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Short Description: The main objective of this document is to provide a set of design 
principles that allow our research into developmental robotics, developmental psychology, 
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be embodied into a physical system (a robotic platform) capable of interacting with the 
external environment. The system’s architecture should provide a medium for an intentional 
process (as extensively defined in D2.1) to ‘emerge’ from a loop between motor actions, 
epigenetic development of multi-modal representations of visual, auditory, and haptic 
sensations, and the use of these representations to derive new motivations. 
This deliverable is intended to be the link between the theory of intentionality as outlined in 
D2.1 and the actual implementation into the robotic platform. In practice, the forthcoming 
D5.2 and D5.3 will include an ever growing amount of details on the architecture as 
experimentation progresses. 
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Types of learning 
 
In analyzing the type of learning involved in designing a complex architecture, it seems useful 
to discuss various techniques that are part of the common practice in machine learning. We 
can, to a certain extent, distinguish three separate parts corresponding to three different types 
or modes of learning: 
 
Type of learning Machine learning correspondence Brain areas/mechanism 
Classical conditioning Self-supervised learning Cerebellar system 
Value learning 
(motivational system) 

Reinforcement learning Dopamine (and other 
neuromodulators) system, 
basal ganglia 

Feature extraction Unsupervised learning Cerebral cortex 
 
Although, certainly this is very gross subdivision, especially when identifying the areas of the 
brain involved, it offers a useful schematization and ground for discussion. Also, as introduced 
in D2.1, there’s a distinction to be made between what is innate (phylogenetic) and acquired 
(epigenetic). This is summarized in the following table: 

 
 
where the three different modes of learning are emphasized. Supervised learning as such 
doesn’t have a role into the design, the reason being that there’s no place for a learning mode 
where the exact “solution” has to be provided (we should be asking who provided the solution 
then). In a slight variation supervised learning is still viable (and effective). This variation is 
called self-supervised learning (SSL). The way it works is by directly acting on the process that 
generates the training data samples and thus it closes the loop between data collection, 
learning, and further data collection (after learning). The learning part is strictly speaking 
supervised, and any algorithm that solves the problem (function approximation) can be 
employed. An example of this approach is feedback-error learning. Self-supervised learning is 
extremely effective for learning sensori-motor coordination tasks, and it doesn’t require 
anything so esoteric to become implausible as a mechanism for acquiring sensori-motor 
coordination in the brain. Self-supervised learning is clearly bound only to learn what has been 
designed for. 
On the other hand, reinforcement learning (RL) can be more flexible in determining such goals 
(and pass them to the faster SSL). Thus, in our architecture RL is considered as a mechanism 
serving two goals: 
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• Using innate values (a set of) to determine the goals for SSL and consequently learn 
new motor programs. 

• Learning new values (motivations) to expand the robot (or biological agent) “skills”: 
i.e. expanding the range of experiences and behaviors the robot “likes” (is motivated) to 
repeat. 

 
The unsupervised learning process is used to serve the self-supervised and reinforcement 
learning processes via incrementally learning an appropriate set of features that can be used to 
augment the innate set of motor synergies. Specifically, unsupervised learning is used to 
“quantize” the robot’s world into fragments of some meaningful use (a vector quantization 
procedure on a vast space). This includes determining visual features or motor variables (and 
chunks of the big state space where the robot lives) that are used in learning behaviors and/or 
in learning new motivations. The quantization procedure determines the relative importance of 
regions of the spectrum of the signals that are used in building for instance sensori-motor 
coordination (e.g. ICA or other subspace methods). These vectors are in practice used in 
mapping sensory data into motor responses; they simply represent an efficient coding of 
sensory and motor spaces for the purpose of building functional mapping between them. This 
component can be seen as learning from tabula rasa and is akin to the cerebral cortex. 
 

Self-supervised learning 
 
Grossly speaking, autonomous learning requires a slightly different approach from classical 
supervised paradigms where data is pre-segmented by hand and simply fed into a function 
approximator. Autonomous learning is perhaps closer to reinforcement learning in that it 
requires action and proper behaviors (exploratory) to gather the training set. Necessarily our 
architecture will require bootstrapping behaviors supporting building the training set. The 
question of how much explore and how to get quickly to a solution is an open one in 
reinforcement learning and unfortunately reinforcement learning itself tend to be difficult, 
requiring a very large number of samples (as we will see though RL has a role in the 
architecture). In addition, in the case of a real robot we shouldn’t allow “spurious” or random 
control values to get to the low-level controllers; at the basis of any control strategy we should 
probably have a reasonable “safe” explorative procedure and certainly not a complete random 
one. Self-supervised procedures can be identified (similar in spirit to feedback error learning) 
and given the appropriate amount of exploration they can quickly approximate the desired 
sensorimotor coordination pattern. 
When data samples are available in sufficient number with respect to the size of the parameter 
space of the function approximator of choice the system can start learning and using what has 
been learnt up to date; necessarily in the long run the influence of explorative behaviors should 
be reduced. At least two possibilities exist here: learning could be implemented either in 
batches or fully online. The specific strategy is mostly a function of the algorithm and specific 
implementation of the function approximation. Inhibition or a functional equivalent should 
take care of reducing or mixing up exploration with actual “exploitation” of the acquired 
behavior. 
Our discussion is only focused here on the function approximation problem since a good part 
of the sensorimotor behaviors can be actually well implemented by mapping sensory values 
onto motor commands or the opposite or even by a combination of the two (e.g. feedback error 
learning or distal learning). 
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Another constraint on the design of explorative behaviors is that they should mostly “explore” 
the space that will be used in the future. Needless to say that failure to do so might result in 
very poor performance. 
The learning algorithm can be conceptually divided in two parts: the one providing the 
“learning signals” sometimes called the “critic”1, and the one doing the behavior called the 
“actor”. This distinction is important in motor control problems since the actor must be 
extremely fast and should work in a small delay regime. On the other hand, the critic could 
take even seconds or minutes to process the training data and provide less frequent adjustments 
to the actor’s parameters. We maintained as much as possible (apart from trivial cases) this 
distinction within our system. This division is to some extent compatible with biological 
mechanisms of learning being these for example the rates at which synaptic changes and 
growth processes develops in the brain compared to actual spikes’ travel times. 
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Figure 1: A module for learning sensorimotor coordination. 

 
Figure 1 sketches the modules required for each actual behavior acquisition. At the moment of 
writing we have only conducted a few experiments with the combination and definition of 
modules presented here. Examples of explorative components are (at the moment) bounded 
random behaviors (used when training the hand localization map) or early muscular synergies 
(simulated muscles of course) connecting and generating activations of muscles spanning 
different joints and even different limbs. In learning reaching, these synergies can be exploited 
to bias the exploration space and avoid random movements. Whenever learning relies on 
multiple cues, such as visual and motor, having an initial coordination (although imprecise) can 
be advantageous. One net effect would be the reduction of the learning space to be explored 
before getting to a reasonable behavior. This strategy was used in our previous work (see 
G.Metta, G.Sandini and J.Konczak. A Developmental Approach to Visually-Guided Reaching 
in Artificial Systems. Neural Networks Vol 12 No 10 pp. 1413-1427 (1999)). 
The actor and critic modules in our experiment consisted of a simple batch learning back-
propagation neural network. Although, not the best, it proved to be very reliable so far. Back-
propagation has been extensively tested and its behavior very well characterized in literature. 
Consequently, it is much easier to understand especially when things do not go as expected. 
The implementation maintains the separation of actor and critic to the point of having a slow 
                                                 
1 The use here of “actor” and “critic” is slightly different than in the RL literature. The actor is the part of the 
module that actually computes the control values given some input (i.e. it’s a function mapping inputs into outputs 
possibly in a complicate way). The critic is whatever machinery observes the actions taken by the actor (for an 
arbitrary period of time) and judges the quality of the actor’s parameters in achieving a certain control goal. An 
explicit value function (or Q-function) is not necessarily represented in this view. 
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batch learning method as critic, and a distinct process providing the behavior. Naturally, given 
the overall robot architecture, the two modules can be even running on two different machines. 
Inhibition and the control of activation and coordination of many behaviors is still argument of 
further research and no definite implementation has been reached yet. Figure 2 shows the 
combination of many blocks of this type. In this case too, the realization is completely 
hypothetical since testing has not been performed yet. 
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Figure 2: The combination of learning modules in a hypothetical subsumption arrangement. 

 

Role of reinforcement learning 
 
The self-supervised modules are fine as long as a “target” behavior is somehow provided to the 
system. This target could be loosely specified as for example “to zero the retinal slip in 
stabilizing vision” (e.g. vestibulo-ocular reflex and similar) or “to zero the distance between 
hand and object in reaching”. Also, the exploratory component provides the basis for gathering 
training data online (as discussed above). All this is fine but unfortunately too specific and not 
extremely flexible. To some extent, these specifications can be seen as part of the phylogenetic 
inheritance of the individual and it is possible (and plausible) to engrave the acquisition of 
certain behaviors at this level. Examples are learning to coordinate eye movements with those 
of the head and trunk, learning to attend to objects, and learning to coordinate with the 
movement of the arm and hand. 
For more complicated behaviors it could be impractical to specify by hand their “working set-
point” especially if the number of behaviors is supposed to grow during ontogenesis. Also, it 
would make sense (and it’s more along the lines laid on D2.1) to have the agent/robot discover 
what is important on the basis of a value and/or motivational system. This can be achieved 
exactly by reinforcement learning. 
Our idea here is to have the value system discover what is “pleasurable” (or bear a certain 
value) for the robot and derive the set-point (akin to “zero the retinal slip” kind of 
specification) for a self-supervised module. 
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In addition RL at this level should not deal with the details of the specific controller (which are 
taken care of by the self-supervised module) and it can be rather tuned to explore the complex 
space of possible set-points (it should answer to questions like: is it better to have zero retinal 
slip or rather 1.5deg/sec retinal slip?). 
One of the values that we are going to consider is novelty. Our purpose is to design a curious 
robot that actively seeks new experiences and tries new things. Curiosity is important in 
guiding exploration in a direction which maximizes the potential for learning. Curiosity can be 
accomplished by measuring the novelty of the sensory inputs and using the measured novelty 
to compute a value signal which is used by reinforcement learning to steer behavior. 
A well-known problem of reinforcement learning is credit assignment. The delay between an 
action and the consequent reward may be long and several other actions may have been taken 
in the meanwhile. Temporal difference (TD) learning solves this problem by replacing the 
immediate reward signal by an internally generated value signal which reflects the system’s 
own assessment of the quality of the situation. More precisely, the value signal is the temporal 
difference of the future expected reward. During learning, the robot is able to find new values 
which are good predictors of future rewards or previously learned values. 
TD learning is supported by biological evidence stating that the activity of midbrain dopamine 
neurons is very similar to the reward prediction error of TD reinforcement learning models 
(Sutton, 1988), (Sutton and Barto, 1998; 1990), (Bertsekas and Tsitsiklis, 1996). Experimental 
evidence and simulation studies suggest that dopamine neuron activity serves as an effective 
reinforcement signal for learning of sensorimotor associations (Montague et al. 1996), (Schultz 
et al. 1997), (Suri, 2002), (Daw, 2003), (Daw et al. 2002). 
 

Pattern acquisition and feature maps 
 
This section outlines the unsupervised learning component of the system’s architecture, which 
will be termed a “feature extractor”. The feature extractor is an organized hierarchy of feature 
maps used for the derivation of new ontogenetic representations. Such representations are 
composed of invariances extracted at increasing levels of abstraction from multi-modal sensory 
input data. The acquisition of patterns refers to the learning of features at various levels of 
abstraction. The self-supervised learning and reinforcement learning components of the system 
architecture are concerned with the learning of motor synergies. It is the task of the 
unsupervised learning component to serve the self-supervised and reinforcement learning 
processes via incrementally learning an appropriate set of features that can be used to augment 
the set of motor synergies that the system architecture is initialized with. 
The structure of the feature extractor is to be a hierarchy of feature maps where each map 
contains an organized structure of ontogenetic representations that develops over the course of 
learning. The mechanisms for how the hierarchical structure of maps and the ontogenetic 
representations within them will be developed, will extend previous research in hierarchically 
structured learning models such as neocognitron (Fukushima and Wake, 1991), (Fukushima, 
1980; 1988), (Fukushima and Takayuki, 1983). 
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Figure 3: The purpose of the feature-map hierarchy is to build new ontogenetic representations at 

increasing levels of abstraction.  It is important to note that there are no clearly defined boundaries 
between the uni-modal, multi-modal, and unified representations depicted in this schema.  These types of 
representations will exist as part of a continuum of representations and will be defined according to their 

level of abstraction in the hierarchy.  In terms of schematically describing the hierarchy of representations, 
a single sensory modality is directly extracted from sensory input, a multi-modal representation consists of 
features extracted and combined from many different modalities, and a unified representation denotes the 

highest level of abstraction in that many multi-modal representations are combined. 

 
The goal of the feature extractor is to learn new ontogenetic representations based upon 
regularities in features learnt from sensory input data. As illustrated in Figure 3, such 
representations will be contained within a feature map and the level of abstraction ranges from 
uni-modal to unified representations. Also illustrated in Figure 3, the lowest level of feature 
maps in the hierarchy accepts and processes a multitude of sensory inputs. As invariant 
features are extracted from the input, data connections will be made to higher level feature 
maps in the hierarchy, in order that features extracted at lower levels can contribute to higher 
levels of abstraction in the representation. In Figure 3, the attainment of unified representations 
is described as an incremental process where learnt invariant features are used at different 
levels of abstraction in the formation of higher-level representations. Note that the term ‘local’ 
denotes the lowest level representation, that represents only a single sensory modality, where 
as, the term ‘global’ denotes the highest-level representation, that represents a unification of 
many sensory modalities. Also, note from the same figure, that in the construction of higher-
level representations, extracted features from a lower level representation converge; whereas, 
from the perspective of a single high-level representation the extracted features used in its 
construction diverge in their correspondence to multiple lower level representations. 
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Summary 
 
Learning in our architecture relies on three complementary, relatively separate modules, SSL, 
RL, and UL that operate concurrently. Self-supervised learning is the main mode of motor 
learning. Reinforcement learning augments its capabilities by assembling new motor programs 
which lead to reward. Unsupervised learning serves the needs of the other modules by 
extracting features which are needed by the controllers and value predictors learned by the 
other modules. 
A long-term driving force of learning is the interplay between novelty-seeking motor system 
and the unsupervised learning module which learns expectations. Curiosity is accomplished by 
using novelty as a value for reinforcement learning. Once the unsupervised learning module is 
able to predict the sensory inputs, the same input is no longer considered novel and the robot 
will find something else to study. 
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