cycles in the interval (a) [1, 400]. (b) [401, 800]. (c) [801, 1200]. (d) [1201, 1602].

5 Experiments and results

At the beginning of each experiment the robot arm was initialized at a random position at the
periphery of the robot’s visual field and a colored object was put on its gripper, as can be seen
in figure 1. In order to compare the effects of the learning mechanism different sets of exper-
iments were performed. The figure 7 shows the results of three different non sensory motor
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Figure 10: Error function. Distance from the current position of the object to the center of the visual field vs the
learning cycles.

coordinated experiments, in these experiments the learning mechanism was not activated and
therefore the robot arm made only random movements without being able to bring the object
to the center of the visual field.
In contrast when the learning mechanism was activated, the robot was engaged in a sensory
motor coordinated loop, the figures 8 and 9 show the results of the experiments number 4 and
5 respectively. In these experiments the robot was able to solve the task bringing the object
to the target position several times in a stabilized trajectory. The error function can be seen
in figure 10 when the number of degrees of freedom was increased from two (J0 and J2) to
three (J0, J1 and J2).

6 Discussion

With the above results we could show that the evolved learning mechanism can be transferred
to a robot arm and that the task could be learned by the robot. That the eyes can teach the
robot arm to bring an object to the center of the visual field for a possible further and de-
tailed exploration. This was possible because the learning mechanism was able to evaluate at
each moment, if a movement was well performed or not. This decreased the learning space
considerably and was one of the reasons because the robot could learn its task in a reason-
able amount of time (1 hour and 10 minutes for 7500 learning cycles using three degrees
of freedom). Furthermore we learned (already from the other paper [8] that different value
systems exist and that some are better than others because they can reduce the learning space
considerably. Having a neural network in which the value system is part of it, the explanation
how value systems evolved can be given more easily. These results point to a new direction of
how to overcome the reality gap: the goal should be to evolve learning mechanisms (not fixed
neural networks) that can control the performance of a robot interacting with the real-world.
If the designer can guarantee that the feedback loop needed to learn a task is functioning,
the robot can learn to behave in reality as well as in simulation which we exemplified by our
results.
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