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Short Description: We have investigated the deep and important question of how the
physical or body dynamics and the control or neural dynamics can be coupled in optimal
ways. By simulating development in a robot, we examined if developmental progressions
in the robot’s sensory-motor and neural systems can speed up the learning process. This
might be indeed the case as shown by the results presented in this report.
New developments in the robotic setup where the intrinsic physical properties of the
materials used for sensors and actuators will play an important role are also outlined.
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1 Introduction

There is a trivial meaning of embodiment namely that “intelligence requires a body”. In this
sense, anyone using robots for his or her research is doing embodied artificial intelligence. It is
also obvious that if we are dealing with a physical agent, we have to take into account gravity,
friction, torques, inertia, energy dissipation, etc. However, there is a non-trivial meaning, namely
that there is a tight interplay between the physical and the information theoretic aspects of an
agent. A short note on terminology is in place, here. We talked about information theoretic
implications of embodiment. What we mean is the effect of morphology on neural processing,
or better, the interplay between the two. The important point is that the implications are not
only of a purely physical nature.

All the design principles described in Pfeifer and Scheier (1999) and Pfeifer et al. (2004), directly
or indirectly refer to this issue, but some focus on this interplay, i.e. the principle of sensory-
motor coordination where through the embodied interaction with the environment sensory-
motor patterns are induced, the principle of cheap design where the proper embodiment leads
to simpler and more robust control, the redundancy principle which states that proper choice
and positioning of sensors leads to robust behavior, and the principle of ecological balance that
explicitly capitalizes on the relation between morphology, materials, and neural control.

In previous work we have investigated in detail the effect of changing sensor morphology on
neural processing (e.g. Lichtensteiger and Eggenberger (1999); Maris and te Boekhorst (1996);
Pfeifer (2000a,b); Pfeifer and Scheier (1999)).

In an other set of studies we have focused on the motor system (e.g., Iida and Pfeifer (2004),
Iida (2003)) were it is shown that by exploiting the dynamics of the agent, often control can be
significantly simplified while maintaining a certain level of behavioral diversity.

We have applied artificial evolution to evolve learning mechanisms that can control the per-
formance of a robot interacting with the environment and tested its robustness by changing
the robot’s task as well as its sensory and motor systems while its neural controller was kept
untouched (Eggenberger Hotz et al. (2002); Gómez and Eggenberger Hotz (2004a,b)).

Here, we report our efforts in order to extend the principle of ecological balance to developmen-
tal time, and attempt to comply to it by simultaneously increasing the sensor resolution, the
precision of the motors, as well as the size of the neural structure. Such concurrent changes
are thought to simplify learning processes by maintaining an adequate balance between the
complexity of the three sub-systems.

2 Exploiting morphological constraints and adapting to mor-
phological changes during development

We propose a method to ”simulate” development in an embodied artifact at the levels of sensory,
motor, and neural systems. We use a high-resolution sensory system and a high-precision motor
system with a large number of mechanical degrees of freedom, but we start out by simulating,
in software, lower resolution sensors (i.e, by blurring the camera image and using only a few
pressure sensors) and an increased ”controllability” (i.e., by freezing most degrees of freedom).
Over time, we gradually increase the resolution of the sensors (i.e., by sharping the camera image
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and using a larger number of pressure sensors) and the precision of the motors by successively
freeing these ”degrees of freedom” (i.e. by starting to use the ”frozen” joints) and added neuronal
units to the neural control architecture to cope with more sensory input and with more degrees
of freedom of the motor system.

2.1 Current experimental setup

Our experimental setup consisted of an industrial robot manipulator with six degrees of freedom
(DOF), a color stereo active vision system, and a set of tactile sensors placed on the robot’s
gripper as can be seen in Figure 1.

(a) (b) (c)

Figure 1: Experimental setup. (a) A six degrees of freedom robot arm, (b) robot’s head with 6 degrees of
freedom composed of a stereo color active vision system (pan-tilt for each camera plus two additional degrees of
freedom for the neck) and sound detection, and (c) a set of tactile (force sensing resistors type) sensors placed on
the robot’s gripper.

Figure 2: Configuration of the sensory, motor and neural components of the robot through the developmental
approach. From top to bottom: DS-1 (“immature state”), DS-2 (“intermediate state”) and DS-3 (“mature state”).

2.2 Developmental schedule

Figure 2 presents a summary of the configuration of the robot as well as the number of neuronal
units in each neuronal area at each developmental stage. Through this simulated development
(from DS-1 (“immature state of the robot”) to DS-3 (“mature state of the robot”)) the initial
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setup with reduced visual capabilities, low number of degrees of freedom, a few pressure sensors
and a neural control architecture with a reduced number of neuronal units, was converted into
an experimental setup with good vision, larger number of degrees of freedom, larger number of
pressure sensors and a neural control architecture with a sufficient number of neuronal units.

3 Experiments

3.1 Task specification

The task of the robot was to learn how to bring a colored object from the periphery of the visual
field to the center of it through movements of its robotic arm. At the outset of each experimental
run, the active vision system was initialized to look at the center of the visual scene (xc, yc),
and the position of its motors were kept steady throughout the operation. The robot arm was
placed at a random position in the periphery of the robot’s visual field and a colored object was
put in its gripper. Once the object was detected by the pressure sensors the robot started to
learn how to move the arm in order to bring the object from the periphery of the visual field
(x0, y0) to the center of it (xc, yc). For more details see Gómez and Eggenberger Hotz (2004a,b).

3.2 Results

A total of 15 experiments were performed with two types of robotic agents: one subjected to
developmental changes (i.e., DS-1, then DS-2 and finally DS-3), and one fully developed since
the onset (control setup). The results clearly show that the robotic agents that followed a
developmental path took considerably less time to learn to perform the task. These robotic
agents started with the configuration of the developmental stage number 1 and learned to solve
the task during the learning cycle 483±70 (where ± indicates the standard deviation), then they
were converted to robotic agents with a configuration as described by the developmental stage
number 2 which subsequently learned to solve the task around the learning cycle 1671±102 and
finally they become to be in the developmental stage number 3 (with the same configuration than
the control setup) and solve the task around the learning cycle 4150± 149 (this is a cumulative
value).
The control setup agents with full resolution camera images, four pressure sensor, three DOF
(i.e., J0, J1 and J2), and a neural network with 542 neuronal units (randomly initialized synaptic
connections) learned to solve the task around the learning cycle 7480± 105.
In other words, a reduction of about 44.5 percent in the number of learning cycles needed to solve
the task can be observed in the case of robotic agents that followed a developmental approach
when compared to the control setup agents. For more details see Gómez et al. (2004).

4 Future work

In order to simulate a later state in the robot’s development, and continue testing the interplay
between morphology, materials, and control, we have been working in a new experimental setup
that can be seen in Figure 3.
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(a) (b)

(c) (d)

Figure 3: New experimental setup. (a) pneumatic robot arm, (b) robot’s head, (c) new robot hand, and (d)
anthropomorphic soft finger tip with 25 sensors inside mounted on a 2 degrees of freedom finger.

4.1 New experimental setup

(a) (b)

Figure 4: New set of experiments. (a) anthropomorphic hand enclosing an object, (b) visually guided exploratory
experiments.

We have started building a new robot arm with artificial muscles (see Figure 3a), the important
point here is that we are not simply replacing one type of actuator, an electrical motor, by a
different one. This would not be very interesting. The point is that the new type of actuator
- i.e. a pneumatic one - has intrinsic physical properties such as elasticity and damping, that
can be exploited by the neural control. We will get for free passive compliance: if an arm, for
example, encounters resistance it will yield elastically rather than pushing harder. In the case
of the pneumatic actuators this is due to the elastic properties of the rubber tubes. This arm
will have proprioceptive feedback from the joints regarding position and torque.

The new robot’s head has a stereo color active vision system with 4 degrees of freedom (pan-tilt
for each camera) and a neck with two additional degrees of freedom(see Figure 3b).

Deliverable 3.2 5



IST-2001-37173 (ADAPT) 21.5.2004

The new robotic hand has 11 degrees of freedom, 8 tactile (force sensing resistors type) sensors
and will provide the robot with more capabilities for manipulating objects (see Figure 3c and
Figure 4a).
We have established a program of cooperation with professor Koh Hosoda, from the Department
of Adaptive Machine Systems, at Osaka University. He and his team have manufactured soft
artificial fingers that they made available for our research. The fingers have two layers made of
different kinds of silicon rubber imitating the human finger, a cutis layer and an epidermis one.
The rubber used for the epidermis is harder than the one used for the cutis. Inside the finger are
embedded strain gauges that deliver an analog signal of the strain that results on the finger’s
surface as a result of pressure and touch. The embedded strain gauges are randomly distributed
inside the finger (Tada et al. (2003)). We are going to perform visually guided exploratory
experiments, where the soft-finger tip (see Figure 3d and Figure 4b) is moved over different
objects that are made of different materials with different tactile characteristics. We expect to
enhance the tactile capabilities of the robot as well as to be able to optimize the location of the
strain gauges inside the finger.
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