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Abstract 

In this thesis we propose a developmental approach to the design of a humanoid 
robot. We present a possible sequence of developmental stages which starting from 
limited knowledge enables the robot to autonomously learn to perform goal 
directed actions on objects (reaching, pushing, and a simple form of grasping). The 
robot initial knowledge consists in a few visual algorithms (disparity, tracking, 
motion detection) and motor synergies providing a rudimentary form of 
sensorimotor coordination useful to begin interaction with the environment. During 
the initial steps of development the robot learns to recognize and control its own 
body (gazing, localization of the hand); based on these abilities it moves afterward 
to the exploration of the external world (reaching and grasping). 

We stress the importance of the physical interaction between the robot’s body 
and the environment and the advantage of exploiting actions to simplify and learn 
perceptual as well as motor tasks (e.g. distinguishing the hand from the 
background, recognizing objects based on tactile experience, pushing/pulling 
objects on a table). 

This approach is inspired by the observation of how mature behaviors emerge in 
infants during development and by recent theories in neural sciences proposing that 
the link between action and perception might be at the basis of higher level, abstract 
functions like action recognition, imitation and language. These considerations and 
the experimental results reported in the thesis support the conviction that our 
approach is indeed worth pursuing as it is perhaps the only route toward the 
realization of cognitive abilities in an artificial system. 
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Joe said, “But Edgar Mahan proved that a synthetic life form can’t 
come into existence, ‘Life has to come from life, and therefore, in the 
construction of self-programming mechanisms—‘ ” 
“Well you’re looking at twenty of them,” Mali said. 
“Why were we told they couldn’t be made?” Joe asked her. 
“Because there’re too many unemployed people on Earth as it is. The 
government faked scientific evidence and documentation to say robots 
couldn’t be done. They are rare, however. They are hard to build and 
costly. I’m surprised to see this many. It is all he has, I’m sure. This is 
a – “ She searched for the word. “For our benefit. A display. To 
impress us”. 

 
Philip K. Dick, “Galactic Pot-Healer”, 1969 
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Chapter 1 

Introduction

The ultimate goal of Artificial Intelligence is perhaps one of the most intriguing of 
science, being that of building a machine which embeds some sort of intelligence. 
The problem is significant because it implicitly subsumes that of understanding 
what intelligence actually is and how to design an artificial system which can be 
called intelligent. The former is not a trivial question because it delineates the 
approach to be pursued and provides insights on the possible ways to determine 
achievements. For this reason, it is useful to begin the discussion by trying to give a 
definition of artificial intelligence.  

Defining artificial intelligence is not easy; indeed there is little agreement among 
scientists about this point. According to Russell and Norvik (Russell and Norvig, 
1995) definitions of artificial intelligence can be organized into four categories: they 
may be concerned with the notion of reasoning versus behavior and measure success 
based on human performance or an “ideal concept of intelligence” that the authors 
call rationality. Accordingly these four categories give AI four different goals: 

 

Systems that think like humans Systems that think rationally 

Systems that act like humans Systems that act rationally 

Table 1-A. Goals of Artificial Intelligence  (adapted from (Russell and Norvig, 1995)). 
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The existence of these different approaches is already interesting, as traditionally 
the focus has been on building computer programs to solve problems that could 
naturally be formed in term of symbols like theorem proving, logic, or chess play. 
This approach sees an intelligent system as a rational reasoning device and is often 
called Classical AI (or Symbolic, Knowledge-based AI). Classical AI uses symbols to 
represent knowledge so that a machine can work with them to derive some 
additional knowledge. This approach has been successful in particular domains, but 
has run into at least two fundamental problems. Firstly, symbolic systems lacked 
the ability to detect and use context information; even within their domain of 
operation they often failed to provide the correct answer in ambiguous situations 
where humans would easily be successful (consider for instance the problem of 
pattern recognition or language understanding). On the other hand these 
techniques seemed unable to generalize knowledge and use it across different 
domains. As a result it was impossible to scale up from limited, tractable domains 
to more complicated situations; the second fundamental problem is thus how to 
apply symbolic AI to real-life problems, usually encountered for instance in the 
field of computer vision and robotics (consider for example navigation and 
surveillance). In this case the most difficult problem is perhaps how to synthesize a 
symbolic representation of the real world (especially when the latter it is not 100% 
deterministic), and relate it with the information received from the sensory system. 
Moreover, real-life problems, when reduced to formal logic, easily become 
computationally intractable. 

On the other extreme, Behavioral Based AI has given more emphasis on the 
capacity of the system (at this point something more than a computer) to interact 
with the environment. Somewhat related to this philosophy, the Turing test was 
initially put forward by Alan Turing as a means to evaluate artificial intelligence: 
requirement for an intelligent agent is to behave in such a way to fool a human 
interrogator (judge). Several points have been raised against the validity of this test 
(the Chinese room argument see (Russell and Norvig , 1995) for a review1). 
However, besides its historical importance, the Turing test is significant because 
focuses on the behavior of the system and puts human cognition as a reference for 
intelligence. Indeed, if on the one hand it is hard to give a satisfactory definition of 
intelligence, on the other nobody would argue about the fact that humans are 
intelligent. The Turing test does not yet introduce the concept of body; intelligence 
is measured by the interaction between a computer and a human being, but this 
interaction takes place via messages typed on a keyboard and, hence, is not 
physical. In the Behavioral Based AI approach intelligence is seen as a feature 
unique to biological systems and the focus is on their capacity to interact with the 

                                                             
1 The Chinese room argument was originally raised by Searle. 
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world (Brooks, 1990; Pfeifer, 1996). Behavioral complexity emerges from basic 
sensorimotor coordination and adaptation. The latter seen not only as the ability to 
tune predefined behaviors to maintain their functionality or to improve 
performance, but also – and especially – as the capacity to form new behaviors 
based on those already available (learning, evolution, development). Learning and 
adaptation are made possible by the continuous interaction between the agent’s 
body and the environment where the agent is embedded in (situatedness, 
embodiment). 

In setting humans as a reference point, the goal changes radically; we are no 
longer concerned with getting the correct result out of our system but rather with 
getting the same answer a human would give to the same problem. Embodied AI is 
hence an interdisciplinary field linking together computer science, robotics, brain 
and cognitive sciences like physiology and psychology. 

1.1. Theories of cognition 

Closely related to the just mentioned approach to AI, theories about cognition have 
been proposed. Following Vernon (Vernon, 2003) two possible groups can be 
identified: theories which see cognition as representational and theories which see 
cognition as emergent. 

According to the representational approach cognition is mainly a computational 
process. Cognitive behavior is the result of this computation which is carried out on 
symbolic representations instantiated by the system through sensing and reasoning 
about these representations. Cognitivism is very close to Symbolic AI  which tries to 
imitate intelligence by means of algorithms working on symbols to produce other 
symbols. The world is abstracted to a formal representation which is manipulated 
with syntactic rules; the result of the computation (reasoning) is then used to obtain 
a solution to a problem or to plan an action. 

Connectionism and dynamical approaches are rather different theories (for a 
review see: (Beer, 2000)). In both these cases cognition is conceived as a property 
emerging from the structural organization of sub-elements. Representations are not 
explicitly defined in the system (as opposed to the symbols in the cognitivistic 
approach) but are intrinsically defined by the internal architecture as the result of 
its particular history (experience). Any given state of the system implicitly code a 
representation, symbols may be associated by an external observer to each 
particular state, but they are neither part of the system nor are they required for its 
proper functioning. An example of a connectionist system is a neural network 
which has learnt to associate input patterns to certain outputs. The representation 
the network codes is represented by the weights corresponding to the neural 
connections established during learning. This representation is hence said to be 
distributed across the whole network architecture. The dynamical approach tends 
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to describe a cognitive system as a process whose state evolves over time, as the 
result of the influences of internal as well as external forces. An input by itself does 
not produce a definite single state, as the time course of the system depends also on 
its internal state. Mathematically such a system may be represented with a set of 
differential equations (in the continuous case) defining the evolution of the state of 
the system over time. Thus the state at time t+1 depends on both the input and the 
state at time t. Finally it is important to stress that the distinction between 
Cognitivism, connectionist and dynamical system approaches is not at the 
implementation level, as dynamical and connectionist models are often simulated 
on digital computers and recurrent neural networks have been employed to model 
dynamical systems. The distinction between the different approaches is more on the 
point of view they take in the modeling phase and on the insights they offer to 
understand the cognitive phenomenon they describe (Beer, 2000). 

For the purpose of this discussion it is worth stressing the fact that in emergent 
theories the interaction between agent and environment is very important. It is by 
acting in the world that the system can change/shape its internal structural 
organization. As the implicit representation resulting by this interaction depends on 
the coupled effect of the body and the environment, it is also impossible to separate 
the representation from the body that has generated it. Moreover, a dynamical 
system exists only in presence of an environment which allows (enacts) it to evolve 
over time. So enaction  (Maturana and Varela, 1998) is another approach to cognitive 
system which puts even more emphasis on the interaction between the body and 
the environment. Cognition is “effective action” or the process that allows an agent to 
take appropriate actions according to its goals and its internal as well as external 
state: agent and environment are coupled dynamical systems which evolve together 
(Chiel and Beer, 1997). 

1.2. Embodiment 

According to both Behavioral Based AI and the most recent theories about 
cognition, the existence of the body and its consequent interaction with the 
environment are a necessary condition for the emergence of intelligence and 
cognition. Imagine, however, that we want to reproduce the exact functioning of 
the brain from a purely computational point of view; even in this case it is not 
possible to avoid considering the role of the body (Chiel and Beer, 1997) . Usually 
the nervous system is thought of as a black box receiving input from the 
environment and, based on its internal state, providing motor commands for the 
body. However, the body carries out a great deal of processing on the input signals 
received by the nervous system as well as on its output. It is possible to see the 
body as a sort of interface for the nervous system. For example the morphology of 
the visual system provides an optimal spatial sampling of the light impinging the 
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retina. Photoreceptors in the retina are much denser in its central part (fovea) and 
sparser at the periphery. As a result the brain receives and processes a lesser 
amount of visual information, but the maximum resolution is maintained where 
required. Another example can be found in the auditory system of many species. 
Two dimensional localization of sounds is achieved thanks to the spatial filtering 
carried out at different frequencies by the head and the outer ears (for a review: 
(Blauert, 1983; Middlebrooks et al., 1989)). The Barn Owl in particular exploits a 
peculiar asymmetry in the feathers which make up its facial ruff. Removal of the 
feathers drastically reduces the accuracy of these animals in localizing auditory 
targets (Knudsen, 1981; Knudsen and Knudsen, 1985). Muscles act as low-pass 
filters on the output of motor neurons; their intrinsic elasticity and variable stiffness 
simplify the problem of motor control, especially in presence of an unpredictable 
environment ((Bizzi and Mussa-Ivaldi, 1993), Section 3.1 in this thesis). Intelligence 
in biological system seems to be distributed across the whole body rather than 
being an exclusive characteristic of the nervous system alone: to understand 
intelligence it is not possible separate out the role of the body. 

Part of the research in robotics has been devoted to the study of morphology in 
both natural and artificial systems; the goal is to understand the mechanisms used 
by biological systems to perceive and act and, possibly, to design more efficient and 
robust artificial systems (Pfeifer, 2000). These studies have been successfully 
applied to the design of bio-morphic sensors for vision, audition, touch and 
olfaction (for a review see: (Barth et al., 2003; Dario et al., 1993)) and complete 
robotic artifacts (Beer et al., 1998; Brooks, 1990). The same approach has been used 
to understand human brain functions in general and resulted in a cross-fertilization 
between the fields of biology, brain sciences, and robotics. In this case robots can be 
used as platforms to test computational models of the nervous system. Physical 
models might be preferable, for instance if compared to numerical simulations, 
because they offer a “living proof“ to the existence of a solution to the specific 
problem they address. Besides, in several cases they are more accurate and realistic 
descriptions of the system and of the environment, especially considered that the 
latter might not even be completely simulable when it involves humans and other 
autonomous agents (“the world is its own best model” (Brooks, 1991)). For these 
reasons it is not surprising that the majority of such applications have been in the 
field of motor control and locomotion. The study of orienting behavior is an 
example. Robotic heads have been built to study ocular movements driven by 
visual (Berthouze and Kuniyoshi, 1998; Capurro et al., 1995; Capurro et al., 1997; 
Grosso et al., 1995) as well as auditory cues (Irie, 1995; Natale et al., 2002a; Rucci et 
al., 1999). Inertial sensors were employed to simulate the human vestibular organ 
and realize inertially driven eye movements for visual stabilization (Panerai et al., 
2000; Panerai et al., 2002). Inspired by the observation that in many cases neurons in 
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the brain exhibit multi-modal response (Stein and Meredith, 1993)  vision has been 
integrated with information from other sensory modalities. For example, Panerai et 
al. integrated visual and inertial information to improve visual stabilization 
(Panerai et al., 2002) whereas Natale and colleagues proposed the integration 
between visual and auditory cues to learn auditory elicited eye movement in a 
binocular head (Natale et al., 2002a); finally,  a multi-cue approach for the control of 
a humanoid robot is proposed by (Cheng and Kuniyoshi, 2000). 

Computational theories of motor control have been a point of contact between 
neuroscience and robotics. Several models have been proposed to explain the 
neural mechanisms converting sensory information (i.e. visual input) into motor 
commands (for a comprehensive description see: (Desmurget et al., 1998)). The 
minimum torque and minimum jerk models provide mathematical descriptions 
concerning torque generation for limb motion (for a review see (Jordan, 1996)). On 
the same line the equilibrium point hypothesis is an attractive model for the control 
of posture and movement (Hogan, 1985; Mussa-Ivaldi and Giszter, 1992; Mussa-
Ivaldi et al., 1993). Although Gomi and Kawato (Gomi and Kawato, 1997) 
questioned the biological plausibility of this model, it offers a simple solution to the 
inverse kinematics and dynamics problems for robotic manipulators (Mussa-Ivaldi 
and Bizzi, 1993; Mussa-Ivaldi and Hogan, 1991). The controller of Babybot’s arm 
was initially implemented using this approach (Metta et al., 1999). 

Mechanical properties of muscles inspired the design of elastic actuators to 
simplify the control of robots in an unconstructed environment (Pratt and 
Williamson, 1995; Robinson, 2000). These actuators, and low-impedance control in 
general, are popular solutions to control humanoid robots (Hirai et al., 1998; 
Robinson et al., 1999; Williamson, 1996). A prototype of a biomorphic actuator 
mimicking muscle properties has been built during this thesis and is described in 
Chapter 3. 

1.3. Cognitive developmental robotics 

The paradigm of embodiment and situatedness capitalize the importance to have 
complete systems embedded in a real environment. For intelligence and cognition 
to emerge sensorimotor coordination  is required; this means that the system must 
be able to plan meaningful actions based on sensory information. The classical 
approach considers planning the result of a centralized process; if several modules 
exist to process different inputs, coherent behavior of the overall system is achieved 
by combining the result of these different processing units. To some extent this is 
close to Descartes’ view of the brain where decisions are taken by a centralized unit 
(homunculus). Brooks (Brooks, 1990) strongly rejects this point by proposing an 
architecture (subsumption architecture) where several processing units are 
organized in different modules working concurrently to achieve proper behavior. 
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Perception is directly linked to action at the level of each module; conflicts between 
different modules are avoided by mechanisms of inhibition and suppression. This 
architecture was initially employed as a design principle for insect-like robots and, 
later, more complex humanoid robots (Brooks et al., 1999). In the COG project, for 
example, the focus was on the possibility to increase flexibility, performance and 
reliability with adaptive behavior (Brooks et al., 1998). 

Another important aspect of biological systems is that they continuously interact 
with the environment and adapt their behavior as a result of this interaction. In 
other words, the current behavior results form both perception and past experience. 
Inspired by studies on human development researchers have started to study the 
problem of adaptive behavior with a new perspective. Growing interest has been 
given to the new fields of developmental and epigenetic robotics (Asada et al., 2001; 
Lungarella et al., 2003) which aim at simulating cognitive development in artificial 
systems. On the one hand, this seems a constructive approach to learn how to 
design efficient and reliable robotic systems. On the other hand, robots can be 
employed by neuroscientists and developmental psychologists as “synthetic” tools 
to study and test models of human development.  

From an engineering point of view it is useful to look at the solution adopted by 
nature to solve the problem of integration. In fact assembling something as complex 
as a humanoid robot as a collection of modules that are built separately can be very 
hard if not virtually impossible. Instead, the different parts composing the body 
and the neural circuits in the brain develop simultaneously as the result of 
predefined rules (phylogeny) and the individual experience (ontogeny). Learning of 
motor skills and acquisition of perceptual abilities in general, are not completely 
free but seem guided by predefined mechanisms (reflexes, motor synergies) which 
allow and drive exploration. This process is particularly important at birth and 
during the first years of life, but it is maintained active all life long to keep the 
system calibrated and adapt it to changes in the environment. Let us now review 
the most salient aspects of infants’ sensorimotor and cognitive development. 

1.4. Developement 

One of the central issues in development is the role of phylogeny and ontogeny: 
that is the role played by genes and evolution in the maturation of individuals. 
Ontogeny considers the processes that take place during the life of an individual 
and is somewhat opposed to phylogeny which is more concerned with evolution 
and the information coded by genes. To what extent phylogenesis influences 
ontogenesis is not yet clear. Two opposing theories may be formulated. The first 
one reduces ontogenesis to a mere execution of rules specified within one’s genetic 
inheritance, whereas the second one suggests that the external world is the main 
source of information shaping the human mind. It is important to notice that 
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according to both approaches the information defining the structure of every 
individual would be pre-determined. It is commonly accepted that the latter is the 
result of a complex, dynamical interaction between genes and environment 
(Johnson, 1997). The nature of this interaction is not clear and still debated as it can 
originate at different levels (e.g. molecular) and before/after birth. It is, however, 
frequent to distinguish innate from acquired components, the former being 
characteristics common to all individuals within a specie, whereas the latter being 
the result of the experience unique to each of them.  

In particular, innate behaviors characterize humans during the first phases of 
development and allow them to start interacting with the world from the early 
moments of their lives. Newborns are able to first interact with the environment by 
shifting gaze (Streri, 1993). Their attention is attracted towards interesting objects 
such as human faces, sounds or moving stimuli. As a crude form of social 
interaction babies can communicate emotions (like pain and hunger) and show 
imitative behavior of facial gestures (lip, mouth opening and tongue protrusion). 
Innate motor schemas allow newborns to perform ballistic arm movements to bring 
their hand to the mouth or, occasionally, to reach for objects (von Hofsten, 1982); in 
other cases arm motion can be visually controlled to maintain the view of the hand 
(Van der Meer et al., 1995).  

Overall it seems that these reflexes and motor synergies constitute a raw form of 
sensorimotor coordination that has a twofold purpose: it allows babies to survive 
and feed themselves (e.g. the sucking reflex) and it provides them the ability to start 
gathering information about the environment and their own body. For example it 
has been proposed that such movements allow infants to visually tune an internal 
model of their own body and progressively improve reaching. At the beginning in 
fact motor abilities are rather limited: newborns cannot grasp or perform smooth 
tracking of objects. The same is true for perceptual capabilities: visual acuity is poor 
(objects beyond 50 cm are probably not seen clearly) and depth estimation has not 
yet developed. Nevertheless these capabilities emerge during the first months of 
life. At 4 months of age infants become successful at reaching and grasping objects 
and can easily move the eyes to track moving objects. These achievements are the 
result of several improvements at the level of the motor as well as the perceptual 
system. From the point of view of perception visual activity has improved and 
stereoscopic vision often developed whereas, at the same time, postural control is 
more mature, and arm muscles stronger. Thus neural maturation gradually allows 
for reflexive behaviors to be inhibited and makes it possible to perform 
independent, voluntary movements with arm, head, and hand. These abilities show 
that at this age the brain has already acquired an internal model of the body 
including its kinematics (length of body segments and their relative position) and 
dynamics (moments of inertia, weight, viscosity, stiffness).  
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Another important process taking place during development is the detection of 
regularities in the sensory streams which correspond to stable and constant 
properties of the world. This process allows children to create expectations about 
the events they attend to. Examples are the ability to extrapolate object motion and 
object persistence over occlusions. Experiments show that infants at this age start 
predicting reappearance of both linearly and circularly moving objects (Rosander 
and von Hofsten, 2003). This has been shown to be crucial as grasping for instance 
is facilitated by predictive abilities (the hand anticipates the timing of the reaching 
by flexing the fingers before tactile contact with the object). Accordingly, the ability 
of the brain to compute speed and trajectory to catch fast moving targets has been 
observed. Von Hofsten reported that infants can anticipate the meeting point 
between their hand and the target with an error of few degrees (von Hofsten, 1983). 
Expectations thus improve the infant’s motor competencies and allow them to 
extend their understanding of external events. 

Cognitive abilities at this point further improve from the interaction with 
objects. At 9 months of age infants use differentiated finger movements and a wider 
range of grasp types (Ronnqvist and von Hofsten, 1994). By repetitive trials children 
learn different ways of grasping objects and acquire tactile information about them. 
These experiences provide tactile, visual and kinesthetic information which 
contributes to form the infant’s representation of objects. Later on (one year old) 
this representation is enriched when children start to explore object-object 
interaction (for instance how an object fits into a hole). 

1.5. Self-supervised learning (what do we need manipulation for?) 

Learning in both artificial and natural systems requires the exploration of the state 
space. The latter is defined by all possible combinations of the state variables 
defining the problem to be solved. The dimensionality of the state space increases 
quickly with the size of the state (the curse of dimensionality); in most cases an 
exhaustive search across all possible values is impossible or requires too much time. 
The issue then becomes how to explore this space so that learning is effective (the 
training set is large enough) but the system does not spend too much time in the 
exploration phase. In fact if learning is online the system has to decide when to stop 
exploration and start exploiting the knowledge it has previously acquired. 

We want to stress here that if the learner is a physical agent situated in a real 
environment (e.g. the world) then learning might be simpler in this respect. In fact, 
the interaction with the world and physical constraints between the limbs and other 
parts of the body can narrow the effective state space. At the same time, the active 
agent can extend exploration to other regions of the state space if required; this may 
happen if there are ambiguities (for instance large variance in the training set) or if a 
particular region is more important/critical. An example is a robot that learns to 
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manipulate objects on a table; if the robot can move, it might follow the 
advantageous strategy of placing itself so that the table is always on the same 
relative position with respect to the its body. In this case exploration during 
learning is limited to the space in front of the robot (the table). 

Another advantage concerns the possibility to guide learning in a self-
supervised fashion. By acting on the environment an agent has the ability to 
actively probe its properties and focus the attention on events that happen at 
particular instants of time (e.g. when the actions take place). Manipulation, in 
addition, allows the agent to merge and link sensory cues perceived from different 
modalities (e.g. vision and touch). If properly integrated this information draws a 
coherent picture of the world – and objects – that can simplify the problems of 
interpretation, categorization and recognition. 

The traditional approach to learning in computer vision has tried to solve these 
tasks by using vision alone, but it has failed to create artificial systems able to work 
in a complicated environment (the real world). Even problems that are 
straightforward for humans proved to be challenging for computers (e.g. object 
segmentation). It seems that somehow our brain can dispel all possible ambiguities 
and provide us with a consistent picture of the visual world. The overall process 
that makes this possible is far from being understood although it has been 
extensively investigated by neuroscientists, physiologists, roboticists, and computer 
scientists. Many agree on the fact that the brain takes advantage not only of visual 
cues, but also of the wealth of multimodal information from other senses and from 
the kinesthetic experience derived from the interaction of the body with the 
environment. The representation of the world in adults is the result of an active 
process of collecting information which starts in infancy and continues all along our 
life. In this process manipulation is remarkably important. It enables us to access 
properties that otherwise would not be available (like weight, roughness or 
softness) while on the other hand it gives us the possibility to actively control the 
investigation of these modalities (active touch). Once an object has been grasped, in 
fact, it is possible to exert explorative strategies (squeezing, weighing, rotating, to 
mention a few) and autonomously carry out the investigation of the object’s 
properties.  

To summarize, manipulation establishes a link between action and perception 
that facilitates learning and enable the acquisition of a multimodal representation of 
the world. In the brain there is probably more than a single area responsible for 
coding this representation. For instance, two main pathways have been 
individuated which have complementary roles (Milner and Goodale, 1995); these 
two streams (the dorsal and ventral streams) code visual information depending on 
the task to be performed. More in general, according to Jannerod (Jeannerod, 1994) 
the brain has a pragmatic representation of the attributes relevant to action. This is 
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somehow different from the semantic representation grouping together all 
information necessary for object recognition and categorization. The former 
includes parameters relevant for shaping the hand according to the size, weight and 
orientation of the object we are going to grasp. The latter has the function of 
forming a perceptual image of the object in order to identify it. In dealing with an 
object the brain has to solve the following questions: what the object is, where it is 
and how to handle it. The representation of where and how constitutes the pragmatic 
representation which is directly related to action. The representation of what is 
related to the conscious perception of the object and corresponds to its semantic 
representation. 

The where representation is completely different and does not directly involve 
knowledge of objects. The representation of what the object is and how it can be 
manipulated are normally integrated but under certain conditions can be 
dissociated. This was proven by behavioral studies of reaction times in humans, by 
anatomical studies performed in monkeys, and from the observation of patients 
with lesions in the posterior parietal cortex (for a review see: (Jeannerod, 1994)).  

Although separated, both representations are based on knowledge that is 
acquired (learned) by interacting with objects. Even when answering the what 
question, information about shape, size and weight might prove helpful to bias the 
recognition in cases when only ambiguous cues are available. Similarly, the same 
cues are used during grasp to anticipate the shape of the hand thus to achieve a 
stable grip. Visual information in this case activates the brain circuitry responsible 
for the pragmatic representation of the object to be grasped which controls the 
orientation of the hand, its maximum aperture and the opposition space. 

Recent studies on the monkey premotor cortex have revealed the existence of 
neurons which code a similar pragmatic representation of objects (Gallese et al., 
1996). A group of neurons located in the monkey premotor cortex (area F5) is 
activated both when producing a motor response to drive an object-directed 
grasping action and when only fixating a graspable object. This population of 
neurons seems to constitute a vocabulary of motor actions that could be applied to a 
particular object. This response is somewhat reminiscent of Gibsonian affordances 
because it represents the ensemble of grasping actions that an object affords 
((Gibson, 1977) see also Section 7.2).  

Finally, the link between action and perception is important because it may be 
involved in the process of understanding the actions performed by others. This is 
supported by the discovery of another class of neurons (Fadiga et al., 2000) which 
not only fire when the monkey performs an action directed to an object, but also 
when the monkey sees another conspecific (or the experimenter in this case) 
performing the same action on the same object (mirror neurons). Clearly knowing in 
advance the range of affordances given the object facilitates the interpretation of the 
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observed gesture by constraining the space of possibilities to those suited for the 
context. 

1.6. A developing robot 

Motivated by these observations Giorgio Metta (Metta, 2000) addressed the 
problem of building a humanoid robot mimicking at least some aspects of infant 
sensorimotor development. Metta focused on eye-head and eye-hand coordination 
and the integration between vision and vestibular information. The robot starts 
from a very limited set of competencies; more complex behaviors are built (emerge) 
as the result of the interaction with the environment. The initial competencies 
consist in few perceptual abilities and a set of reflexes providing the robot an early 
form of sensorimotor coordination. Immature motor system is simulated by adding 
noise to the executed commands. Initial reflexes and noise thus bootstrap the 
system and permit the exploration of its state space. Developmental rules guide the 
system through learning of more and more complex behaviors. 

For example, in its initial state the robot cannot control the eyes, the neck and 
the arm in a purposive way. Development proceeds as follows. Small eye 
movements are performed randomly to estimate an internal model of the ocular 
system; this information is later on used to control the eye in a goal directed mode 
(tracking). As soon as the robot can track moving targets an ocular map is learnt to 
perform rapid eye movements (saccades) to increase tracking performances. The 
probability to move the additional degrees of freedom in the neck is increased with 
time. So the neck does not move at the beginning to facilitate learning of the eye 
movements; however as the latter progresses the robot starts controlling gaze by 
moving both eyes and neck simultaneously. At the same time the robots learns how 
to integrate vestibulo-ocular reflex (VOR) and opto-kinetic response (OKR) for 
better stabilization. The development of reaching exploits an initial rough 
coordination between gaze and arm; owing to a reflexive moment the arm follows 
the direction of gaze to keep the hand within the robot’s visual field. This reflexive 
behavior together with a noise component endows the robot with an early form of 
reaching. By fixating the arm end-point after each reaching trial the robot is able to 
match head (i.e. fixation point) and arm posture and eventually fill a motor-motor 
map. The latter is afterwards used to substitute the reflexes. 

Let us summarize the key aspects of the approach. The noisy initial 
configuration coupled with basic reflexes starts exploration (eye movements and 
reaching). The initial behavior is very simple (only the eyes move), more complex 
modules are added as development progresses (the neck and the arm). New 
modules are built on top of the previous ones to achieve integration. The goal of 
each modules is to solve/learn a particular task (i.e. eye movements, visual  
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Figure 1.1. The development of the robot takes place by following this simplified schema. The first 
stage involves learning about the robot’s own body (limb size and dynamics). The second one 
concerns learning to interact with the environment whereas the third (hypothetical) stage is 
devoted to learning event interpretation. Stages are not completely separated as they evolve 
together; consequent stages rely on the competencies acquired in the previous ones (compare to 
Table 1-B). 

stabilization, reaching), the developmental program guides learning by controlling 
“external” parameters (the amount of noise, the probability of motion of the neck) 
and by enabling or inhibiting the initial reflexes. It is finally important to stress that 
there are not two separate phases of learning/calibration and functioning. 
Conversely, development and learning happen online during normal system 
operation. 

We propose here some additional steps to continue the work of Metta. The main 
idea of the approach is that development moves from the exploration of the robot’s 
body to the interpretation of the outer world. A first broad classification divides this 
process in three stages (Figure 1.1). The first stage is devoted to learning a body-map: 
the robot learns physical properties of its own body and to distinguish it from the 
rest of the world. This happens while basic motor and perceptual skills are 
acquired. For example the robot learns gaze control, eye-head coordination and 
reaching to touch an object. Based on these competencies in a second stage the 
interaction with the external world is investigated. We call this process learning to 
interact as it involves finding out how to act on objects and handle them. Initially 
the robot tries simple actions, like power grasp (approaching the object with the 
hand full open) or pushing/pulling an object. This interaction enables it to start 
acquiring information about the entities acted upon. As a result, more efficient and 
complicated explorative strategies are developed. Differentiated grasping can then 
be applied to objects, depending on the goal of the action; for example the robot can 
discover that small objects are more suitable to be grasped by using precision grip 
(the thumb opposing the index finger) whereas power grasp is more effective for 
big, heavy objects. The third stage involves learning to understand/interpret events. 
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This happens by learning association between what the robot sees and what it has 
done in the past. The resulting link enables the robot to associate meaning to the 
events it perceives on the basis of its own previous experience. Further, new ways 
to handle objects may be discovered by observation (imitation). Table 1-B 
summarizes this developmental path; for each phase it details the goal of learning, 
the goal of the system and the link that is established between action and 
perception. The rightmost column reports the delay that exists between the two. 
Notice that there is a strict connection with the three stages hypothesized in Figure 
1.1; the delay gets longer as development progresses and cognitive abilities emerge. 
Shaded cells in Table 1-B represents those aspects that at least in part were 
addressed in this thesis. The final discussion will come back to these issues to better 
delineate future work and its connection with what was done. 

1.7. Outline 

We have just given an overview of the motivations behind the approach we 
followed. The remainder of the thesis is organized as follows.  Chapter 2 describes 
the robotic setup that was used to carry out the experiments. The same chapter 
details also the software and hardware architecture of the robot; given the 
complexity of the system both of them have been an important aspect of this 
research. In particular, the software architecture allows the system “to grow” as 
new modules (sensory as well as motoric) will be introduced. For a humanoid robot 
this aspect is fundamental as it is very common to reach a level of complexity that 
jeopardizes manageability. The hardware architecture includes aspect of 
mechanical design. A biomorphic actuator with spring-like properties was realized 
during the thesis and its realization and test is reported in Chapter 3. The following 
chapters describe the developmental path of the robot. Chapter 4 deals with the 
robot’s visual system and the implementation of the motor behaviors which enable 
the robot to visually explore the world. Chapter 5 and Chapter 6 are concerned with 
the exploration of the robot’s own body and the external environment respectively. 
They correspond to the second stage of the developmental process described above. 
In the last section we draw the conclusions and discuss future work. Finally, more 
technical details about specific algorithmic implementations that were purposely 
overlooked in the thesis are reported in the Appendix. 
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Development Goal of 
learning 

Goal of the 
system 

Link between 
perception and 

action 

Timing 
between events 

Gazing Head-eye 
coordination Look around 

Control gaze 
based on visual 
input (smooth 
pursuit) 

Pre-reaching Approach an 
object Touch 

Controlling arm 
and hand 
movements in 
space 

Immediate 
effect 

Power grasping 

Eye-hand 
coordination 
based on object 
position and 
object motion 

Grasp 
Anticipatory 
closing of the 
hand 

Differentiated 
grasping 

Adjustment to 
object shape 
and size 

Grasp 
appropriately 

Eye-arm-hand 
coordination 
based on 
objects’ shape 

Object 
manipulation 

Objects’ 
affordances 

Handle objects 
appropriately 
(use) 

Eye-arm-hand 
coordination 
based on 
actions to be 
executed on 
objects 

Short delay 
between action 
onset and 
consequences 

Imitate acts on 
objects 

Associate what 
is seen with 
what the system 
can do 

Action’s 
interpretation 

What I do looks 
like what I see 

Act to 
communicate 

Associate what 
is seen 
(perceived) with 
“meaning” 

Action’s 
meaning 

What I do 
generates some 
reactions 

Long delay 
between action 
and perception 

Table 1-B. A possible developmental path for the robot. Cells represent successive motor and 
perceptual competencies acquired during development. The table details for each phase the goal of 
the learning, the goal of the system and the link that is established between action and perception. 
The rightmost column reports the delay occurring between action and perception; the latter is 
related to the time course of development and the stages as reported in Figure 1.1. Shaded cells 
are topics that in part were addressed in this thesis. 
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Chapter 2 

System’s architecture 

Humanoid robots are usually quite complex; their design is hence critical from 
several points of view. The computational power required to control a robot very 
often exceeds that of a single machine and a cluster of computers has to be used. As 
new behaviors and perceptual abilities are added, the software design can make a 
difference: it constitutes the basis for building a complicated architecture, where 
behaviors coexist and cooperate in a coherent and meaningful way. This chapter 
deals with the software and hardware aspects more closely related to the 
engineering and design of the robot used for this work. Section 2.1 and 2.2 describe 
the mechanical components of the robot and its sensors; the description will give 
enough details to let the reader understand the remaining part of the thesis. Section 
2.3 describes the software architecture of the robot as the result of more than a few 
efforts to have a comfortable and manageable platform to work with. Finally, 
Section 2.4 describes aspects related to the learning architecture. 

2.1. Babybot’s body 

Babybot is an upper torso humanoid robot with a head, a manipulator arm and a 
hand. The head has five degrees of freedom (d.o.f.). Three of them are associated 
with the two cameras to achieve independent panning and coupled tilting. The two 
remaining d.o.f. allow panning and tilting respectively, at the level of the neck. The 
manipulator is a 6 d.o.f. Unimation PUMA 260, mounted with the shoulder 
horizontal to better resemble a human arm kinematics (Figure 2.1). 
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Figure 2.1. The robotic setup, the Babybot. 

A 5 fingered robot hand is attached to the arm end point. Each finger has 3 
phalanges; the thumb can also rotate toward the palm. Overall the number of 
degrees of freedom is hence 16. Since for reasons of size and space it is practically 
impossible to actuate the 16 joints independently, only six motors were used. Two 
motors control the rotation and the flexion of the thumb. The first and the second 
phalanx of the index finger can be controlled independently. Medium, ring and 
little finger are linked mechanically thus to form a single virtual finger controlled by 
the two remaining motors. No motors are connected to the fingertips; they are 
mechanically coupled to the preceding phalanges in order to bend in a natural way 
as explained in Figure 2.2. 

The mechanical coupling between gears and links is realized with springs. This 
has the following advantages: 

 a) b) c) 
 

Figure 2.2. Mechanical coupling between phalanges. The second phalanx of the index finger is 
directly actuated by a motor. Two gears transmit the motion to the third phalange. The movement 
is respectively of 90 and 45 degrees. 
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a) b) 
 

Figure 2.3. Elastic coupling. (a) and (b) show two different postures of the hand. Note however 
that in both cases the position of the motor shafts is the same. In (b) the intrinsic compliance of the 
medium finger allows the hand to adapt to the shape of the object. 

• The coupling between medium, ring, and small finger is not rigid. The action of 
the external environment (the object the hand is grasping) can result in different 
hand postures (see Figure 2.3). 

• Low impedance, intrinsic elasticity. Same motor position results in different 
hand postures depending on the object being grasped. 

• Force control: by measuring the spring displacement it is possible to gauge the 
force exerted by each joint. 

The robot’s sensory systems include vision, audition, touch, proprioception, and 
inertial sensing. Proprioceptive feedback is achieved by means of the motor optical 
encoders. Two cameras rotating with the eyes and two microphones attached to the 
head respectively provide visual and auditory feedback. During the acquisition, 
images are sampled non-uniformly to mimic the distribution of receptors of the 
human retina. More pixels are acquired in the central part of the image (fovea) and 
less in the periphery (mathematically the distribution is approximated by a log-
polar function, see Section 4.1 for a more detailed description). The head mounts a 
three axis gyroscope that provides the robot with an artificial equivalent of the 
human vestibular system (in Figure 2.4). This sensor measures inertial information 
consisting of angular velocity along three orthogonal axes. It can be used for 
stabilizing the visual world efficiently and coordinating the movement of the head 
with that of the eyes. For the hand, Hall-effect encoders at each joint measure the 
strain of the hand’s joint coupling spring. This information jointly with that 
provided by the motor optical encoders allows estimating the posture of the hand 
and the tension at each joint. In addition, force sensing resistor sensors (FSR) are 
mounted on the hand to give the robot tactile feedback. These commercially 
available sensors exhibit a change in conductance in response to a change of  
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Figure 2.4. The inertial sensor of the Babybot developed at LIRA-Lab. It consists of three mono-
axial sensors arranged along three orthogonal axes. 

pressure. Although not suitable for precise measurements, their response can be 
used to detect contact and measure to some extent the force exerted to the object 
surface. Five sensors have been placed in the palm and three in each finger (apart 
from the little finger) (see Figure 2.5). Further proprioceptive information is 
provided to the robot by a strain gauge torque/force sensor mounted at the link 
between the hand and the manipulator’s wrist. This device is a standard JR3 sensor 
designed specifically for the PUMA flange. It can measure forces and torques along 
three orthogonal axes (Figure 2.4). 

 

 
Figure 2.5. Tactile sensors. 17 Sensors have been placed: five in the palm, three on each finger 
apart the little finger. In this picture the sensors in the thumb are hidden. The short blue cylinder 
that links the PUMA wrist to the hand is the JR3 force sensor. 
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2.2. Interface cards 

The robot sensing includes some digitizing interfaces, special signal conversion and 
conditioning modules. The link between the hardware and the robot is provided 
mainly through standard PCI/ISA cards and serial/parallel ports. Motor control 
also requires special hardware to generate the appropriate signal to drive the 
motors. At this level the Babybot follows a very traditional approach, as it is 
actuated by DC motors. All of them have their specific control cards and power 
amplifier. In the case of the arm (PUMA), the original Unimation linear amplifier 
was modified and interfaced to the control card on standard PC. The head and hand 
joints are controlled through a bank of switching amplifiers (PWM). Each control 
card has a DSP which can be programmed to some extent to generate the desired 
control strategies. For example the head is controlled with a high gain controller 
while for the arm we employed a low-stiffness control schema (Section 5.1 and 6.1). 
Encoder signals are collected by the same control cards. Motor control card have 
also analog inputs which can be used when necessary. For example this solution 
was used for the inertial sensor. 

Images are provided by standard CCD color cameras and they are sampled at 
full frame rate by frame grabbers with the common BT848 chipset. The original 
images are sub-sampled as early into the processing as possible to the desired 
resolution and format (the log-polar format, see Section 4.1). Auditory signals are 
sampled at 44 KHz by a standard sound card. The signal coming from the 
microphones is amplified and conditioned appropriately before sampling. Tactile 
sensors have their own microcontroller and AD converter. Digital values are sent to 
a PC though a serial line. Hall-effect analog signals are sampled by another card 
with a bank of AD converters. 

The hardware is heterogeneous since it evolved from previous implementation 
of the Babybot. Control cards have different CPUs, sampling rates, DSP and 
software interface. The same applies to the set of PCs where the hardware is 
interfaced to. They range from older Pentium to the latest generation PIV. Presently 
the robot is controlled by 14 machines connected via two separate 100 Mbits 
Ethernet networks. One network is dedicated to control signals, the other mostly to 
visual processing (Figure 2.6). 
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Figure 2.6. Hardware architecture. It consists of two separated switched networks. One network 
is dedicated to visual processing; the other to control signals and other data. The nodes are 
computers (from 2.4Ghz PIV to 750 Ghz PIII) connected either to one or both networks. The 
machine equipped with frame grabbers acquires the images and broadcast them across network 1. 
Nodes with motor cards drive the robot and receive position feedback (head, arm and head); in 
some cases supplementary cards may be used (e.g. in the case of the hand the acquisition of the 
magnetic encoders and the tactile sensors requires additional A/D converters). Other machines 
can be connected at will to perform other processing (e.g. learning). The server provides access to 
a shared file system and runs the name service. From the server console it is possible to launch 
control scripts, which remotely execute new processes and manage the running ones (this 
includes termination, connection and disconnection). 
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2.3. Software architecture 

The first important aspect concerns the operating system. The choice is among more 
standard solutions such as Microsoft Windows NT and Linux or operating systems 
specifically designed with performance issues in mind (real time operating systems 
such as Linux RT, VxWorks or QNX). Microsoft Windows (NT at the beginning and 
XP more recently) has been preferred in general because of the hardware supported; 
device drivers on Windows are often reliable and tested, especially in the case of 
general purpose, cheap hardware like network cards, video adapters and frame 
grabbers. On the other hand Windows is not optimized for performance nor is it 
designed for real-time applications. QNX (http://www.qnx.com/) is an operating 
system specifically designed to achieve real-time performances. Features include 
fast interrupt latency, low overhead context switches and preemptive priority-based 
scheduling.  For instance QNX can run a closed loop with period of about 1ms, 
whereas Windows NT hardly handles loops below 10 ms. For motor control, 
reducing the control loop cycle time by an order of magnitude can make the 
difference; in other cases, however, fast response is not strictly required. Vision for 
instance is often bound to the PAL standard (25 Hz) and, in any case, to 
computational limits which hardly allow decreasing computations below 30/20 ms. 

The goal of the software architecture is to make it easier to develop new modules 
and to integrate them in the system. Moreover, as software engineering rules 
suggest, the software should be divided in modules (objects) implementing 
different function which can be reused as necessary. This avoids programming 
errors and allows sparing a good amount of time as well-tested modules are 
recycled within the system. This is not something that can be achieved easily in a 
system like the one that was described above. Most of the modules are directly 
interfaced to the hardware; this is especially true given that, as it is virtually 
impossible to use a single CPU, some kind of protocol is required to connect 
different processing units together. As a result the software makes extensive use of 
operating system facilities (to access the hardware, schedule processes, achieve 
synchronization and communication) and gets easily intermingled with the 
particular platform and cards used. To improve manageability it is in general 
convenient to separate the details of the low-level hardware (usually the interface 
with the device driver) from the software implementing a particular algorithm.  

At the moment this thesis is being written, most of the architecture runs 
Windows (NT, 2000 and XP). Anyway the software was designed with the idea to 
have a heterogeneous architecture employing the operating system more suitable 
for a given purpose. Thus, the architecture allows a software module to be compiled 
and ran on different architectures irrespective of the operating system (QNX, 
Windows and Linux were successfully tested). Not all the modules are completely 
implemented on all the architecture (for instance motor control does not run on 
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Linux). However the software architecture is designed to minimize the effort 
required to adapt the high level modules (signal processing, communication as well 
as motor control) to different operating systems and hardware platforms. Let us 
now have a look at the implementation details. 

2.3.1. Communication protocols 

The software is designed with the goal to achieve two levels of transparency. Access 
transparency means that different modules access to data independently of the 
underlying hardware; thus, for instance, differences in the way data are stored and 
organized in memory are handled by low-level classes implementing 
communication. The same classes realize location transparency; this means that 
modules running on different machines are not concerned with communication 
details. The library offers a unified communication layer that is used by all 
processes. The library automatically makes use of the more appropriate protocol 
depending on the situation. For instance if two processes require a connection and 
are running on the same machine, the library establishes a connection through 
shared memory. Compatibility between different machines is achieved by using the 
Internet protocol suite which is a de facto standard for communication. In particular 
we used TCP/IP, UDP and Multicast (MCAST). TCP/IP offers a reliable connection 
where a transport layer guarantees that all sent packets are correctly received by the 
client. UDP is a connectionless protocol. It is more efficient than TCP/IP and does 
not require that the connection is established in advance. UDP does not guarantee 
that packets are not lost on the way between sender and receiver. If the network 
load is not too high and the CPUs are not completely busy this happens rarely. 
Anyway UDP is more suitable for those cases where loss of packets is not a problem 
(for instance in data streams). Multicast is another connectionless protocol which 
enables a single sender to transmit data to multiple receivers at the same time. It is 
similar to UDP, with the difference that the same packet can reach multiple clients 
(by means of a sort of subscription mechanism). Besides TCP/IP, QNX implements 
a proprietary protocol specifically designed for real-time (QNET). Among QNX 
machines this is obviously the most efficient solution and for this reason its support 
was included in the library. However TCP/IP, Multicast and UDP were used more 
often because they allow the connection between heterogeneous machines. 

The last piece to achieve location transparency is naming. Each communication 
channel is assigned a name that is registered on a shared database; a name service 
handles name queries and keeps tracks of the TCP/UDP and Multicast ports used 
on each machine. In this way it is possible to instantiate and destroy channels at 
run-time without the need to keep a static list of the ports used on each machine. 
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2.3.2. Hiding the Operating System 

For the task of encapsulating the operating system we relied on existing software. In 
particular we found it convenient to base our implementation on ACE (Adaptive 
Communication Environment), an open-source library that among many things 
provides a tiny object-oriented OS wrapper. For more information about ACE see 
(Schmidt, 2003; Schmidt and Huston, 2002). ACE runs on Windows, Linux, and 
QNX that were also our target operating systems. Basing our implementation on 
ACE allowed running all our code on any of these operating systems. From our 
point of view ACE provided a common C++ class interface for the communication 
code and the OS wrapper. Advanced ACE functionalities were not fully exploited. 
We preferred to take a minimalist approach and rely on the smallest subset of ACE 
that allowed solving our tasks. The library is called YARP (Yet Another Robotic 
Platform); following the open-source philosophy, it was made freely available on 
SourceForge (http://yarp0.sourceforge.net/). 

Most part of the communication code is profoundly inspired (and recycled) from 
a previous version developed at MIT (Fitzpatrick, 2003) and was tested extensively 
on the humanoid robot Cog on QNX 4.25. The latest implementation has been 
completely rewritten (using ACE) but it maintains the same high level interface. The 
communication code is a C++ templatized set of classes contained in a specific static 
library. The main abstraction for inter-process communication is called a “port”. A 
port template class can be specialized to send any data type across an IP-network  
 

 
Figure 2.7. The YARP communication architecture, simplified schema. Five ports are represented 
in a hypothetical configuration; each port consists in a command receiver (dark gray) and one or 
more portlets (light gray). Portlets are active objects instantiated to handle connections: the TCP 
port requires a portlet for each connection whereas the Multicast port instantiates only one. 
Notice also that input ports may receive from different protocols. 
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relying on a set of different protocols. Depending on the protocol different 
behaviors can be obtained – as described in the previous section the implemented 
protocols include TCP, UDP, Multicast (MCAST), QNET, and shared memory. A 
port can either send to many target ports or receive simultaneously from many 
other ports. A port is an active object: a thread continuously services the port object. 
Being an active object allows responding to external events at run time, and for 
example it is possible to send commands to port objects to change their behavior. 
Commands include connecting to another remote port or receiving an incoming 
request for connection and since all this can be done at run-time it naturally enables 
connecting/disconnecting parts of the control system on the fly. 

Figure 2.7 shows an exemplar structure of the port abstraction. Each port is, in 
practice, a complex object managing many communication channels of the same 
data type. Each port is potentially both an input and output device although for 
simplicity of use only one modality is actually allowed in practice. This is enforced 
by the class definition and the C++ type check. Each communication channel is 
managed by a “portlet” object within the main port. Different situations are 
illustrated in Figure 2.7: for example an MCAST port relies on the protocol itself to 
send to multiple targets while on the contrary a TCP port has to instantiate multiple 
portlets to connect to multiple targets. In cases where the code detects that two 
ports are running on the same machine the IP protocol is replaced by a shared 
memory connection. In Figure 2.7 a special portlet is shown (dark gray): it is called a 
“command receiver”. As already mentioned its function is that of receiving 
commands to connect, disconnect, or generically operating on the port. Further 
ports can run independently without blocking the calling process (if desired) or 
they can wake up the calling process on the occurrence of new data. In some cases 
synchronous communication is allowed (TCP protocol).  

Protocols can be intermixed following certain rules. Different operating systems 
can communicate to each other. QNET protocol is an exception and it is only valid 
within a QNX network. YARP communication code leads to a componentization of 
the control architecture into many cooperating modules. The data sent through 
ports can range from simple integral types to complex objects such as arrays of data 
(images) or vectors. Thus controlling a robot becomes something like writing a 
distributed network of such modules (the layer we called “Experiments”). 

In addition, YARP contains supporting libraries for mathematics and robot type 
computation (kinematics, matrices, vectors, etc.), image processing (compatible with 
the Intel IPL library), and general purpose utility classes. We also designed a few 
modules based on existing Microsoft technology to allow remote controlling 
Windows machines (this support comes naturally on QNX). In short, these 
scriptable modules complete seamlessly the architecture allowing the design of 
scripts to bring up the whole control structure and connect many modules together. 
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Figure 2.8. YARP libraries: dependence chart. Dark gray represents third part software and 
libraries; light gray are libraries and software modules that are part of YARP. All blocks (excepted 
virtual device drivers) use ACE to make the software platform independent. Details about specific 
blocks are reported in the text. 

As an aside a Matlab interface to ports has been implemented. This allows 
building Matlab modules (e.g. .m files) that connect to the robot to read/write data. 
There are basically two advantages: i) complex algorithms can be quickly 
implemented and tested relying on Matlab existing toolboxes, ii) an additional level 
of scripting can be realized within Matlab. Matlab provides a relatively efficient and 
easy to use display library that can be used to visualize the functioning and 
performance of an ongoing experiment. 

In summary, Figure 2.8 presents schematically the link and dependences 
between the YARP libraries. 

2.3.3. Robot independent code 

One of the goals in writing our control architecture has been that of simplifying the 
programming of a complex robotic structure such as a humanoid robot. As 
described in Section 2.2, control cards come in many different flavors and 
programming them is usually painful. It would be much better if a standardized 
interface, or even a suitable abstraction, were available. 

To solve the first problem we defined a “virtual” device driver interface into 
YARP. To solve the second, we encapsulated the control of parts of the robot (head, 
arm, frame grabbers, etc.) into a standardized template class hierarchy. 
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In short, the virtual device drivers bear much of their structure from the UNIX 
device drivers. Each card’s driver class contains three main methods: Open, Close, 
and IOCtl. The latter is the core of the interface. Each device accepts a set of 
messages (with parameters) through the IOCtl call. Each message accomplishes a 
specific function. Two different control cards supporting roughly the same 
commands can be easily (as it was done in our setup) mapped into exactly the same 
virtual device driver structure, although clearly the implementation might differ. 

The next layer is a C++ hierarchy of classes which through templates includes 
both the specification of the controlling device driver (e.g. the head is controlled 
through a certain control card) and the idiosyncrasies of the particular setup (e.g. 
wiring of the robot might differ, or initialization might require different calibration 
procedures). This hierarchy is shown in Figure 2.9. 

 
Figure 2.9. The structure of a control class for a generic device. The virtual device driver provides 
a generic interface to the hardware. Idiosyncrasies of the particular setup (wiring of the robot, 
initialization procedure) are implemented in a separate class (“Local definition class”). 

2.3.4. Robot specific interface 

The real “communication” with the robot is carried out through a set of binary 
modules that use the device driver structure described in the previous section. 
Module customization is at this stage accomplished through configuration files. In 
the YARP language these modules are called daemons (a term borrowed from 
UNIX). The daemons directly interact with the remainder of the robot software 
through YARP ports, and in general they export very specialized communication 
channels. For example the frame grabber has an output port of type “image” and 
the head control daemon an input port that accepts velocity commands. There are 
no specific restrictions on the type of ports exported by a daemon, since any type of 
state information about the modules might be required. 

Further, some of the daemons accept or send commands of a special type that 
are generally used to communicate status information. A bus structure based on the 
Multicast protocol has been implemented to transmit and receive these special 
messages (called “bottles”). YARP bottles may contain any type of data or even a 
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group of heterogeneous elements of different types. The structure contains 
identifiers to properly decode messages and interpret the data. YARP bottles create 
a network within the network of behaviors to realize a high-level control and 
coordinate a large number of modules. 

2.4. Learning architecture 

This layer describes an arrangement of YARP modules that tends to repeat across 
our robotic architecture. This is not formally into YARP proper but simply an 
implementation of a particular experiment relying on YARP libraries. Conceptually 
it forms a layer where to build more sophisticate experiments since for example it 
provides simple motor control and sensorimotor coordinative behaviors. Overall 
they could be seen as very high level commands that support positioning, gazing, 
reaching for visually identified objects, and grasping them. 

Grossly speaking, autonomous learning requires a slightly different approach 
from classical supervised paradigms where data is presegmented and simply fed 
into a function approximator. Autonomous learning is perhaps closer to 
reinforcement learning in that it requires action and proper behaviors (exploratory) 
to gather the training set. Necessarily our architecture will require bootstrapping 
behaviors supporting the construction of the training set. The question of how much 
explore and how to get quickly to a solution is an open one in reinforcement 
learning and unfortunately reinforcement learning itself tend to be difficult, 
requiring a very large number of samples. In addition, in the case of a real robot we 
should not allow “spurious” or random control values to get to the low-level 
controllers; at the basis of any control strategy we should probably have a 
reasonable “safe” explorative procedure and certainly not a complete random one. 
Self-supervised procedures can be identified (similar in spirit to feedback error 
learning) and given the appropriate amount of exploration they can quickly 
approximate the desired sensorimotor coordination pattern. 

When data samples are available in sufficient number with respect to the size of 
the parameter space of the function approximator of choice, the system can start 
learning and using what has been learnt up to date; necessarily in the long run the 
influence of explorative behaviors should be reduced. At least two possibilities exist 
here: learning could be implemented either in batches or fully online. The specific 
strategy is mostly a function of the algorithm and specific implementation of the 
function approximation. Inhibition or a functional equivalent should take care of 
reducing or mixing up exploration with actual “exploitation” of the acquired 
behavior. 

Our discussion is only focused here on the function approximation problem 
since a good part of the sensorimotor behaviors can be actually well implemented 
by mapping sensory values onto motor commands or the opposite (e.g. feedback 
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error learning or distal learning). Another constraint on the design of explorative 
behaviors is that they should mostly “explore” the space that will be used in the 
future. Failure to do so might result in very poor performance. 

The learning algorithm can be conceptually divided in two parts: the one 
providing the “learning signals” sometimes called the “critic”, and the one doing 
the behavior called the “actor”. This distinction is important in motor control 
problems since the actor must be extremely fast and should work in a small delay 
regime. On the other hand, the critic could take even seconds or minutes to process 
the training data and provide infrequent adjustments to the actor’s parameters. We 
maintained as much as possible (apart from trivial cases) this distinction within our 
system. This division is to some extent compatible with biological mechanisms of 
learning being these, for example, the rates at which synaptic changes and growth 
processes develop in the brain compared to actual spikes’ travel times. 

Figure 2.10 sketches the modules required for each actual behavior acquisition. 
At the moment of writing we have only conducted a few experiments with the 
combination and definition of modules presented here. Examples of explorative 
components are (at the moment) bounded random behaviors (used when training 
the hand localization map) or early motor synergies connecting and generating 
motion of different joints and even different limbs. In learning to reach, these 
synergies can be exploited to bias the exploration space and avoid random 
movements. Whenever learning relies on multiple cues, such as visual and motor, 
having an initial coordination (although imprecise) can be advantageous. One net 
effect would be the reduction of the learning space that needs to be explored before 
getting to a reasonable behavior. This strategy was used in our previous work 
(Sandini et al., 1997). 

 
Figure 2.10: A module for learning sensorimotor coordination. 
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The actor and critic modules in our experiment consisted of a simple batch 
learning backpropagation neural network. Although not the best, it proved to be 
quite reliable so far (in particular we adapted a fast C implementation of the 
backpropagation (Anguita et al., 1994)). Backpropagation has been extensively 
tested and its behavior very well characterized in literature. Consequently, it is 
much easier to understand especially when things do not go as expected. The 
implementation maintains the separation of actor and critic to the point of having a 
slow batch learning method as critic, and a distinct process providing the behavior. 
Naturally, given the overall robot architecture, the two modules can be even 
running on two different machines. 

Inhibition and the control of activation and coordination of many behaviors is 
still argument of further research and no definite implementation has been reached 
yet. Figure 2.11 shows the combination of many blocks of this type. In this case too, 
the realization is completely hypothetical since testing has not been performed yet. 

 

 
Figure 2.11. The combination of learning modules in a hypothetical subsumption arrangement. 
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Chapter 3 

A biologically inspired elastic 
actuator

Although usually we are tempted to think of intelligence as the outcome of some 
software algorithm the physical architecture of the agent plays a critical role. The 
intrinsic soft compliance of the skin, for instance, allows humans to successfully 
grasp an object without the need to place the fingers exactly at the required position 
around it. Indeed, the study of biological systems tells us a very important story and 
suggests that a suitable physical structure can turn a difficult problem into an easy 
one. Evolution rarely found solutions to the problems it had to face by improving 
neural computations alone, but rather went through physical adaptation. As 
discussed in the introduction the study of these aspects has been of paramount 
interest in robotics; among the others, the problem of motor control is one of the 
most important and constitutes the main point of contact between neuroscience and 
robotics. If on the one hand robots are getting more and more precise and reliable in 
performing specific tasks, on the other they are still far from achieving good results 
in more general cases. The contrary is true for biological systems which are not 
precise and reliable in particular situations but can successfully accomplish tasks 
they were not specifically designed for. As one of the most striking differences 
between artificial and natural systems lays in the physical properties of their 
actuators, part of the research described in this thesis was devoted to the study and 
the realization of an innovative actuator, mimicking the characteristics of human 
muscles. This chapter provides a description of the prototype and presents the 
results that were achieved. 
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3.1. Biology and motor control 

Usually the desired trajectory of either a limb or a robotic manipulator is expressed 
in a convenient extrinsic coordinate system, often referred to as task-coordinate 
frame. Most goals are in fact naturally expressed in a Cartesian coordinate system. 
In the case of a robot, the system has to convert this trajectory into joint-coordinates 
(for example joint angles) and compute the torques that must be applied by the 
motors to achieve the predefined motion. The former problem is called the inverse 
kinematics, whereas the latter is commonly referred to as the inverse dynamics. 
Both problems are thought to be solved by the central nervous system (CNS) of 
humans and animals, although we do not know the exact mechanisms that are used 
and the reference-frames in which this computation is carried out. The 
computational solutions developed and largely used in robotics have not proven to 
be of much help in this regard. For the same reason robots are very efficient at 
solving clearly defined tasks in structured and well known environment, but they 
perform poorly in all those cases when a part of the task is not exactly defined and 
the interaction with the external environment is somehow uncertain. Examples of 
such tasks are walking, running, and manipulation (including grasping and 
catching). Humans are far better in those tasks than robots; thus a nine-month old 
baby can successfully reach out for an unknown object and grasp it, whereas robots 
cannot manipulate an object if it is not in a specified position, and an accurate three 
dimensional model of it is not available. More surprisingly human limbs are 
kinematically redundant; the same is rarely true for the artificial manipulators used 
in robotics. The inverse kinematics and dynamics problems in this case would be 
even more challenging. 

This difference between biology and robotics resides in part on the structural 
differences of the mechanical actuators usually employed in robots as opposed to 
our muscles and their physical properties. Electric motors are almost ideal force 
generators, meaning that they can generate a required force independently of their 
position and the effect of the external environment. Several experiments have been 
conducted to study the mechanical properties of skeletal muscles and the 
mechanism used by the nervous system for controlling movement. A detailed 
description of the internal structure of muscles and the cellular mechanisms by 
which neural signals are converted into mechanical forces is beyond the scope of 
this discussion (a description can be found in (Ghez, 1991). Taken as a whole, the 
most evident property of muscles is that they exhibit a spring-like behavior; the 
contraction force of a muscle depends not only on the level of activation of its 
afferent motor neurons, but also on its length (Ghez, 1991). A spring is a mechanical 
device that absorbs energy when stretched and responds to the increase of length 
with a restoring force. This force represents the system tendency to move toward a 
state with minimum energy which corresponds to its resting length. Zero force is 
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produced when this minimum length is exceeded; beyond this limit the force 
increases linearly (Hooke’s law). Mathematically this behavior can be so described: 

 ( )0 0               if 
0                          otherwise

F k l l l l
F
= − >⎧⎪

⎨
=⎪⎩

 (3.1) 

The ratio between the amount of force developed as a result of a given 
elongation defines the spring stiffness: 

 dFk
dl

=  (3.2) 

The force-length characteristic of a muscle is however more complicated. If the 
length of the muscle is forcedly changed – for instance by means of a motor 
connected to its extremity – it is possible to measure the resulting restoring force (its 
tension) and to derive the muscle force-length characteristic. The result in Figure 3.1 
(left) shows that the slope of the characteristic is not constant and that the stiffness 
of the muscle varies with its length. Within a certain range, however, the constant 
stiffness spring law is a good approximation. The central nervous system can 
actively change the length-tension curve, in particular the stiffness of the muscle has 
been shown to vary with neural activation Figure 3.1 (right). 

The resting length of the muscle defines its equilibrium point that is an 
intrinsically stable state toward which the system is spontaneously driven if an 
external disturbance (force) is applied. Given a certain force the resulting 
displacement depends on the stiffness of the muscle. As soon as the external force is 
removed the system is free to return to a configuration with minimum energy (it 
 

 
 

Figure 3.1. Muscle tension-length characteristic. Left plot: muscle stiffness varies according to 
neural activity (adapted from (Ghez, 1991)). Right plot: Length-tension curves measured in the 
cat’s soleus muscle at different activation rates. The initial part of the curves is linear, stiffness 
increases with the activation (adapted from (Mussa-Ivaldi and Bizzi, 1993)). 
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can be easily shown that the equilibrium point corresponds to a minimum in the 
potential energy of the spring). This mechanism would be used by the CNS to 
control movement. The activation level of each muscle would be actively varied to 
shift its equilibrium point and produce a torque suitable to drive the attached limbs 
according to the desired trajectory (equilibrium point hypothesis, (Bizzi et al., 1991; 
Hogan, 1985; Mussa-Ivaldi and Bizzi, 1993)). 

The sequence of equilibrium positions does not correspond to the actual 
trajectory followed by the limb and constitutes the so called virtual trajectory. During 
motion the intrinsic elasticity of the system would be responsible to generate 
restoring force to compensate for errors in the trajectory and external disturbances 
by the environment. The nice result of this idea is that it avoids the necessity to 
explicitly solve the inverse dynamics problem as the limb stiffness is responsible for 
generating the force required to compensate for the effect of inertia, viscosity and 
friction. Small errors in the movement could be compensated for by actively 
increasing the stiffness of the structure. 

However, this last point has been questioned. In fact it was shown that the level 
of stiffness that would be required to produce accurate movements is not in 
accordance with experimental results on humans (Katayama and Kawato, 1993). 
Apparently the nervous system would have to take into account discrepancies 
between desired and actual motion in the computation of the virtual trajectory. In 
this case the computational advantages of the equilibrium hypothesis seem to 
vanish, because the calculation of the virtual trajectory would implicitly need to 
solve the inverse kinematics problem (Katayama and Kawato, 1993). In any case, the 
equilibrium hypothesis is important because it puts control of movement and 
posture under the same perspective. Besides, muscle spring-like properties are still 
considered to simplify the problem solved by the CNS in controlling the limbs. 

Usually position control is used to perform link motion in robotics. This is very 
effective when the interaction with the environment is limited or controlled; the 
torques exerted by the motors are computed to produce a desired motion of the 
end-effector. Several control strategies can be employed, from very simple (PID) to 
more complicated (adaptive control, computed torque control (Fu et al., 1987)); to 
different extent all these strategies are effective when the robot is free to move. If 
physical interaction with an external surface or an unexpected object occurs, it may 
be impossible to apply the desired motion. In trying to compensate for the error in 
the motor trajectory the controller would increase the motor torque with the risk to 
break either the robot or the object (or both). For this reason recently, and 
particularly for applications where robots operate in the proximity of humans, the 
concept of “intrinsic safety” was introduced. This refers to robotic systems where 
unpredictable failures will produce only limited damage (if any). One possibility is 
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to add some level of compliance in order for the robot to adapt to unpredicted 
obstacles. This can be achieved in the following ways: 
• active control 
• passive compliance 

In the first case, the controller is designed thus to actively simulate a compliant 
behavior. This is usually obtained by controlling the force applied by the end-
effector instead of its position; examples are stiffness/impedance control and pure 
force control. In the second case, the manipulator is position controlled and material 
with elastic properties is used to obtain the required level of compliance. This 
solution includes covering the end-effector with soft substance – which is usually 
the part of the manipulator that more often comes into contact with the 
environment – or using conventional springs in series with the motors, as in the 
series elastic actuators (Pratt and Williamson, 1995; Robinson, 2000). An alternative 
way to obtain a certain degree of low stiffness is also to reduce the gains of the 
controller so that it responds with a relatively small force to a position error. A 
similar control was actually implemented for the motion of the PUMA arm 
mounted in the robot (see Section 5.1).  

The basic idea underlying active force control is to compensate the inertia of 
each link and to simulate a damped spring-mass system. Although it is in principle 
possible to simulate any kind of spring and to vary its stiffness, this approach is 
technically difficult because the controller needs to compute first and second 
derivative of the state of the system. 

A possible solution to the problem is to employ actuators specifically designed 
to be physically compliant. Hydraulic actuators are essentially position controlled 
because of the fluid (usually oil) high stiffness and difficult backdrivability; 
pneumatic actuators may have lower stiffness, but exhibits a very slow bandwidth 
response. Low impedance control with DC motors is difficult because of inertia and 
friction added by the reduction boxes. 

Another approach is to add a linear elastic component to traditional DC or 
hydraulic actuators (series elastic actuators see (Pratt and Williamson, 1995; 
Robinson, 2000)). This solution, for example, has been successful for the control of 
walking robots (Robinson et al., 1999) and humanoids robot in general (Brooks et 
al., 1999). A linear spring is placed in series with the electric motor to obtain a low 
stiffness actuator. Force feedback is provided by measuring the spring displacement 
(according to Hooke’s law (3.1)). A similar solution was adopted in the finger joints 
of the hand (see Section 2.1). Although more suited for force control than standard 
actuators, series elastic actuators have constant stiffness determined by the 
embedded elastic element and are not good models of human muscles. 
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Figure 3.2. CAD model of the realized prototype. See text for a detailed description. 

3.2. The mechanical prototype 

Motivated by these considerations we have designed and realized a single joint 
elastic actuator with variable stiffness. A cad model of the prototype is represented 
in Figure 3.2. Motion is produced by two elastic elements (two identical helical 
springs) connected in a push-pull configuration to a rotary joint by means of metal 
tendons. Two electrical DC motors control the stiffness of the springs by changing 
the number of coils that are free to move (hereafter we will refer to them as active 
coils); to obtain this, the motor shafts are shaped as screws with a thread equal to the 
one of the springs. When an actuator rotates, it screws in (or out) the spring 
reducing (or increasing) the number of coils that are effectively pulling the tendon 
connected to the “free end” of the spring. In this way the elastic property of the 
spring changes as a function of the rotational position of the actuator. It is worth 
noting that this actuator must be employed for a rotational joint, as the mechanism 
only exerts a “pulling” force and that each joint has to be controlled by a pair of 
actuators (similarly to how muscles works in humans and other animals). As far as 
sensors are concerned, optic encoders provide position feedback of the two 
electrical motors as well as the actuator joint, whilst strain gauges measure the 
tension of the two cables to provide force feedback (Figure 3.3). 

3.3. Mathematical model 

Let us consider a spring made of a single coil. Starting from Hooke’s law it is 
possible to derive the force that is exerted as a result of stretch: 

 ( )00
1F x x
c

= − −  (3.3) 

where c is the compliance of a single coil, 00x   its resting length. 
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Figure 3.3. Detail of a single elastic actuator. A lead screw controlled by a DC motor varies the 
number of coils of the springs. The spring stiffness changes as the motor rotates. A strain gauge 
provides force feedback (F) whereas digital encoders (not shown) measure the position of the motor 
shaft as well as the position of the rotary joint. 

Let now be n the number of coils of the spring. Imagine the spring as consisting 
of n single coil elastic elements (springs) in series, with a compliance of c and zero 
resting length each. If we now suppose to apply a force F  to the spring, at 
equilibrium each single coil element would exert a force F  to its neighbor; the 
displacement of each element would then be d F c= ⋅ , and the overall displacement 

( )00 00X X n x x− = − . We can now rewrite Hooke’s law to obtain the stiffness of the 
new n-turns spring as follows: 

 / 1F d cK
X nd n c

∆
= = =
∆ ⋅

 (3.4) 

From this equation it is clear that by changing the number of active turns, it is 
possible to regulate the stiffness of the spring. 

Let us now connect the two elastic actuators together (Figure 3.4). If the tension 
of the cable is not zero, the positions of the springs are constrained by the length of 
the cable itself ( 1 2 / 2mX X X= = ). The net torque that acts on the joint is: 
 ( )1 2T F F r= − ⋅  (3.5) 

Putting together the force law of each spring and the cable constraint leads to the 
following equation: 

 0T K X X⎡ ⎤= − −⎣ ⎦
 (3.6) 

Where: 
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Equation (3.6) represents Hooke’s law for a single spring, where both stiffness 
and resting length depend on the controlled input ( )1 2,n n (see Figure 3.4). By 
controlling the DC motors it is possible to act on the input ( )1 2,n n  to change the 
spring resting length and stiffness.  

 
Figure 3.4. Left: two actuators linked together. Tendons connect two springs to the joint in push-
pull configuration. Right: the effect of the two springs is equivalent to a single spring whose 
stiffness and resting length depends on the number of active coils. 

3.4. Experiments with a single actuator 

A first experiment was conducted on a single spring. The number of coils was 
varied to sample an interval between 5 and 10. For each of these values the position 
of the joint was passively varied in a range between +/- 50 degrees. The output of 
the strain gauge was recorded to estimate the force-length characteristics; a line was 
fitted to the characteristic when force values were above zero and its slope taken as 
an estimation of the stiffness.  

The plot reported in (Figure 3.5) shows the results of this experiment. The force-
length curve behaves as theoretically predicted showing that the input of the system 
controls the stiffness of the spring. The stiffness decrease as the number of coils 
increases according to the inverse proportional law of equation (3.4).  

3.5. Experiments with coupled actuators 

A similar experiment was conducted with the two actuators linked together. The 
link was passively moved to sample different positions ranging from -50 to +50 
degrees. We recorded the net restoring torque exerted by the two actuators; in this 
 



Charter 3: A biologically inspired elastic actuator 

 55

-50 0 50
0

50

100

150

200
n=10

position [deg]

Fo
rc

e 
[N

]

-50 0 50
0

50

100

150

200
n=9.5

position [deg]

Fo
rc

e 
[N

]

-50 0 50
0

50

100

150

200
n=9

position [deg]

Fo
rc

e 
[N

]

-50 0 50
0

50

100

150

200
n=8.5

position [deg]

Fo
rc

e 
[N

]

-50 0 50
0

50

100

150

200
n=8

position [deg]

Fo
rc

e 
[N

]

-50 0 50
0

50

100

150

200
n=7.5

position [deg]

Fo
rc

e 
[N

]

-50 0 50
0

50

100

150

200
n=7

position [deg]

Fo
rc

e 
[N

]

-50 0 50
0

50

100

150

200
n=6.5

position [deg]

Fo
rc

e 
[N

]

-50 0 50
0

50

100

150

200
n=6

position [deg]

Fo
rc

e 
[N

]

-50 0 50
0

50

100

150

200
n=5.5

position [deg]

Fo
rc

e 
[N

]

-50 0 50
0

50

100

150

200
n=5

position [deg]

Fo
rc

e 
[N

]

5 6 7 8 9 10
6

7

8

9

10

11

12

active coils

st
iff

ne
ss

 [N
/d

eg
]

Stiffness

 
Figure 3.5. Force-length curves of a single actuator. The number of active coils varies from 10 
(top-left) to 5 (bottom-right). In each plot a line was fitted on the data for F>0 and its angular 
coefficient taken as an estimation of the stiffness. These measures are reported in the last plot 
which reports the variation of the stiffness with respect to the number of active coils. 

case we varied the number of active turns of both springs (range from 5 to 9) in 
order to keep a symmetric configuration; this means that in all cases the equilibrium 
point of the system (restoring force = 0) was the midpoint (0 degrees). This 
experiment tests the spring-like properties of the actuator as a whole (Figure 3.4). 
The results reported in Figure 3.6 show that the slope of the curve force-
displacement increases as the number of coils decreases. 

However, it is not possible to define a single value for the stiffness; the restoring 
force is in fact the net result of the forces exerted by the two springs. The central 
part of the curve results from the coupled action of the two springs unless one is 
slack. In this case only a single spring is actually exerting force and therefore 
contributing to its variation – the stiffness. Mathematically this effect is represented 
in equation (3.1); in the experiments it is well visible by the sudden changes in the 
slopes.  
 



Charter 3: A biologically inspired elastic actuator 

 56

-50 0 50
-500

0

500
9.0,9.0

-50 0 50
-500

0

500
8.5,8.5

-50 0 50
-500

0

500
8.0,8.0

-50 0 50
-500

0

500
7.5,7.5

-50 0 50
-500

0

500
7.0,7.0

-50 0 50
-500

0

500
6.5,6.5

-50 0 50
-500

0

500
6.0,6.0

-50 0 50
-500

0

500
5.5,5.5

 
Figure 3.6. Force-length characteristics for the linked actuators. Abscissa represents the position 
of the link (roughly in the range +/- 50 degrees), ordinate reports the net restoring force acting on 
the link (+/- 500 N). Plots are reported for different values of active coils from 9 (top left) to 5.5 
(bottom right). The stiffness follows an inverse proportional law with respect to the number of 
coils of the springs. 

3.6. Open loop control 

The actuator was also tested in a simple open-loop configuration. Open-loop here 
refers to the fact that we did not use the feedback information provided by the 
strain gauges and the encoder on the joint. The input to the system ( )1 2,n n  was 
varied by controlling the position of the motor shafts with a PID controller. Figure 
3.7 describes the control schema in more details. 

3.6.1. The force-displacement plane 

The net force of the actuators is described by three variables: the number of active 
coils of the springs ( 1n  and 2n  both ranging from 1 to 15) and the position of the 
joint. 
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Figure 3.7. Open-loop control schema. The control board computes the PID control law to 
perform a desired motion. The input to the system is the number of active coils (u1, u2). 

Let us draw the force-length characteristics of both springs on the same plot. The 
system equilibrium point corresponds to the points where the forces applied by the 
two springs are equal; it can be computed as the point in space where the curves 
intersect. If as a result of an external force the system is perturbed, it is possible to 
compute the resulting restoring force as the distance between the characteristics; it 
is worth noting that the angle made by the two lines implicitly defines the stiffness 
of the system (Figure 3.8).  

 
Figure 3.8. Left: force-displacement plane. Dashed lines represent force-length characteristics of 
the left springs. Solid lines: right spring. Number of turns range from 1 to 15 (n1 and n2). The 
points were the lines intersect correspond to the equilibrium points for the joint; the angle 
between left and right spring characteristics implicitly define the stiffness. Right: an external 
force moves the system from the equilibrium position of +/- 7 degrees. Two configurations are 
depicted, low stiffness (A) and high stiffness (B). The restoring force exerted by the two springs 
together can be graphically computed by measuring the distance between solid and dashed lines. 
It is easy to verify that in (A) the restoring force is stronger than in (B), although the 
displacement is the same. 
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When the springs are stretched or compressed they release or store energy. The 
amount of stored energy is: 

 
2

21
2 2

FE K X
K

= ⋅ =  (3.8) 

To take into account the variation of stiffness equation (3.4), equation (3.8) can be 
rewritten as follows: 

 21
2

E F n c= ⋅  (3.9) 

At equilibrium the springs exert opposite and equal forces. The total potential 
energy stored in the system is hence the sum of the potential energies of the two 
springs: 

 ( )2
1 2

1
2TE F n n c= +  (3.10) 

The area corresponding to higher F  – top region in the force-displacement plane of 
Figure 3.8 – represents configuration with higher potential energy.  

This plane was introduced here as a means of representing possible trajectories 
in the position-stiffness plane. Figure 3.9 represents three exemplar trajectories. The 
initial position of the joint in all three cases is equal to -20 degrees, whilst the final  
 

 
Figure 3.9. Three exemplar trajectories. In all three cases the system moves from an initial 
position of -20 degrees to a final position of 20 degrees. As far as the stiffness of the joint is 
concerned, the three trajectories are quite different. In (1) the stiffness is kept constant at a 
relatively high value; in (2) the stiffness is initially low and gets constantly increased whereas in 
(3) the opposite occurs. 
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position corresponds to +20 degrees. In trajectory 1 the system starts with a 
relatively high stiffness and moves to the final position in such a way as to maintain 
constant stiffness. According to equation (3.10) the potential energy does not 
change. Conversely in trajectory 2 and 3 the stiffness increases and decreases 
respectively. Besides, it is worth noting that in trajectory 2 the springs increase their 
potential energy whereas in trajectory 3 the potential energy stored at the beginning 
of the motion is released.  

In this experiment we investigate the possibility to exploit the energy stored 
within the springs to produce motion. For each of the above trajectories we 
recorded the position of the joint, the number of active turns and the electric current 
absorbed by the motors. The latter were acquired by dedicated output port on the 
amplifiers. The time course of all these variables is reported in Figure 3.10, Figure 
3.11 and Figure 3.12, in the case of trajectory 1, 2 and 3 respectively. Unfortunately, 
from the results it was not possible to draw precise conclusions. Apparently when 
mechanical energy is released by the springs the motors absorb less current. This is 
more evident where the system moves from a configuration with high stiffness to 
one with low stiffness and vice-versa. However, frictions vary remarkably in the 
different conditions; this can be noticed by observing that at the end of the motion 
the motors absorb a considerable amount of electric current which correspond to the 
torque they apply to compensate friction (third plot in Figure 3.10 and Figure 3.11). 
Hence, it was not possible to separate mechanical energy spent compensating 
frictions from the one required to produce motion. As a final note Figure 3.13 
compares trajectory 2 and trajectory 3; notice that at high stiffness there is a lower 
error at the end of motion. 
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Figure 3.10. Trajectory 1. The system moves from a position of about -20° to +20°. The stiffness 
in this case is maintained constant at a relatively high value. Top: position and stiffness of the 
joint (measured by the encoder and computed from n1 and n2). Middle: time course of n1 and n2 
measured from the motor encoders. Bottom: electric current absorbed by the motors. Note that 
there is a residual current whenever the controller cannot reduce the error to zero due to the 
friction. 
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Figure 3.11. Trajectory 2. The system moves from a position of about -20° to +20° while 
increasing the stiffness. Top: position and stiffness of the joint (measured by the encoder and 
computed from n1 and n2). Middle: time course of n1 and n2 measured from the motor encoders. 
Bottom: electric current absorbed by the motors. Note that there is a residual current whenever 
the controller cannot reduce the error to zero due to the friction. 
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Figure 3.12. Trajectory 3. The system moves from a position of about -20° to +20° while reducing 
the stiffness. Top: position and stiffness of the joint (measured by the encoder and computed from 
n1 and n2). Middle: time course of n1 and n2 measured from the motor encoders. Bottom: electric 
current absorbed by the motors. 
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Figure 3.13. Comparison between trajectory 2 (dashed line) and trajectory 3 (solid line) (see also 
Figure 3.9). The plot represents the time course of the position; the curves are shifted to make zero 
the initial position and facilitate comparison. Note that trajectory 2 is more accurate because the 
higher stiffness contributes to reduce the final error due to the weight of the link (the actuator is 
mounted vertically, the weight opposing the motion).  

3.7.  Conclusions 

In this chapter we have proposed a model for a mechanical actuator mimicking the 
elastic properties of human muscles. A physical prototype of the system was 
realized to test the model in static and dynamic conditions. Accordingly, two 
experiments were reported. In the static conditions the force-length characteristic of 
the actuator was derived by imposing an external displacement and measuring the 
net restoring force. In a dynamic experiment the input of the system was varied to 
produce different position and stiffness trajectories. The results show that i) by 
varying the position of the DC motors it is possible to control position and stiffness 
of the actuator and ii) the joint behaves differently if the stiffness is varied.  

The ability of biological systems to regulate the mechanical compliance of their 
limbs represents perhaps the most remarkable difference with respect to traditional 
robots. It has been proposed that the central nervous system exploits the intrinsic 
elasticity of muscles to simplify the problem of motion control; in particular it 
provides automatic restoring forces to external disturbances or erratic behavior. 
Furthermore, intrinsic elasticity reduces shock due to unexpected collision and 
increases operational safety. 

In robotics actuators with real springs to produce a similar mechanism have 
been used. Kolacinski and Quinn (Kolacinski and Quinn, 1998) realized a prototype 
of a variable stiffness elastic actuator. They used a scissor-like mechanism attached 
to a conventional spring; the end-points of the spring are free to slide along the 
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scissor links as the result of the external force. The angle between the links varies 
the rate of deformation of the spring, that is the stiffness as seen from the load. 
However the prototype had limited range of motion and was tested in static 
conditions; besides the mechanical architecture of the device limits to some extent 
the possibility to obtain small and compact actuators. 

The last experiment tried to investigate the possibility to exploit the internal 
energy stored within the springs to produce motion. Two conditions where tested: 
increasing the internal energy stored within each springs and decreasing it. 
Unfortunately from this experiment it was not possible to derive any clear 
conclusion, because the amount of friction between the springs and the screws 
varied significantly in the conditions we tested. Other limitations of the proposed 
solutions were the range of stiffness and the size of the DC motors. The former can 
be improved by changing the parameters of the springs (compliance of each spring 
single coil and their number of coils). In the latter case, it seems that most of the 
torque produced by the DC motors is spent to compensate friction between screw 
and spring, especially at high force (high stiffness). A possible solution could be to 
treat the springs in such a way to reduce the friction. In any case the basic idea (to 
change the number of active coils of the spring to modulate its stiffness) seems 
worth pursuing, although further research is required before this actuator can 
actually be used on a real robot. 
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Chapter 4 

Eye movements

The first contact with the world takes place through vision. This chapter is 
concerned with the robot’s visual system and describes the control strategies to 
control the eyes to gaze objects in space. Most of what will be described was re-
implemented from previous work on the same or other robots (references to the 
original work are provided in each section). A short overview is reported here to 
give the reader the basis to understand the next chapters. 

4.1. Retina-like visual system 

Photoreceptors within the human retina exhibit a space-variant arrangement. Cones 
– which are responsible for visual perception in the light – have higher density at 
the centre of the visual field (the fovea) and are sparser in the periphery. The size of 
their receptive fields changes accordingly (see Figure 4.1 (a)). This layout allows for 
a central part of the visual field to be suited to carry out precise tasks, while 
maintaining a wide field of view. The photoreceptors in the periphery are more 
sensitive to changes in illumination, hence appropriate for motion detection. In this 
case adaptation solved the problem of minimizing the number of photoreceptor in 
order to have both high visual acuity and wide field of view. It is intuitive to 
understand the advantages of such architecture; it can be proved that the number of 
neural fibers required to transport the signals all the way from the retinas to the 
visual cortex is of orders of magnitude smaller. Needless to say this can be a 
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Figure 4.1. Cones density in the human retina decreases quickly as we approach the periphery (a). 
Dark gray is  temporal retina; light gray is nasal retina (adapted from (Packer and Williams, 
2003)). Retinotopic map in the striate cortex of the squirrel monkey (c) and (d). The mapping is 
illustrated by the system of rings and rays superimposed on the retina and plotted as they warp 
on the cortex; rays and circles map to horizontal and vertical straight lines. Notice also how most 
of the cortex is devoted to the central part of the retina; in particular half of the cortex represents 
rings from 0 to 8 degrees (adapted from (Adams and Horton, 2002)). Compare these pictures to 
Figure 4.2 and Figure 4.3. 

significant advantage from a computational point of view. Indeed, studies on 
primates have revealed that there is a specific geometric layout in the way receptors 
are wired from the retina onto the cortex (Figure 4.1(b) and (c)).  

Images with a space variant geometry have been used in robotics where real-
time performance is important (Bernardino, 2004). Of all the possible 
implementations the log-polar geometry (see the next section for a mathematical 
formulation) better resembles the organization of the receptors in the human retina 
(Sandini and Tagliasco, 1980; Schwartz, 1980). 

One way to obtain space-variant images is that of subsampling traditional 
rectangular images. Besides requiring specific hardware (a dedicated computer or a 
DSP) this solution looses part of the advantages, since it still requires a high 
bandwidth connection to transfer the images from the sensor to the device 
performing the sampling.  

In the past years at LIRA-Lab different versions of a silicon C-MOS sensor were 
realized to implement the log-polar sampling (the Giotto sensor, for a review see 
(Sandini and Metta, 2003; Sandini et al., 2000)). The size of the electronics driving 
the chips is still big if compared to the one of the standard commercial cameras; for 
this reason the current setup mounts standard cameras and performs the log-polar 
mapping in software on a dedicated PC; the resulting log-polar images have exactly 
the same structure of the Giotto sensor. The details of the mapping are given in the 
next section. 
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4.1.1. Some maths 

Photoreceptors in the Giotto sensor are arranged in 152 concentric rings of 252 
pixels each. The size of the receptors varies by following a logarithmic rule. 
Mathematically the mapping between the polar coordinates and the log-polar plane 
(often referred to as the cortical plane) can be written as: 
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where 1 q is the minimum angular resolution, 0ρ  is the radius of the innermost 
circle. The preceding equation is related to the standard x-y coordinate system by 
the following well known equations: 
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As we approach the central part of the retina (the fovea), the size of the receptors 
decreases toward zero, until it reaches a physical limit and we are forced to change 
the layout of the chip. In practice this physical limit occurs below 0ρ  which is the 
minimum radius of the circle where equation (4.1) is valid. Within this region (the 
fovea), the size of the receptors does not change. Their number along a given circle 
is reduced linearly (for more details: (Berton, 2003)). 

Graphically the mapping is represented in Figure 4.2. The original image is 
uniformly sampled along concentric circles; the samples from each circle (at  
 

 
Figure 4.2. A simplified explanation of the log-polar mapping. The image is divided in concentric 
circles which are uniformly sampled and arranged along the rows of the logpolar image. The 
outermost and innermost circles are placed in the last and first rows respectively (different shades 
of gray are used for different radii). The darkest region at the center is the fovea, which is divided 
in triangles and reported in the cortical plane (Berton, 2003). 
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constant radius) are arranged along the rows in the cortical plane. The innermost 
and outermost circles correspond to the first and last row respectively. The pixels in 
the fovea are arranged in the log-polar domain in contiguous triangles. Log-polar 
images are distorted version of the original; the most evident effects are that circles 
in the Cartesian image become straight lines in the log-polar plane and that almost 
half the number of the its pixels is employed to represent the central part of the 
scene. This last point illustrates the computational advantage of this representation 
(Figure 4.3 depicts the log-polar sampling of a real image). 

4.2. Gaze control 

In an active system with space-variant vision eye movements are essential to build a 
coherent percept of the world. They can be voluntary as well as reflexive. Reflexive 
movements allow us to stabilize the visual world when we walk, run or drive. 
These compensatory eye movements take care of minimizing the motion in the 
visual scene we perceive as our body actively moves about (like in walking) or gets 
passively stirred (as when we drive our car or we are on a train).  

Voluntary mechanisms for moving gaze to explore the visual world are also very 
important in animals and became a requirement after development of fovea took 
over panoramic vision in more evolved species. In the latter case the entirety of our 
perception results from the integration between consequent images acquired as 
exploratory movements are performed in the environment. Together with foveal 
 

 
Figure 4.3. An example of log-polar mapping. Left: the original image. Right: the resulting log-
polar image in the cortical plane. The particular image stresses the salient characteristics of the 
transformation: the circular arrangement of the petals is straightened in the log-polar domain, 
more than half of the pixels in the cortical plane is used to represent the central part of the flower. 
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vision gaze provides an automatic mechanism to direct our attention toward 
regions of interest in the scene – the latter may be for example an auditory, visual or 
tactile sensation. Perhaps more surprisingly, gaze plays a very important role in 
action planning as well. Experiments have shown that the direction of gaze guides 
locomotion and anticipates the trajectory the body is going to follow (Berthoz, 2000). 

4.3. Visual stabilization 

Visual stabilization is the result of at least two reflexes involving inputs from the 
vestibular system and visual information. They are called vestibulo-ocular reflex 
(VOR) and opto-kinetic reflex (OKR) respectively and cooperate to reducing the slip 
of the images on the retina (Berthoz, 2000; Carpenter, 1988). VOR is very fast owing 
to the fact that vestibular information is simple and does not need to travel a long 
neural pathway to be processed. A simple experiment can be made to realize the 
efficiency of the VOR. Raise a hand in front of your eyes and move it in an 
oscillatory movement from left to right. Try now to track the index finger with the 
eyes and to increase the speed of the hand. You will see that as soon as the speed 
exceeds a certain value the eyes tend to jump back and forth to the extreme 
positions of the hand. This is because the brain is no longer able to track the index 
finger efficiently and switches from smooth pursuit to saccadic control. Now, try to 
keep the hand still and move the head instead. From a kinematic point of view the 
problem is exactly the same, but it turns out to be much easier for the brain. This 
time, in fact, it takes advantage of information from the vestibular system. No 
matter how fast we move the head, our eyes can easily track the index finger.  

OKR has a longer latency because requires the computation of optic-flow (i.e. the 
displacement of the image that projects on the retina) in the visual field. 
Accordingly VOR is suitable for fast movements whereas OKR is preferable for 
slower one. For better stabilization both mechanisms are actually integrated in the 
brain (see for example (Carpenter, 1988)).  

Past works have addressed the implementation of such mechanisms on Babybot 
(Panerai et al., 2000). Although the robot in the experiments described here was 
placed on a table, visual stabilization – especially the VOR – was still employed 
during tracking to facilitate the coordination between the eyes and the neck (Metta, 
2000). 

4.4. Voluntary eye control 

Smooth pursuit and saccades are the mechanisms used by humans for voluntary 
control of gaze. In the first case the eyes move relatively slowly (< 50 deg/s) to 
maintain the fixation on a moving target. When the brain wants to shift the 
attention from a point in space to another, or needs to catch up with a fast target, it 
performs a saccade. Saccades are ballistic, open loop, movements that, owing to 
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their high speed (roughly, a saccade can be as fast as 1000 deg/s), increase the 
efficiency of the oculomotor system.  

Both strategies were included in the robot. Smooth tracking has been 
implemented with a closed-loop control exploiting positional information. The 
Jacobian of the transformation between sensory and motor space – required to 
convert the positional feedback into appropriate velocity commands – was learnt by 
the robot at the very first stage of the developmental process. Conversely saccades 
require a transformation between sensory information and motor command. An 
inverse (feedforward) model is needed to compute the motor command required to 
fixate a target whose position is available in a given sensory space. Insofar we have 
used the term sensory space, because gaze can be oriented toward any sensory 
source (to be of auditory, tactile or visual nature). The superior colliculus is the area 
in the brain where the integration of the information between different sensory 
modalities is thought to occur (Meredith and Stein, 1986). Orienting behavior in the 
robot is indeed driven by visual and auditory cues (Metta, 2000; Natale et al., 
2002a).  

4.5. Vergence control 

We have just discussed the importance of the so called orienting behavior 
controlling the direction of gaze, that is its version. In binocular systems to 
determine the position of an object in space it is required to have both cameras 
fixating it. This is what is commonly referred to as vergence control. In principle if 
both cameras are tracking exactly the same target there is no need for a separate 
controller. As this is rarely the case, disparity information is usually employed to 
improve vergence control and depth estimation. The solution adopted on Babybot 
uses cross-correlation to compute a measure of the similarity between the two 
images (the disparity-index). At every frame images are shifted and the disparity-
index computed; the shift corresponding to the minimum disparity drives a closed-
loop control to verge the eyes toward the same point (Manzotti et al., 2001). To 
increase accuracy, in our latest implementation the disparity-index is computed on 
the central part of the images (a square of 128x128 pixels centered in the fovea) 

Control of version and vergence need to be integrated in a meaningful way. We 
implemented the following straightforward solution. The tracking algorithms (the 
tracker described in the next section or the hand tracker described in Section 5.2) 
run on the images acquired by the left camera; both eyes are controlled to track this 
reference signal. Stereo fusion is achieved by adding the output of the vergence 
algorithm to the motor command of the right eye. To put it in other words, there is a 
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Figure 4.4. Head control schema. Images from the left camera are sent to the tracker which 
extracts the position of the target in image coordinates; by means of the inverse Jacobian this 
information is converted into motor commands for the eyes. The block indicated by “vergence” 
computes the disparity index; the latter is then multiplied by a constant proportional gain and 
added to the right eye motor command. Information from the inertial sensor is used to compute 
the VOR component. VOR, vergence and version are summed together and issued to the low-
level controller which computes the torque to drive the motor. From the encoder feedback the d.o.f. 
of the neck are coordinated with the eyes as described in Section 4.6. The blocks realizing saccades 
are not shown.  

“dominant” eye where the tracking is computed and a “slave” eye which goes 
behind it trying to minimize the disparity. A similar strategy seems to be employed 
by the brain to combine version and vergence. The separation, however, is fuzzier 
and left and right eyes contribute, although to a different extent, to both the 
components (more details are reported in  (Carpenter, 1988) , Section 5.3). Figure 4.4 
reports a schematic diagram of the head control loop, Figure 4.5 and Figure 4.6 
show trajectories of the robot performing tracking. 

4.6. Eye-head coordination 

Visual information is naturally represented within an eye centric reference frame. In 
humans, however, head-centric reference frames are also used to plan orienting 
behavior. On the one hand control of the neck extends the region of space the robot 
can attend to, however, on the other hand, it adds redundancy to the system. This 
means that the same 3D fixation point can be attained by using different joint 
configurations (in the case of the Babybot for instance the head consists of 5 d.o.f.). 
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A possible solution is to define a strategy to coordinate the eyes with the head. 
Thus, the additional pan of the neck is controlled in such a way as to maintain a 
“comfortable” posture where the eyes are in a symmetrical vergence configuration. 
The control schema that implements such strategy is a feedback loop which acts to 
minimize the difference between the eyes joint angles. The additional tilt of the neck 
moves to minimize the vertical position of the eyes with respect to the head. In 
other words, the neck is controlled to follow the eyes so that they are usually 
centered with respect to the head. This solution is simple but effective because it 
maintains the eyes far from the limits and thus ready to perform new movements. 

4.7. Attentional system 

In the previous sections we have described how the motor system can generate 
appropriate motor commands to orient gaze toward a given sensory source. The 
robot can build and continuously update a saliency map containing regions in space 
where interesting events occur. Of course there may be more that one region of 
interest. For example a motion algorithm detects someone entering the room while a 
color segmentation algorithm is selecting a bright red toy and the auditory system 
perceives a noise because an out of sight object has just fell off the table. To obtain a 
meaningful behavior the robot should be capable of inhibiting less interesting 
stimuli and direct its attention toward the more significant ones.  

If on the one hand the robot needs to shift attention from a location to another, 
on the other hand gaze has to be maintained – at least for some time – to the same 
object in order for the robot to plan an action and interact with it (vergence requires 
some time before stereo fusion is achieved precisely). This decision could be made 
based on the stimuli alone (bottom up approach) or taking into account the internal 
status of the robot, its experience or the task to be performed (top down approach). In 
the first case the designer may decide to make red toys more attractive than grey 
ones, or to give higher priority to motion or to sound sources. In the second case the 
robot could get bored after some time it has been tracking the same object and 
decide to seek for a more interesting one (perhaps a novel one). The design of an 
attentional system is a tricky problem and goes beyond the scope of this research. 
Simple solutions were used in the experiments reported in this thesis. We used a 
tracking algorithm based on correlation between successive frames; the algorithm 
was originally written by Fitzpatrick at MIT-CSAIL and ran on Cog (Fitzpatrick, 
2003) and was lately adapted to run on the Babybot. This tracker basically forces the 
attention of the robot to follow an object that is placed at the center of the cameras. 
Whenever a more controlled situation was required color segmentation was used 
instead; in this case the robot paid attention to objects with a predefined color. The 
robot can also keep memory of objects it has seen by storing their position in a map 
(Fitzpatrick, 2003; Johnson et al., 2003). The latter is coded in a body centric 
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reference frame by using the kinematic model of the head so it does not change as 
the eyes or the neck move. In this way it is possible to redirect the gaze of the robot 
toward an object that is out of sight.  

 
 
 

 
 

Figure 4.5. Vergence control: a toy is moved to follow a straight line toward the robot. Left: the 
trajectory of the fixation point in the 3D space. The fixation points is plotted with ‘+’ every 10 
frames (frame rate was 25 Hz), whereas the simple 3D model represents the robot: circles are the 
joints, solid lines correspond to the links (the arm did not move in this experiment). 1 and 2 mark 
the beginning and the end of the trajectory. Right: images from the right and left cameras at the 
same instants (L1-R1 and L2-R2 respectively). Notice that the car is maintained at the center of 
the visual fields of both eyes. 
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Figure 4.6. Tracking (vergence and version). A toy is moved while the robot tracks it. The left plot 
shows the trajectory of the fixation point during the experiment (top view); ‘+’ marks correspond 
to the fixation point every 10 frames (frame rate was 25Hz). The 3D model sketches the robot: 
circles are the joints, solid lines correspond to the links (the arm did not move in this experiment). 
Initial and final points of the trajectory are marked with 1 and 2. Images at the same instants are 
reported on the right (L1-R1 and L2-R2 respectively). Notice that the car is maintained centered 
within the visual filed of the two eyes 
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Chapter 5 

Learning a body map from 
experience

Before actually starting to explore the environment and act on it, the robot has to 
learn how to control its body. This requires a few additional abilities. Depending on 
the task, the control of posture and motion may be relatively easy or more difficult. 
The control of gaze, for example, is relatively simple because eyes and head have 
low inertia and are less likely to impact on unexpected objects. On the other hand 
the control of the arm can be more difficult due to the larger number of degrees of 
freedom and the higher inertia and loads involved. As outlined in the introduction 
(Chapter 1) these problems are addressed during the first phase of the 
developmental process. The robot has to be able to control gaze in order to fixate a 
particular location in space (or in the visual field) and to control the arm to reach 
out and eventually either grasp or touch the object on which it is fixating. In 
primates the brain maintains an internal representation of the different parts of the 
body, their relative position and physical properties such as size and weight. This 
body schema is thought to be used by the brain not only to plan motor actions but 
also to predict the outcome of potential actions before they are actually executed. 
Owing to this internal simulation the brain can abort possibly dangerous actions or 
modify an ongoing movement. 

This chapter deals with the algorithms and learning mechanisms used by the 
robot to acquire and tune an internal representation of its body. These basic skills 
will be used afterwards during the interaction with the environment and the objects 
therein. 
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Figure 5.1. Arm control schema. It consists of two loops; a feedback inner loop employs a PD 
controller to achieve a desired joint angle. The block marked with G computes the gravity load 
term which is fed-forward to the control board. 

5.1. Learning gravity compensation 

Grasping an object involves the execution of a motor action with the arm to bring 
the hand close to the target object. To solve this problem the robot has to compute 
the position of the object in some reference frame (i.e. the retinal coordinate system) 
and transform it into a motor command suitable to drive the arm joints (i.e. motor 
torques). In robotics this problem has been solved in different ways. One solution is 
to first solve the inverse kinematics, obtain the final posture of the arm in joint space 
and then compute the torques necessary to drive the manipulator in that particular 
posture. To better formalize this last problem let us consider the Lagrange equation 
for a generic manipulator: 
 ( ) ( , ) ( )M q q C q q q G qτ = + +  (5.1) 
where τ  is the generalized torque applied to the manipulator, M  is the inertia 
matrix, C  and G  Coriolis and gravity vectors respectively. Assuming the static 
case 0q ≈  and 0q ≈  equation (5.1) reduces to: 
 ( )G qτ ≈  (5.2) 
which merely gives the torque required to maintain the arm in a given posture. If 
( )G q  is unknown a straightforward solution is to employ a PID controller: 

 p vK q K qτ = ∆ +  (5.3) 

The latter is equivalent to simulating a damped spring-mass system with stiffness 

PK . Substituting (5.2) in (5.3) in the static case gives: 
 ( ) Pq G q K∆ =  (5.4) 

which states that q∆  can be reduced at will by increasing PK . 
If the robot acts in an unstructured natural environment it is impossible – 

especially during learning – to avoid unwanted collisions with objects. A means to 
reduce the risk of damage due to shock and collisions is low impedance control; as 
discussed in Section 3.1 this can be achieved by reducing the proportional gain of 
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the PID controller. If the gravity load term due to the arm’s weight is known a priori 
it is possible to add it as a feedforward term to the PID output: 
 ( ) ( )G q G qτ + =  (5.5) 

( )G q  decreases the torque the PID has to compensate; as a result it is possible to 
reduce the value of PK  (in theory, if the gravity was known exactly, the PID would 
not be required any longer). The resulting control loop is shown above (Figure 5.1). 

The gravity terms vary with the configuration of the manipulator. In the case of 
the PUMA arm the feedforward control is a scalar function of three variables 
( 1 2 3, ,q q q , see Section 2.1). To simplify learning, the controller uses only the 
following two variables2: 

 1

2 3v

q
q q q
⎧
⎨ = +⎩

 (5.6) 

The functions whose parameters have to be estimated have been chosen empirically 
to be of the following form: 
 ( )

1

2 2
1 1 1, v v v vG q q aq bq q cq dq eq= + + + +  (5.7) 

Learning takes place by random exploration of the arm workspace. At the 
beginning the feedforward controller does not contribute to motion, and only the 
low-gain PID controller is employed. As a result the control is not precise and the 
arm works under a large error condition. However, every time the manipulator 
stops in a particular posture (joint configuration) the controller can measure the 
current torque and use it as an estimation of the gravity term for that particular arm 
posture. This measure is fed to the controller and it is used as a training sample by 
the feedforward model. The form of the motion is that of equation (5.7) and is 
estimated by an iterative least squares procedure. After a certain number of learning 
steps the gravity compensation is activated and its output added to the output of 
the PID. If the forward model is precise enough the position error is consequently 
small. However, no force feedback is actually available in the PUMA arm and the 
output voltage of the control board was used instead (meaning that the frictional 
terms were not properly considered). For this reason, and due to the 
approximations we introduced, the PID controller is still required but with lower 
gain. 

Figure 5.2, Figure 5.3 and Figure 5.4 show the error during the learning phase 
and the gravity term for different arm postures for the first three arm joints. The 
procedure waits for a few samples (25) to be collected before the system activates 
the feedforward block: this is visible in the first part of the error plots. As soon as 
the block is active the error is quickly reduced. In the case of the shoulder joint – 
which supports more weight – this is far more evident (Figure 5.2). 

                                                             
2 1 2 3, ,q q q  correspond to the shoulder, arm and forearm respectively. 
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Figure 5.2. Arm gravity compensation, joint 1 (shoulder). Left: gravity load as a function of the 
arm joints; actual samples (circles) and estimated function (mesh) after 200 trial runs. Ordinate 
uses arbitrary scale (control board digital output). Right: error trend during learning, actual data 
(dashed line) and moving window average over 10 trials (solid line). After 25 trials the gravity 
compensation is activated and the error decreases quickly. 

 
 
 

-0.5

0

0.5

1

-0.5
0

0.5
1

-4000

-2000

0

2000

4000

q1 [rad]q2 + q3 [rad]

es
tim

at
ed

 to
rq

ue

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

trial run

er
ro

r [
de

g]

data
moving window av. 10 trials

 
Figure 5.3. Arm gravity compensation, joint 2 (arm). Conventions as in Figure 5.1. In this case 
the improvement is less remarkable as the gravity load is lower compared to joint 1. 
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Figure 5.4. Gravity compensation, joint 3 (forearm). Conventions as in Figure 5.2. In this case 
the improvement is less remarkable as the gravity load is lower compared to joint 1. 

5.1.1. Discussion 

Gravity compensation is a well known technique in robotics. It has been presented 
here as a first simple example of body schema; the robot autonomously learns a 
physical property of its own arm (e.g. the weight of the shoulder, arm and forearm). 
It is important to stress a few points. Firstly, the experiment should be integrated 
with other behaviors; the robot could collect the learning samples while performing 
other tasks, for instance during the learning of the hand localization (described in 
the next section) or during reaching. Secondly the gravity estimation block can be 
conceived of as a sort of predictor whose output, for any given arm configuration, is 
the expected weight of the arm. Possible discrepancies between expected and real 
values could be interpreted as external events (e.g. a successful grasp, the presence 
or absence of a table). In all these cases, more accurate sensors like strain gauges, 
force as well as tactile sensors on the hand would be required to take frictions into 
account and discriminate the condition when the arm touches an object or the 
environment. 

As a final note it is important to say that, given the particular problem and the 
relatively poor quality of the available feedback (the output of the control board), a 
second order polynomial function of two variables provided a sufficient 
approximation for the gravity term of the manipulator. This was a convenient 
solution because the output of such a simple function is generally stable and easy to 
monitor and visualize. Of course more accurate feedback would require a more 
powerful approximator (e.g. a neural network). 

5.2. Learning to localize the robot’s hand 

One way to solve the inverse kinematics problem is to learn the functional relation 
between the head fixation point and the arm posture. This mapping can be used to 
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program a ballistic movement of the arm toward the point in space upon which the 
head is. A closed-loop mechanism may still be required to compensate for small 
errors in case the ballistic motion is not accurate enough. In both cases the robot 
must be able to track the arm end-point (the hand in this case) and to distinguish it 
from the object it is going to grasp.  

In psychology the ability of humans to match an action with the agent that 
caused it, is called the sense of agency (Jeannerod, 2002). The sense of agency 
provides humans with the sense of ownership of their actions. It requires at least the 
existence of a representation of the location of the arm or the other body parts (body 
schema). This knowledge can be derived from several cues, mainly visual and 
proprioceptive in nature. The former determine the “seen” position of the body, the 
latter its “felt” position. Neurons in the premotor cortex of monkeys (area 5) have 
been found to code posture information about the arm (Graziano, 1999). Graziano 
and coworkers (Graziano, 1999; Graziano et al., 2000) tested the response of these 
neurons in different conditions. In the first experiment the arm was visible, while in 
another condition it was covered with a plastic barrier to prevent visual 
information. In both cases the receptive field of each neuron shifted according to the 
position of the arm, showing that both the sight of the arm and its felt position 
contributed to determine its spatial location. As well as this, visual information 
alone modulates this response; this was confirmed by a third experiment where a 
realistic fake arm was used to dissociate visual feedback and proprioception. Taken 
together these results show that vision and proprioception converge in the 
premotor cortex to encode space in an arm-centric reference frame. The fact that this 
area projects directly to the primary motor cortex and to the spinal cord suggests 
that this representation contributes to the control of limb movement. 

At this point one could wonder what are the mechanisms used by the brain to 
build and maintain such a representation during development; in fact self-
knowledge emerges early on in humans and it is undergoing construction right 
from the beginning of infant development (infants at 5 months of age distinguish 
their own leg movements on a mirror from those of another infant). Combined 
double touch and multimodal correlation allow babies to find out that their body is 
a unique entity in the environment. By moving their limbs around, babies learn that 
when their hand touches their face they feel a synchronous tactile stimulation on 
both hand and face. The same does not happen when they grasp an object or touch 
the floor when they crawl. Also, infants coordinate information from different 
perceptual systems to disambiguate between parts of the visual field whose motion 
matches what they expect based on their proprioceptive and kinesthetic feedback; 
they know that these parts of the visual fields are likely to be part of their own 
body. In particular perception of intermodal form is thought to have the most  
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Figure 5.5. Examples of correlated (a) and uncorrelated motion (b). The picture plots motion in 
the images for two pixels (a1 and b1) and the result of the zero-crossing algorithm (a2 and b2). 
Arm motion for the wrist joint is reported below (a3 and b3) together with the result of the zero-
crossing algorithm (a4 and  b4). By comparing a2 to a4 and b2 to b4 it is clear that (a) 
corresponds to the pixel that belongs to the hand. Ordinates are arbitrary scales (normalized 
values). 

significant role in the development of self-perception. This term represents the 
existence of sensory pattern that are similar across different sensory channels. 
During development infants become more attuned to similarities of pattern between 
proprioceptive and other sensory feedback. Other factors, like spatial correlation and 
timing (time coincidence of events) have a more flexible contribution in the self 
identification process. A possible explanation is that this flexibility is necessary later 
on during development for learning tool use (in this case tools extends the body), or 
for detecting causal links between one’s actions and their corresponding, delayed, 
consequences (Rochat and Striano, 2000). 

Similar approaches have been pursued in robotics as well. Yoshikawa et al 
(Yoshikawa et al., 2003) exploited invariances in the multi-sensory data. The idea, in 
this case, is that the body is invariant with respect to the proprioceptive information 
available to the robot. A neural network was hence trained to segment the arms of a 
mobile robot from the background. A somewhat different approach was followed 
by Fitzpatrick and Metta (Metta and Fitzpatrick, 2003) who exploited self-generated 
motion to segment the manipulator endpoint from the background. The rationale 
was that among the objects in the scene the body is defined as the one that behaves 
in an expected, repetitive way. Correlation between motor commands and motion 
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in the visual field was used to segment the hand. The robot performed a periodic 
movement of the forearm to generate motion in the visual scene. Optic-flow was 
then compared to the proprioceptive feedback to select regions of the image more 
likely to be part of the robot’s arm.  

The approach followed here is similar. The wrist of the robot was moved in 
order to produce a small movement of the whole hand. Visually, a simple motion 
detection algorithm was implemented, computing time difference information 
between each frame and a model of the background (the description of the 
algorithm is reported in Section 8.1). For each pixel in the “motion image”, a zero-
crossing algorithm was used and a periodogram computed. Similar periodic 
information was computed on the motion signals coming from the motors. Pixels 
that moved periodically, and whose period of oscillation matched that of the motor 
commands, could be selected as being part of the hand. Parts of the image whose 
motion was uncorrelated (different period or aperiodically) could be segmented out 
(i.e. someone walking in the background). Figure 5.5 shows an example of the 
detection procedure for two different pixels whose motion is correlated (a) and 
uncorrelated (b) with that of the robot’s hand. 

5.2.1. Segmentation and prediction 

The output of the algorithm is a pixel map; in order to get a dense segmented region 
a series of low-pass filters at different scale are run on the pixel map image. 
Processing is carried out in the log-polar domain by using the integral image 
representation; originally proposed by Viola and Jones (Viola and Jones, 2001) the 
integral image allows for fast computation of multi-scale filters. A simple threshold 
was applied after filtering to get the region of interest as explained in Figure 5.6. As 
it is, this algorithm cannot be used to track the hand of the robot or to localize it 
 

 
Figure 5.6. Hand segmentation schema. 
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during a grasping action. Nevertheless it is a good starting point for building more 
elaborate models of the hand, including visual features like color and shape. In 
particular a simple color histogram was evaluated. The color histogram was 
computed in the Hue-Saturation space and it was constructed from many results of 
the motion-based segmentation. Here we exploited the fact that the body is 
invariant with respect to the environment and that eventually the background 
contribution cancels out. Figure 5.7 shows the result of this process.  

In general color is an appealing feature for object recognition and localization, 
owing to its invariance to scale, rotation and to occlusions. The histogram gives a 
statistical description of the colors of the hand; by comparing this distribution with 
that of the pixel in the image, it is possible to identify regions that are more likely to 
be part of the hand (histogram intersection). If such regions are more or less 
uniformly colored (as in the case of the palm of the robot’s hand) histogram 
backprojection could be used instead. Although much faster, backprojection is less  
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Figure 5.7. Hand color histograms during learning (top-view). The Hue-Saturation space is 
divided in 10x10 bins to sample the interval from 0 to 255; different shades of gray are used to 
represent the probability: from light gray (0.0), to dark gray (1.0). Histograms are normalized 
with respect to the maximum. As the learning progresses the contribution of the background 
cancels out and the histogram gets skewed toward the color of the hand (about (30, 150)). 
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Figure 5.8. Example of hand detection and segmentation (1). Top sequence, from left to right: 
original image, result of the detection algorithm, low-pass filtering, ellipse fitting and 
segmentation. Bottom: the same sequence in the logpolar domain. 

accurate and easily fooled by objects with similar color. Furthermore the histogram 
cannot be tuned too sharply, as color is sensitive to spectral changes in illumination 
and reflectance. To overcome these intrinsic limitations, shape information can be 
used to further disambiguate between similar regions. A parametric model could be 
fitted to the contours of the segmented image and integrated into the recognition 
process (e.g. size and orientation of the hand). To this aim several algorithms could 
be used (Kass et al., 1988; Leymarie, 1990); we used a moment based ellipse 
representation instead (a complete description of the process is detailed in Figure 
5.6 and Figure 5.8; see also Section 8.2). As geometric properties do vary with 
distance and rotation a predictive model consisting of two neural networks was 
employed. 

Training data was collected by repeatedly moving the arm at different spatial 
positions and by running the segmentation. The inputs to the first neural network 
are the arm joint angles and the training samples are the position of each segmented 
blob. In principle the latter should take into account also the position of the cameras 
(e.g. the head posture). Unfortunately in this case the input space would be too 
large and the number of samples required too high for learning to be effective.  

The following solution was applied instead. In practice the network learns to 
predict the position of the hand in an egocentric reference frame. The original 
retinocentric (x,y) information is converted into a bodycentric reference frame and 
sent to the neural network as a sample for learning; afterwards the output of the 
network is converted back to the retinal plane (see Figure 5.9). 
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Figure 5.9. Hand position predictor schema. 

This simplified the learning process because the input space was narrower. 
Essentially both transformations, back and forth from egocentric to retinocentric 
representation, involve knowledge of direct and inverse kinematics of the head. In 
the current implementation this was hardwired in the system; in the next section we 
discuss how this assumption might be loosened. 

The inputs to the second neural network are the arm joint angles and training 
samples are the shape parameters as obtained by the fitting algorithm. The head 
posture in this case is not considered, as the shape parameters do not vary if 
translational effects are negligible (Figure 5.10). As soon as samples were gathered 
the robot could start exploiting the localization system to track the hand. The 
detection was further improved because the hand was more likely to appear in the 
centre of the visual field; shape parameters are in fact unreliable when the hand is in 
the periphery or partially out of sight (Figure 5.12 shows some examples of 
segmentations during learning). 

The robot carried out the learning in a self-supervised way. The neural networks 
were trained online in the following way: the learning module keeps a list of the 
training samples. When enough patterns are collected the network is randomly 
initialized and the learning algorithm starts. Training samples occurring during this 
process are stored in the list for later use. The list of training patterns thus gets 
longer as new samples are gathered, although it is possible to discard (forget) older 
samples with a first-in-first-out policy. 

 
Figure 5.10. Hand shape predictor schema. 
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In the case of the hand localization the outcome of learning was validated by 
testing the ability of the robot to predict new hand positions. Thus, as soon as a new 
sample is available it is compared to the current output of the neural network. As 
the learning progresses new samples tends to be closer to the output of the network, 
meaning that the prediction has improved (Figure 5.11). 
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Figure 5.11. Testing the learning performance. As soon as a new sample is available it is 
compared to the current output of the neural network. As the learning progresses new samples 
are closer to the output of the network, meaning that the prediction has improved. Ordinate 
reports the root square error in the image plane in pixels (dashed line is original data, solid line is 
moving window average over 10 samples). 
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Figure 5.12. Examples of segmentations. As learning progresses (from top-left to bottom-right) 
the robot starts tracking the hand; as a result the hand is more likely to appear in the center of the 
visual field. 

5.2.2. Exploiting the hand prediction 

As described in the previous section, after training the robot is able to compute the 
position of the hand given the current posture of the arm. The hand localization 
block consists of a mapping between the arm joint angles and the Cartesian 
coordinates of the arm end-point in the visual field. It is now straightforward to 
implement a tracking behavior by connecting the hand localization block to the 
controller of the eyes described in Section 4.4. This “blind” tracking proved to be 
surprisingly accurate; for this reason visual information was not used to improve 
localization (Figure 5.14 shows a sequence of the robot tracking the hand). The color 
histogram was employed as a simple means to confirm the output of the forward 
module; pixels of the histogram backprojection were integrated and thresholded 
over the ellipse area to detect if the hand was occluded or not (Figure 5.16). 

The very same mapping could be used to predict the final outcome of a reaching 
movement. Before executing an arm movement, the robot can query the map with 
the desired arm joint angles, and compute (predict) the expected location and shape 
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of the hand at the end of the movement (Figure 5.15). The prediction might be used 
in several ways, for example to improve the hand tracking behavior. 

5.2.3. Discussion 

In this section we have shown the mechanisms by which the robot can 
autonomously develop an internal model of its body. The robot exploits self-
generated actions and seeks correlation between proprioceptive and visual 
information to segment its own hand from the background. Compared to other 
methods of segmentation this solution is more effective because it can cancel out 
parts of the background which move in different (uncorrelated) ways. This 
segmentation is used as a bootstrapping mechanism to extract invariant features 
that will be used to perform the localization without the need to go through the 
detection process all the time. A forward model is trained to compute position and 
shape of the hand based on the arm posture. The localization was used by the robot 
to track the hand. 

The hand localization system provides a response similar to the one observed in 
the premotor cortex of monkeys (Graziano, 1999; Graziano et al., 2000), where 
neural response is modulated both by visual and proprioceptive information. 
However some neurons were found to be less influenced by the sight of the arm, 
whereas others exhibited a response that was modulated more by visual feedback. 
In the system proposed here only proprioception is used; in this respect we 
modeled only part of the response of the premotor cortex. In humans the visual 
response is probably required to improve the spatial sensitivity of the localization 
and compensate for the relative inaccuracy of muscular proprioception. In robots, 
motor encoders are usually much more precise (fractions of degrees); in this case 
vision may still be helpful to correct drifts and avoid calibration. 

The idea of a body schema is not completely new in robotics. Yoshikawa and 
colleagues (Yoshikawa et al., 2003) exploited the idea that the body is an invariant 
entity in the environment to train a fully connected network and build a cross 
modal map of the robot’s body. By moving around the robot “labeled” those parts 
of the environment that proved to be invariant as being part of its own body. 
Although visual and proprioceptive information were included in the model, the 
experiment was limited to a single body posture (e.g. the robot moved in the 
environment but its arms did not). Assuming the arm is the only moving entity in 
the world, Marjanovic (Marjanovic et al., 1996) used optic-flow to segment the 
manipulator end-point. Arsenio and colleagues (Arsenio et al., 2003) used periodic 
movements for segmenting objects waved by a human teacher. In principle this 
approach could be also applied to the segmentation of the robot’s body; however in 
this case the system uses only “external cues” which makes the detection of the  
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Figure 5.13. Forearm segmentation. The algorithm used for the hand localization could be 
replicated for other body parts. In this case three examples are reported for the segmentation of the 
forearm. 

body more difficult. These restrictions were loosened by Metta and Fitzpatrick 
(Metta and Fitzpatrick, 2003) who followed a similar approach to the one presented 
here. They used optic-flow and computed cross-correlation between motion in the 
visual field and the arm motor command. Cross-correlation and optic-flow are 
probably more biologically plausible solutions and, in principle, they could allow 
more general movements to be exploited (instead of periodic ones). On the other 
hand, both cross-correlation and optic-flow are quite expensive from a 
computational point of view. For this reason they used coarse resolution images 
(128x128) and computed optic-flow over blocks of 16x16 pixels. Motor and visual 
channels were manually synchronized to compensate for different delays in the 
channels. In the case presented here the algorithm is much simpler and can be run 
in real time in the log polar domain at the resolution of 152x252. As a result the 
segmentation is a dense image which allows additional features like color and shape 
to be extracted. Since the period of oscillation is exploited instead of the cross-
correlation, the detection is independent of the delays and there is no need to 
synchronize the signals.  

The mechanism used to learn the hand localization could be extended to other 
body parts. For example the same algorithm was applied to the arm; the robot 
segmented the region of the image that moved as the result of a periodic movement 
applied to the forearm. The results of a few trials are reported in Figure 5.13; in this 
case it is not possible to distinguish between the hand and the forearm as both 
moved in the same way. By first learning the localization of the hand, however, it 
would be possible to remove its contribution to the motion of the forearm. This 
procedure, applied from the distal to the proximal limbs, allows building a 
complete model of the robot body. 

A few simplifications are worth discussing. During the detection of the periodic 
movement the head was kept stationary; this was required to facilitate motion 
estimation. At least at low speed the head motion could be compensated for by 
improving visual stabilization and by estimating the motion component due to the 
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head (egomotion). To simplify the learning of the hand localization module, we 
assumed knowledge of the head kinematics. This reduced the state space for 
learning that otherwise would have been too large to be explored. The position of 
the hand in the visual field was converted into a body centered reference frame; for 
this purpose only the rotational component of the head kinematics was actually 
required. This could be estimated by tracking parts of the visual scene during 
random movements of the head and learning a correspondence between motor 
commands and corresponding retinal slips. 

Finally, other cues could be integrated in the segmentation. For instance the 
algorithm discussed here used only information from a single camera, but the 
segmentation could be improved by including disparity information (Bernardino 
and Santos-Victor, 2002). 
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Figure 5.14. Hand localization (1). Frames from a 20 second sequence of the robot tracking the 
hand (each frame is taken at 1 second interval). The cross represents the position of the hand 
estimated from the arm posture, the ellipse plots its approximate shape; the gaze of the robot is 
controlled to maintain fixation on the cross. 
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Figure 5.15. Hand prediction. In this 20 second sequence the head of the robot does not move 
(notice the position of the toys in each frame). At frames 2, 5, 9, 13 and 17 a new motor command 
is issued; for each of these commands the map predicted the region of the image the hand will be at 
the end of the movement (frames 4, 8, 12 and 20 respectively). 
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Figure 5.16. Hand localization (2). The color histogram is used to check if the hand is actually 
visible or not. Both arm and head are stationary in this sequence; different objects are introduced 
to cover the hand. Cross and ellipse are depicted in black when the hand gets completely occluded 
(frames 5, 8, 10, 15, 18). 
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Chapter 6 

Learning to act on objects

In this section we move forward from the exploration of the robot’s body to the 
exploration of the environment: the robot adventures to explore the outer world. 
Three experiments are reported. In the first one the robot learns to reach for objects 
by building a mapping between the target location – expressed by means of the 
hand position when the object is being fixated – and the appropriate arm motor 
command. The second experiment (published in (Fitzpatrick et al., 2003; Natale et 
al., 2002b)) deals with the problem of learning how objects behave in the world 
when touched. Very simple actions – like pushing and poking – are used by the 
robot to explore the environment and link the effect of its own actions to the object’s 
behavior. This link is afterwards used to plan a motor action to achieve a desired 
goal. In the third experiment the robot uses the hand and a stereotyped initial motor 
synergy to explore physical properties of objects like shape, softness and weight. A 
representation of objects in a set is built by the robot with very little prior 
knowledge.  

6.1. Reaching 

In order to reach for an object in space the robots need to solve two problems: the 
first concerns the kinematic transformation between the position of the object in 
space and the corresponding posture of the arm, the second is the computation of 
the actual trajectory to achieve this posture with the appropriate dynamics. At least 
in part we have dealt with the latter in Section 5.1, where we have shown the 
control schema used by the robot to generate motor torques required to attain a 
desired joint configuration. In this section we address the first problem: given an 
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object in space, how to convert the visual information describing its spatial location 
into the appropriate sequence of motor commands. In particular we are interested 
in studying how the robot could learn autonomously this transformation. 

The very first aspect of the problem is the computation of the spatial location of 
the object in space from its projection to image plane. In theory stereoscopic 
information must be used to solve this problem; the distance of the object can be 
computed from binocular disparity between the stereo images. In practice, however, 
stereo reconstruction requires calibration of the cameras and hence precise 
knowledge about the camera parameters and their relative position. Besides, it 
assumes we are able to determine to location of matching points in the left and right 
images (the correspondence problem). The problem is further complicated because 
some points of the object in one image may be occluded in the other. For this 
reasons, techniques for depth estimation from stereo images are usually not suited 
for real-time applications. 

A possible solution is to rely on the tracking behavior and assume that the object 
to be reached coincides with the fixation point of the head. Fixation is achieved by 
fusing together the version and vergence components of the movement, as described 
in Section 4.5. Vergence, of course, makes use of disparity cues but the measure is 
computed globally on the fovea of the two eyes and it is thus faster and more 
accurate. Once the target is fixated, the posture of the head implicitly defines the 
goal for reaching. This approach, originally proposed by Metta (Metta et al., 1999), 
uses a “motor-motor” map (i.e. a mapping between joint angles) to link the position 
of the head with the motor command required to move the arm end-effector to the 
fixation point. This motor command is specified as the final position in joint space. 

This map can be easily acquired by tracking the end-effector: during an 
exploratory phase the robot moves the arm while tracking the hand. For each arm 
position the corresponding head posture defines a sample for training the map. A 
neural network is trained to compute the arm position based on the head posture, 
that is: 
 ( )arm head

q f q=  (6.1) 

Reaching starts by first fixating the object; once fixation is completed the head 
posture 

head
q  is used to address the motor-motor map and to recover the arm 

command 
arm

q . Metta proposed to mix goal directed movements and learning. His 
approach was inspired by observations about development of reaching in infants. In 
fact at birth infants are already able to perform arm movements; these movements 
are not completely reflexive but can be directed towards objects or the mouth (von 
Hofsten, 1982). Although in some cases arm motion is visually controlled to  
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Figure 6.1. Testing the learning performance. Whenever a new sample is acquired it is also used 
to address the network The output of the network is compared to the same input to estimate the 
ability of the network to predict new samples (see text). The error trend shows that the training is 
consistent. 

maintain view of the hand (Van der Meer et al., 1995), arm trajectories are mostly 
ballistic and vision is not used to control and correct the ongoing action (see 
(McCarty et al., 2001) for a review). 

In the robot the map of equation (6.1) was initialized with three values to mimic 
a (crude) reflexive head-arm coordination. These three reflexes were designed to 
maintain the arm within the field of view; in practice the arm would stretch toward 
the direction of gaze, the latter being discretely sampled in three areas, right, center 
and left. The exploration was then achieved by adding noise to the arm command. 
Accordingly the robot would start reaching for objects by using the initial reflexes; 
at the end of each run the head would move to fixate the hand and collect a new 
sample to fill the map with. The initial noisy configuration allows the arm to explore 
the joint space and fill the “space” of the map in between the initial reflexes. This 
exploration strategy is advantageous because it limits implicitly the movement of 
the arm within a safe portion of the workspace; furthermore the behavior of the 
robot bias the exploration towards points that are more commonly used (e.g. the 
space in front of the robot). 

In the experiment reported in this section a slightly different strategy was used. 
The first part of the reaching proceeds as described before. The difference is that 
after reaching the robot performs a few small random movements while tracking 
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the hand. The noise follows a Gaussian distribution with mean value of 0 degrees 
and standard deviation of 5 degrees. This strategy was implemented to speed up 
learning and gather several training samples out of each reaching action.  

Learning was tested online during the acquisition of the samples. As the location 
of the target is not directly accessible, to provide a measure of performance the 
following method was used instead. After each sample ( ),n n

h a
q q  is acquired – and 

before it is used to perform a learning step – the network is addressed. The output 
vector 

a
q  is then compared to the current sample to compute the error: 

 n

error a a
error q q q= = −  (6.2) 

In this way we tested the capacity of the network to predict new samples; the trend 
of the error during about 400 trials is reported in Figure 6.1. Notice that the average 
error decreases, meaning that the learning is effective and consistent. After the 
learning the robot can reach for an object it is fixating at (two examples are shown in 
Figure 6.3 and Figure 6.4). Since it is not possible to command an instantaneous joint 
transition to the arm, a mechanism to generate smooth trajectories is required. A 
simple linear trajectory generator is used to interpolate joint angles between the 
actual and the final position; each command is hence sent to the low-level control 
board which computes the torque to drive the motors. The control loop runs at 1 
KHz frame rate whereas the trajectory generator runs at 25Hz. 

A final note concerns the size of the input to the reaching map. The head posture 
is specified by 5 joint variables, but not all of them are required to uniquely specify 
the position of the target. In the first implementation by Metta the input vector was 
reduced by heuristically coding the direction of gaze into 3 variables only (version, 
vergence and tilt, respectively). In this experiment the head kinematics was 
employed to reduce the head posture to 3 variables representing the position of the 
fixation point in the Cartesian space (x,y,z). This solution is more precise but less 
biologically plausible; another coding might use the orientation components of the 
head kinematics and substitute the vergence angle for distance. A possible strategy 
to estimate the head kinematics is discussed in Section 5.2.3. The complete arm 
control loop is reported below (Figure 6.2). 

 
Figure 6.2. Arm control schema (reaching). The fixation point is computed from the current head 
posture (joint angles). The motor-to-motor map converts it into the desired command for the arm; 
the trajectory generator produces a set of “smooth” commands which are sent to the low-level 
controller (the latter is described in Section 5.1). 
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Figure 6.3. Reaching sequence (1). The robot tracks the bottle and then reaches for it. Frames are 
taken at 1 second each, the sequence lasts 6 seconds. 

 

 
Figure 6.4. Reaching sequence (2). The robot tracks the bottle and then reaches for it. Frames are 
taken at 1 second each, the sequence lasts 6 seconds. 
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6.2. Learning to act on objects 

In this experiment the robot learns the effects of its actions on the object and 
thereafter uses this knowledge to drive motor-planning. It is important to note that 
by “effect” we mean not only the effect of the object, but also the effect on the robot 
– the force felt by the robot or the amount it had to move its head to continue 
tracking, for example. In this experiment we consider only one effect: the direction 
that the object moves in, as a result of the action. There are naturally many other 
effects that one could also pay attention to: how far the object moves, how long the 
object continued moving after the initial contact and so on. However, in the 
experiment described here the robot attends only to the instantaneous direction of 
motion of the target just after it has been pushed/pulled by the robot.  

The goal of the experiment is to learn the instantaneous direction of motion of 
the target object for each of several different approach motions of the hand from 
different directions. This learned knowledge is later used by the robot to select the 
appropriate motor action to move an object in a desired direction.  

6.2.1. Description of the experiment 

This experiment was carried out before the robotic hand was mounted on the arm; 
for this reason the manipulator endpoint is a simple metal stub. The tracking and 
hand localization algorithms were also not fully developed. Color segmentation was 
used to localize and track the toy placed on the robot play-table and the arm 
endpoint. Color segmentation was carried out in the HSV space on the log-polar 
images from both eyes. Retinal target position was then extracted as the centroid of 
the segmented region. Gaze was controlled as described in Chapter 4. At the 
beginning of each run the robot started from a randomly chosen initial position in a 
set of four (Figure 6.5). While reaching for the target the robot continuously fixated 
it; thus, ideally, the object was always centered on the fovea, whereas the moving 
hand was being tracked – not fixated – in the peripheral vision. Figure 6.5 shows a 
possible sequence of such a trial. The pushing action started from position 1 (b) and 
ended with the target having been shoved to one side (c). The moment when the 
hand first touched the object – moment of impact – is important because it signals the 
instant when the relevant measures have to be taken. This instant corresponds to a 
large error in tracking and was localized by using the sharp increase in the 
magnitude of retinal target position. At this moment the direction of displacement 
(in retinal coordinates) of the target was extracted. No transformation to body-
centered reference coordinates was required in this experiment as the robot built a 
link between this retinal error and the corresponding motor action. 

After the initial impact the system continued to track for the object if it was still 
in the field of view, or lost track of it. In both cases a human brought back the object 
to the center of the table so that another run could start. 
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1 2 3

4

(a) Initial arm-positions (b) The beginning of a 
pushing movement

(c) The end of the 
movement

 
Figure 6.5. Details of the experiment. (a) the four initial positions for the arm. (b) and (c) report a 
pushing trial run. 

During each trial, the robot continuously monitored several state variables: 
• Vision: position of the hand in retinal coordinates – extracted from color 

segmentation. 
• Vision: position of target object in retinal coordinates – extracted from color 

segmentation of the object. 
• Proprioception: 3 joint coordinates of the arm (the wrist was fixed in this 

experiment). 
• Proprioception: 5 joint coordinates of the head. 
• Proprioception: 3 force components and 3 torque components at the wrist 

, ,x y zF F F⎡ ⎤⎣ ⎦  and , ,x y zT T T⎡ ⎤⎣ ⎦  respectively. 
For the purpose of this experiment, however, we extracted only the initial position 
of the arm and the instantaneous direction of the target displacement vector at the 
moment of impact, along with force and torque sensed by the wrist at the same 
instant (see Figure 6.6). 

The goal of this experiment was to learn the effect of a set of pushing/pulling 
actions from different directions on a toy object. After learning this knowledge 
could be used to plan an action to bring about a desired effect (e.g. to move an 
object toward another one). The system learnt a mapping from the initial position of 
the hand to the direction of target motion. The trajectory was not explicitly planned 
here as it was determined uniquely by the initial hand-positions; for this reason this 
information was sufficient to plan the motor action. 

Associated with each initial hand position was a direction map (polar histogram) 
that summarizes the directions that the target moved in when approached from that 
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(a) Before impact (b) Moment of impact  
Figure 6.6. Relevant visual features. Images are from the robot’s point of view and were here 
remapped to the Cartesian space to facilitate understanding. 

position. After each trial the appropriate map was updated with the extracted target 
displacement vector. The map is a nearest neighbor look-up table where input and 
output values are accumulated and extracted when required. The map was updated 
by averaging new samples with the value already present in the nearest position (if 
any). If the table was empty a new entry was created to store the current sample.  

It is important to note that the arm position was preferred as an alternative for 
other measures that could correlate as well with the target direction. A possible 
candidate for instance was the direction of approach of the hand to the target. The 
reason is that in this way it was easier to invert the learning without explicitly solve 
 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Target displacement radial frequency plot: 1

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Target displacement radial frequency plot: 2

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Target displacement radial frequency plot: 3

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Target displacement radial frequency plot: 4

 
Figure 6.7. The learned target-motion direction maps for each initial hand position. 
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the inverse kinematics problem (as it would have been the case if the direction of 
approach of the hand had been used instead). Given a desired direction of motion of 
the target the robot had just to lookup the positions were the arm should have to be 
initially placed. The testing of the learning was done by presenting a stationary toy 
as a new desired target position. The robot’s goal was to use the learned maps to 
correctly pre-position the hand and push the target and move it toward the toy. 

6.2.2. Results 

Approximately 70 trials distributed evenly across the four initial starting positions 
were conducted. Figure 6.7 shows the four direction maps learned, one for each 
initial arm position considered. The maps plot the frequency with which the target 
moved in a particular direction at the moment of impact. Accordingly, longer radial 
lines in the plot point toward the most common direction of movement. As an 
example Figure 6.8 reports the four force maps during a single trial. In this case  the 
polar histograms plot the force measured by the force sensor at the wrist (only two 
components were reported). As we can see, all maps are sharply tuned toward a 
dominant direction. In the case of the force, the moment of impact corresponds to a 
stronger vector opposing the direction of motion of the target (as predicted by 
Newton’s third law). 
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Figure 6.8. The wrist force maps, for each initial hand position (single trial). 
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6.2.3. Testing the learned maps 

As shown in Figure 6.9 the learned maps were used to drive motor planning in a 
straightforward way: 
• The system was presented with the usual target as before. Another toy was 

placed nearby (Figure 6.9 (a)), the goal being to push the target toward it. The 
system foveated the target while locating the new toy in its peripheral vision. 
The retinal displacement of the toy was used as the desired position dr . 

• The angle θ  of this displacement vector was taken to be the direction of 
desired motion and was used to find the direction map Mθ  with the closest 
matching dominant direction. 

• The robot first moved its hand to the hand-position associated with the map 
Mθ  and then began its motion toward the target (Figure 6.9 (b) and (c)). The 
result was the target being pushed toward the desired direction. 

An exemplar sequence of this behavior is reported in Figure 6.9. The round toy 
defined the new desired position toward which the target must be pushed (a); the 
robot picked the correct action to fulfill the task based on what it had previously 
learned (b) and (c). 

The performances were tested by taking a quantitative measure of error before 
and after the learning. The error was the angle between the desired direction of 
motion and the actual direction the target moved in after being pushed as drawn in 
Figure 6.6. The control case (baseline) consisted in 54 trials where the goal direction 
(round toy) and the initial position of the hand were varied randomly among the  
 

(a) The round toy is the new 
desired target position

(b) The robot positions the 
arm in preparation for the 

pushing movement

(c) The end of the movement

 
Figure 6.9. Using the direction maps to drive goal-directed actions. 
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Figure 6.10. Learning performance. Distribution of the angle between desired and actual 
direction, before (left) and after (right) the learning. Zero degrees indicates no error, whereas 180 
degrees indicates maximum error. 

four possibilities. The left plot in Figure 6.10 reports the resulting error plot; as 
expected the distribution is almost uniform across all possible values. The same 
experiment was carried out this time using the learned maps to position the hand 
and yielded the error plot of Figure 6.10 (right). The distribution this time is 
significantly skewed toward an error of 0 degrees meaning that the robot was able 
to correctly pick the initial hand position from the maps. A few errors close to 180 
degrees are still present not as a consequence of an erratic behavior but of an error 
in measurement. Although the target correctly moved in the desired direction, its 
motion was perceived as actually happening in the opposite direction. This 
happened because in these cases the head was already moving while the retinal 
target displacement was being measured resulting in an apparent backward motion 
of the target. The same effect is visible in the learned maps as those vectors which 
are pointing in the direction opposite to the most frequent one (Figure 6.7); this did 
not affect the behavior of the robot because cancelled out as the result of averaging 
across several trials. In any case the solution is to integrate the head movement 
signals to compensate egomotion and extract the “true” motion of the target. 

6.2.4. Discussion 

The experiment discussed is a first but important step toward “learning to act”. 
Usually the effect of a robot’s action on an object is implicitly assumed in the 
planning, we choose to learn it through play/exploration. The experiment makes 
some simplifications to test the basic idea. The main directions for improvement are 
the following. Moving to a continuous space of hand-positions. Only four initial hand 
positions were considered, but a more natural approach would be to pick hand-
positions at random during trials and fill the table. To achieve better generalization 
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a neural network could be used instead of the nearest neighbor look-up table. Use of 
3D information. Although 3D information was implicitly used to reach the fixated 
target, we made the tacit assumption that the objects were placed on a table; two 
dimensional visual information was hence sufficient to estimate the direction of 
target movement. Disparity information could be employed to move toward a more 
general case. Interleaving learning with planning. For simplicity we first had the 
learning/discovery phase and then the motor planning phase; in principle there is 
no need for this separation and the learning could easily be carried out during 
action execution. Increasing the number of event variables monitored. Throughout the 
experiment the same hand speed and target were used. This resulted in the target 
being displaced roughly by the same amount for each trial. This of course does not 
happen if the speed of the hand varies or if another object is used. Consider for 
instance a ball or a bottle, both will tend to roll thus moving for a longer time and 
with different velocity. This will require a larger set of event features to be included: 
the size of the target, its shape, the distance moved, the force profile of the hand to 
mention a few (see for instance (Fitzpatrick et al., 2003; Metta and Fitzpatrick, 
2003)). 

In conclusion, the work described here is a novel contribution to the area of 
“event-interpretation” because constraints imposed by the combined modalities of 
vision, motor, and proprioception may make it easier to interpret certain self-
generated events than with vision alone. Furthermore, interpreting self-generated 
events may be a necessary first step to interpret more complex object-object events 
(we will come back to this in Chapter 7). 

6.3. Learning about objects’ shapes 

In the previous experiments we showed how the robot could exploit self-generated 
actions to explore object properties (see also (Fitzpatrick et al., 2003; Natale et al., 
2002b)). However, in those cases the robot did not have a dexterous hand and very 
simple actions were used instead (such as poking and prodding). This section 
describes a more sophisticated experiment; the goal is to explore the possibility of 
gathering physical properties of objects from very little prior knowledge and to 
understand what kind of parameters can be extracted from proprioceptive/tactile 
feedback. We show that given an extremely simple explorative strategy the robot is 
able to build a representation of objects that happen to touch its hand. The motor 
action is defined in advance and elicited by tactile stimulation. The explorative 
strategy and the hand’s passive compliance suffice in starting to acquire structured 
information about the physical properties of objects drawn from a small set. In 
particular, we show that the system categorizes objects by exploiting differences on 
their shape and weight. 
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6.3.1. Hand calibration 

The hand used in this experiment has been illustrated thoroughly in Section 2.1. We 
give here a short description of the most salient aspects and some details about the 
calibration of the encoders. The hand consists of five fingers and a total of 16 d.o.f. 
Six motors control the thumb, the index and a virtual finger made of medium, ring, 
and small fingers. The latter are linked together with springs, so that if motion of 
one of the real finger is inhibited the others are free to move. The other joints are 
also driven by elastic elements to achieve autonomous shape adaptation and to 
measure the force exerted by each joint. 

The hand posture can be computed from Hall-effect (magnetic) encoders from 
the joints and motor optic encoders. The magnetic encoders are mounted to 
measure the displacement of each joint due to the passive compliance of the springs. 
This information, together with the position of the motors obtained from the optic 
encoders, allows computing the direct kinematics (posture) of the hand. Since 
magnetic encoders have a non-linear response, they were manually calibrated by 
moving every joint individually and recording for each position the corresponding 
output. A cubic function was then fitted to this data. As an example Figure 6.11 
shows the input-output characteristic of the encoder mounted in the index finger 
second phalanx. 

Given the length of the links, and once the output of the encoders has been 
converted into an angular value, it is straightforward to compute the hand 
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Figure 6.11. Calibration of the magnetic encoders. The output of the encoders was sampled by 
manually moving each joint (‘x’ marks). The voltage-position characteristics were linearized by 
fitting a cubic polynomial function (solid line). The plot reports the characteristic of the index 
finger second phalanx. 
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kinematics. Figure 6.12 shows a few exemplar postures of the hand and the 
corresponding reconstruction by means of a simplified 3D Matlab model.  

It is important to notice that the calibration does not need to be exact, it was 
required in order to convert the encoder feedback (number of ticks and electrical 
voltage) into a common scale (joint angles). 

 
Figure 6.12. Hand postures. Hand pictures (left) and the corresponding Matlab 3D model (right). 

6.3.2. Touch-elicited grasp 

Newborns reveal a larger variety of finger movements involving both the whole 
hand and differentiated finger movements. They may be used in exploring objects 
but not when grasping them. In fact neonates reach for objects but they do not grasp 
them during this action. The reason is that reaching and grasping are coupled into 
extension and flexion synergies and, therefore, it is difficult for the child to flex the 
hand while the arm is extended (von Hofsten, 2003). If an object is put into the 
hand, however, the neonate might grasp it. Grasping is performed with the whole 
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hand; only much later children start employing relatively differentiated finger 
movements (8-9 months) (Ronnqvist and von Hofsten, 1994).  

In humans the ability to grasp objects at a very early age constitutes an 
important means of interaction with the environment. For this reason it seemed 
reasonable to implement the same mechanism in the robot. Similarly to what 
happens in newborns, tactile stimulation of the palm, initiates a clutching action. As 
described in Section 2.1 force sensing resistors (FSRs) are mounted on the hand to 
give the robot tactile feedback. These commercially available sensors exhibit a 
change in conductance in response to a change of pressure. Although not suitable 
for precise measurements, their qualitative response can be used to detect touch and 
measure to some extent the force exerted to the object surface.  
Figure 6.13 shows data recorded during a grasp elicited by tactile stimulation; in 
this case the action is performed with index, medium, ring, and small fingers 
opposing the palm. At time T1 a soft ball touches the palm (upper trace) eliciting a 
motor response. The lower trace here reports one of the encoder of the index finger. 
The finger touches the ball at time T2 and continues pressing it until time T3; the 
object is held between fingers and palm from T3 to T4. At time T5 it falls off the 
hand. Although still qualitative these plots show that proprioceptive information 
can be gathered through this simple grasping action. 

 
Figure 6.13. Proprioceptive feedback during an exemplar grasping action elicited by tactile 
stimulation. Upper and middle: palm and index touch sensor signals, normalized arbitrary scales. 
Below: index finger motor encoder, first phalanx. The scale in this case is encoder ticks; the 
conversion factor being 0.015 deg/tick (4000 corresponds to 60 degrees). 
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Figure 6.14. Two pictures of the hand grasping a small brick (left) and a bottle (right). The same 
motor command is used in both cases; the shape of the hand adapts to the object that is being 
grasped. 

6.3.3. Description of the experiments 

The goal of these experiments was to explore the possibility to gather physical 
properties of objects by exploiting stereotyped motor actions like the one described 
above. Another but important aspect was to understand what kind of physical 
parameters it could be extracted from proprioceptive/tactile feedback.  

In this case the robot did not yet explore the world by actively reaching for 
objects but grasped toys that either were placed in the palm or touched the fingers. 
Whenever pressure was applied to the fingers the hand closed by using a 
predefined motor command (synergy).  

The fingers stopped when the maximum torque value – e.g. the motor error in 
the controller – exceeded a certain threshold for a certain amount of time. Objects in 
a set were randomly chosen and given to the robot; the robot closed the hand and 
after a certain amount of time the grasp was released. The motor action did not 
change from trial to trial; owing to the intrinsic elasticity of the joints, the action of 
the object on the fingers was exploited to adapt the hand to the target of the grasp 
(Figure 6.14). For each grasp the posture of the hand reflected the physical size of 
the object; the vector of joint angles was sent to a self-organizing map (SOM, see 
Section 8.3 for a brief description of the architecture of this network). 

6.3.4. Experiment 1 

We employed a set of 6 objects with different shapes (see Figure 6.15 left). The 
condition where no object was actually placed in the hand was included in the 
experiment. For each object about 30 grasps were performed, the result of the 
clustering is reported in Figure 6.15 (right). The network had 225 neurons arranged  
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Figure 6.15. Experiment 1. Left: 6 objects were used, a bottle, a brick, a rod, a wooden ball, a small 
tennis ball made of foam rubber and a small plastic bowl. Right: result of the clustering. 6 classes 
were formed, one for each object plus one for the no-object condition. The map shows the grid of 
units (15x15), markers correspond to the neuron which resulted activated the most when a 
particular input pattern was applied; different markers correspond to different objects. In this case 
touch sensors were not used. 

on a 2-dimensional grid of 15x15 units. For each input pattern we reported the unit 
which was activated the most on the 15x15 grid; different markers were used for 
different objects. 

The SOM formed 7 clusters, each for a different object plus the no-object 
condition. Although some objects were quite different in terms of shape, the two 
small spheres, the plastic bowl and the tennis ball were almost of the same size. 
These two objects, however, are correctly separated by the network; this is also 
because the tennis ball is soft especially if compared to the rigid plastic covering of 
the bowl. As the fingers bent around the soft object they squeezed it a bit, thus 
facilitating the separation of the clusters. This result is remarkable since recognition, 
in this case, would have been harder for a putative recognition system based on 
vision only. 

6.3.5. Experiment 2 

A second experiment was carried out with two object having identical shape and 
size, but of different weight. At this purpose we used two plastic small bowls, one 
of which filled with water to increase its weight (Figure 6.16). The hand was 
oriented upwards, the palm facing the ceiling, so gravity affected the force exerted 
by the fingers during grasp. The robot grasped each object about 60 times and the 
collected information was sent to the SOM. In this case, since only two objects were  
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Figure 6.16. Experiment 2. Left: two identical sphere of different weight were used. Right: result 
of clustering. Markers represent the unit which was activated the most for each input pattern. 
Different markers correspond to different objects. In this case touch sensors were not used. 

used, the network consisted only in 25 units (arranged on a 5x5 grid). The result of 
the clustering, reported in Figure 6.16, shows that the network was able to separate 
the two sets as being originated from different objects. As the two spheres had 
exactly the same size, the capacity of the network to categorize the input patterns 
was due to the fact that the fingers applied different forces; the hand posture thus 
implicitly coded objects’ weight. 

6.3.6. Discussion 

We described two experiments where the robot used its hand to explore physical 
properties of objects drawn from a set. Objects were placed in the palm or between 
the opposing fingers; the grasping action was elicited by pressure either on the palm 
or on the fingers. We showed that given the specific design of the hand, and very 
little prior knowledge, the robot was able to collect certain physical features of the 
objects it manipulated. A self organizing map was employed to categorize the 
postural information obtained from grasping. The clustering is not surprising in 
itself, being just a natural result of the mechanical design of the hand (the elasticity 
components connecting the joints) and the motor synergy exploited by the robot. 
Nevertheless the network implicitly coded not only physical features like shape 
(that in principle could be visually extracted) but also intrinsic properties like 
weight. Other physical features, like the object’s compliance, facilitated clustering. 
For these reasons, we believe that the results are important; they prove that an 
active, embodied system can easily solve problems that otherwise would be hard (in 
the case of the balls of similar size), or even impossible (like in the case of the two 
identical small bowls having different weight). 
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The experiment did not employ visual information, but it is not hard to conceive 

possible ways to include it. Visual parameters like color and shape (central 
moments) could be extracted from the objects and included in the input vector to 
the SOM. 
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Chapter 7 

Conclusions

In this thesis we have described a possible approach to the implementation of 
perceptual abilities in a humanoid robot. This research extends and continues past 
work on the Babybot (Metta, 2000) by presenting a developmental path that 
proceeds in three stages, mainly: learning a body map, learning to interact and 
learning to understand by looking (see Section 1.6 in the Introduction). The 
previous chapters reported the details of the implementation of aspects related to 
the first and second stages. Within each chapter specific sections discussed the 
experimental results. In this section we want to integrate the discussion to show 
how these results can be placed within a broader picture. We claim that these first 
two stages are necessary for the third stage to unfold and lead to the realization of a 
truly cognitive system. 

7.1. Motor theories of perception 

Traditionally we consider the existence of five senses: touch, sight, hearing, taste 
and smell. In addition humans are endowed with several receptors which provide 
information about body motion. The sense of movement or, according to Berthoz  
(Berthoz, 2000), “the sixth sense” results from a combination of muscular 
proprioception and output from the vestibular system. Motor theories of perception 
suggest that action and perception are deeply intertwined in the brain; perception is 
not a mere and passive interpretation of sensory information, but the result of an 
active internal simulation of actions. Perceiving an object recalls memory of 
grasping the object, the tactile sensation of the object in our hand and the 
consequent proprioceptive feedback. Seeing an action activates the very same 
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neural circuitry that would be activated if we were performing the same action 
ourselves. The interaction between action and perception occurs at different levels. 
As reported by Viviani and Stucchi (Viviani and Stucchi, 1992) at least three levels 
can be distinguished: ecological level, active exploration and generation of expectations. 

Perception and actions are linked at the ecological level, meaning that animals 
obtain a stable and coherent representation of the world as a collection of sensory 
changes arising from the movement of the body. 

Active exploration establishes a link between action and perception, especially 
vision and touch. Explorative movements allow an agent to gather sensory 
information about the environment and to connect together different sensory 
modalities like, for instance, the sight of an object with the tactile sensation acquired 
by grasping it. There is a strict connection between this point of view and the active 
vision paradigm (Ballard and Brown, 1992). Ballard and Brown proposed that an 
artificial vision system can solve visual problems (for example to solve a 3D 
reconstruction problem) by actively changing its point of view. Indeed actions can 
simplify visual problems in several ways. By producing a causal connection 
between action and perception it is possible to focus the attention on events 
happening on a well defined time window, or to correlates together changes in the 
visual and proprioceptive percepts. In this thesis a similar solution was adopted to 
segment the robot’s hand from the background and to produce impulsive target 
motion in the pushing/prodding task. Besides, the agent can autonomously decide 
to repeat an action on an object if further information is required. 

Finally, perception and action are coupled in the generation of expectation. A very 
intriguing question is about how the brain can cope with the relatively high delays 
in neural circuitry. For instance, visual information can take up to several hundreds 
of milliseconds before it is actually processed; in case a fast reaction to an external 
event is required, visual information takes just too long for a proper response to be 
planned. When a motor command is issued to the body, a copy is sent also to an 
internal simulator; the latter predicts the consequence of the motor command and 
anticipates a proper reaction in advance. The brain uses forward models to improve 
motor control by simulating the effect of motor actions before they are actually 
executed (see (Miall and Wolpert, 1995) and (Wolpert and Flanagan, 2001) for a 
review). For instance an internal model of the arm’s dynamics could compute an 
estimation of the future state based on the current state and motor command. This 
estimation could be used within the sensory motor loop to compensate the delay of 
the actual feedback. Internal models are thought to be employed by the brain 
during motion to update a sensory input to plan a delayed response. For example, 
during a saccade a flashed spot in the retina elicits a consequent saccade toward the 
correct spatial location, although the retinal slip at the moment the flash occurred 
would produce a wrong motor response (the double saccade paradigm, (Gilmore 
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and Johnson, 1998)). Another location in the brain where prediction occurs is 
probably the MST where, during smooth pursuit, egomotion is properly 
compensated for (Krauzlis and Stone, 1999). In Section 5.2 the robots learnt a 
forward model of the hand to predict the position of the arm end-point in the visual 
field. The same model was used to predict the future position of the hand based on 
the current motor command. Similarly in Section 6.2 the robot built a table to 
predict the direction an object would move in if pushed/pulled along a given 
direction (this model is similar to a “motor schema” (Berthoz, 2000)). 

7.2. Objects’ affordances and action 

During our life we discover the use of hundreds of objects. However, not all of them 
are completely different in the way they are actually handled. For instance glasses 
are used roughly in the same way irrespectively of their size and shape, the same is 
true for cups, bottles or  books, just to mention a few. However, you can read a book 
but you may very well decide to use it to kill an annoying mosquito or place it near 
the door to keep it from closing. To every object we can associate a set of actions; the 
psychologist J.J.Gibson called these actions affordances to represent the actions the 
object afford. Interestingly, different animals find different affordances depending 
on their specific sensorimotor repertoire and body. A nice example is reported by 
Berthoz to explain this concept: “Sometimes opposite properties are interesting to 
different animals. Thus the degree of firmness (which can be measured as the 
relationship between pressure and displacement) of the ground allows humans to 
walk, whereas its friability permits the earthworm to move about” (Berthoz, 2000). 
Visual appearance of an object together with contextual information (the last place 
we have seen it) trigger the selection of the correct affordance to accomplish a 
particular task. More interesting it is possible to generalize affordances among 
objects of similar structure. For instance you may guess how to handle a pair of 
pliers (assuming you have never encountered a pair before) by generalizing the use 
of a pair of scissors. Indeed both objects close when pressure is applied to their 
handles.  

Affordances play a direct role in action selection, by linking the sight of an object 
to a specific sequence of motor commands. This process does not necessarily 
involve a conscious recognition of the object. This last point was extensively proven 
by psychological as well as physiological experimental results. For instance it was 
reported the clinical case of a patient who was unable to name objects correctly or to 
judge which objects might be used together (like a knife and a fork). However the 
same patient was able to gesture to mimic how the object could be used. Opposite 
examples were also described about people who were able to recognize and name 
objects visually, but failed to use them correctly, when asked to. These people did 
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not have any motor problem, but were somehow unable to access the “affordace 
representation” of objects (for a review see (Humphreys, 2001)). 

The representation required to recognize objects is what we have already called 
the semantic representation, whereas affordances form what we defined a 
pragmatic representation coding the information required for action ((Jeannerod, 
1994) see also Section 1.5). Of course these representations are not completely 
separated in the brain. The pragmatic representation may help to solve an object 
identification task. Humprheys (Humphreys, 2001) reported the case of a patient 
who could not detect a target among other objects if the target was identified by 
means of its name. However he could solve the task if he was cued with the 
description of an action, like for instance “find the object to drink from”. In 
somewhat symmetric cases, patients who could not access the pragmatic 
representation were reported to be able to select the correct action to grasp and use 
well known objects as opposed to generic ones (e.g. a lipstick versus a small 
cylinder). In the former case the semantic representation provided information to 
the pragmatic system (Jeannerod et al., 1995).  

These findings are in accordance with the hypothesis that there exist two 
different visual pathways in the primate’s brain (Milner and Goodale, 1995). The 
dorsal pathway processes information required to solve actions-directed tasks, 
whereas the ventral pathway is concerned with more abstract concepts, like object 
identification and recognition. In the first case information related to where an 
object is and how to handle it would be computed, in the second case the result of 
the computation would produce the notion of what the object is.  

Recent physiological results have identified in the monkey motor cortex an area 
(F5) where neurons seem to code a pragmatic representation of objects. Area F5 is a 
premotor area involved mostly in the control of hand movements. Neurons in this 
area were reported to fire during specific goal-directed actions such as grasping, 
tearing, holding and manipulating. Murata and coworkers (Gallese et al., 1996; 
Murata et al., 1997) found that these neurons had also visual properties and that 
they fired not only when an action was executed (motor-response) but also during 
object fixation. Thus the neural response had neither an intentional nor an 
attentional meaning. Besides, the visual response of these neurons was remarkably 
object-specific and congruent with the type of grasp the neuron coded. They 
interpreted these results proposing that F5 may contain a sort of motor vocabulary 
from which appropriate actions are automatically selected from the visual 
properties of an object (that is a motor representation of object affordances). 

7.3. Linking action to perception 

Viviani and Stucchi (Viviani and Stucchi, 1992) propose a fourth level at which the 
interaction between the motor and the perceptual system may occur. They call it a 
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“more abstract level” because it does not involve either the actual execution of 
movement or a planning stage. They continue by saying that “motor information 
relevant to the perceiver does not concern some actual specific gesture, but rather 
procedural knowledge about his own entire repertoire of potential gestures”. 
This point is particularly evident in speech perception but was extended to the 
domain of vision by experiments about visual perception of biological motion. 
Viviani and Stucchi describe an experiment by Beardworth and Bukner who tested 
the ability of a group of students to recognize each other from recording of their 
walking. The students were shown a schematic dynamic reconstruction of the 
walking movement of their schoolmates and were asked to guess the name of the 
walker. The subject’s own walking was included in the test set. Although subjects 
had much more visual experience about the gait of other people, they made less 
mistakes in distinguishing their own motion. This suggests that structural 
information about the motor system is indeed linked at some level to the perceptual 
mechanism which analyzes visual motion. Other experiments proved that biological 
constraints on the bodily mechanical structure may play a role in the perception of 
ambiguous motion. Similarly, geometric and kinematic visual illusions were 
observed, suggesting that the brain biases motion perception by assuming a 
biologically-plausible model of the constraints between trajectory and velocity 
(Viviani and Stucchi, 1992). 

Further support to these ideas was recently provided by Rizzolati who 
discovered neurons in area F5 which fire not only when the monkey performs a 
grasping action but also when it sees another monkey or the experimenter 
performing the same action (Gallese et al., 1996). Owing to this peculiar property, 
these neurons were called mirror. Interestingly mirror neurons exhibit kinematic 
preference for actions respecting biological constraints. In other words, they fire 
when the action the monkey attends to is performed with hands; they do not fire if 
very similar actions are made using tools (e.g. if a piece of food is grasped with 
pliers). The response of mirror neurons results from meaningful interaction of an 
agent with an object; agent, object and action are all required for the neurons to fire. 
Response is absent either when the action is not directed toward an object or when 
there is an object but no action is actually executed. 

A possible interpretation of the mirror neurons’ function has been given in terms 
of both motor learning and action interpretation/understanding. In the first case 
mirror neurons are thought to extract the information essential to describe an action 
and to link it directly to the motor representation coded by the “canonical” (that is 
non-mirror) F5 neurons. In the second case the mirror system extends the predictive 
abilities of the brain to the action performed by others. The observation of an action 
is mapped into the internal motoric representation identical to the one that is 
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activated when the same action is performed by the subject. In this way the brain 
can interpret the meaning of the actions it attends to. 

According to these observations, the first two developmental stages addressed in 
this thesis are important precursors to the third one. In other words, learning to act 
is important not only to guide motor behavior but it may also be a necessary step 
for event-interpretation when the motor system is not directly involved. Computer 
vision approaches to the problem of event interpretation have tried to solve this 
problem in the domain of vision alone. We claim the hypothesis that action 
generation is an important precursor to event-interpretation. In other words, in 
order to learn to visually interpret more complicated events in the environment it 
may be first necessary to learn to act on it. We have shown two aspects of the 
problem: learning to act and learning about object properties. Together they lead to 
the development of object affordances and to building a representation similar to 
the one observed in the monkey mirror system. Of course, further research is 
required to fill this gap. 
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Chapter 8 

Appendix

8.1. Motion algorithm 

The simplest way to compute motion is by taking the difference between the current 
frame (at time t) and the previous one (at time t-1). This method, called frame 
difference, is very fast but also sensitive to noise. A more sophisticated solution is to 
compute a model of the background and compare it to each frame by subtraction. In 
this case the problem is how to update the model of the background so that, if an 
object enters into the scene and stops, sooner or later it gets incorporated into the 
background model and it is no longer considered as being moving (background 
modeling). An easy solution is to update the background by means of a weighted 
average with the current frame. Mathematically: 

 (0) (0)
( ) ( ) (1 ) ( 1)

B I
B t I t B tα α

=⎧
⎨ = + − −⎩

 (8.1) 

where ( )I t  and ( )B t  are the current frame and the estimation of the background at 
time t respectively. The parameter α  determines the speed at which the 
background is updated. If 0α =  the update is suppressed and the initial guess 
never changes; on the other hand if 1α =  we are back to computing frame 
difference (the model of the background is completely updated at each frame). All 
the possibilities in the between are valid, in the experiments reported in this thesis 
the pretty conservative value of 0.2α =  was used. Among the possible choices (e.g. 
optic-flow) this algorithm was chosen because it can be computed efficiently at high 
resolution in the log-polar domain. An exemplar sequence is reported in the next 
page (Figure 8.1). 



Chapter 8: Appendix 

 122

 
Figure 8.1. Examples of motion. The computation was carried out in the log-polar domain; images 
here are remapped for simpler understanding. 

8.2. Ellipse Fitting 

Let us consider an MxN  greyscale image ( , )I x y  which represents the 
segmentation of an object in the scene. With analogy to mechanics we define the 
Cartesian moments of the image as: 
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where p  and q define the order of the moment. 
The first two moments can be used to compute the coordinates ˆ ˆ( , )x y  of the center of 
mass of the image: 
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 (8.3) 

Central moments can be computed then as: 

 ( ) ( ) ( )
1 1

ˆ ˆ ,
M N

p q
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x y
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= =

= − −∑∑  (8.4) 

Essentially, central moments are equivalent to Cartesian moments computed after 
translating the origin of the image to its center of mass; for this reason central 
moments represent shape features that are translation invariant. 
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20µ  and 02µ  correspond to the moments of inertia of the image and 11µ  to the 
cross moment of inertia. The orientation of the object is the angle of the axis of least 
inertia. We write the integral of the square of the distance between the points of the 
object and all possible lines through its center of mass: 

 ( )2

1 1
,

M N

x y
E r I x y

= =

=∑∑  (8.5) 

where r is the distance from the point ( , )x y  to the generic line through the center 
of mass of the object. The line for which this integral is a minimum defines the 
orientation of the object. Solving the minimization and a performing a few 
substitution (see (Horn, 1986) , Chapter 3) lead to: 

 11
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21 arctan
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µ µ

⎛ ⎞
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 (8.6) 

The object ellipse is defined as the ellipse whose least and greatest moments of 
inertia equal those of the object. The equation of a generic ellipse with center at 
( )0,0  is: 
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 (8.7) 

 
whose semimajor and semiminor axes ( ),a b  are related to the central moments by 
 

 

 
Figure 8.2. An example of ellipse  fit. The original image (b) and the ellipse object estimated by 
means of the algorithm described in the text (d). (a) and (b) depict the same images remapped to 
Cartesian space. Note that the processing is carried out on (b). 
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the following equation: 

 ( ) ( )2
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Another representation of a generic ellipse can be expressed by means of a 
quadratic equation: 
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whose coefficients are related to the axis and orientation by: 
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The matrix A  is the ellipse  shape representation of ( , )I x y . 
To compute Cartesian and central moments in a log-polar image ( ),I η ξ , 

equations (8.2) and (8.4) have to be expressed in terms of ( ),η ξ . By changing 
coordinate system we have: 

 ( ) ( ) ( ) ( )
1 1
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p q
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and  
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= − −∑∑  (8.12) 

where ( ),x η ξ  and ( ),y η ξ can be computed from the log-polar equations (see 

Section 4.1)  and ( ),J η ξ  is the determinant of the jacobian of the transformation, 

or: 
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8.3. Self organizing feature map (SOM) 

Let us assume we have a set of samples in a given space n ; we want to project 
these points onto a discrete space m  m n≤  in such a way so that the output 
preserves the topology of the input: that is, we want those points that are neighbors 
in the source space to map to the same or close points in the output space. 

A Kohonen Self Organizing Map (SOM) solves this task. It is a fully connected 
single layer linear network where each thi  unit computes its activation as: 

 
1

m

i k k
k

net x w
=

= ⋅∑  (8.14) 

where mx∈  is the current input to the network and mw∈ is the unit’s vector of 
the weights.  

Units may be arranged in one or higher dimensional space (although rarely 
more than two). In this space each unit has a set of neighbors to which it is 
connected (for example in a one-dimensional SOM each unit has two neighbors, the 
preceding and the following one). The learning rule to update the weights of the thi  
unit is the following: 
 ( ) ( ) ( ) ( )1 ( )i i iw t w t t x t w tη+ = + ⋅ −⎡ ⎤⎣ ⎦  (8.15) 

where t  is the iteration number, ( )x t  is the current input and ( )tη  is the learning 
rate. The former depends on t  as it is usually reduced during learning. Not all the 
units get their weights updated, a soft competition rule is followed: if *i  is the 
“winning” unit (that is the unit whose activation is the highest) only the weights of 
neighbor units are changed. A possible strategy is to vary the amount by which 
each unit is updated according to a decreasing exponential rule. In other words the 
weights of the winner and its neighbors are attracted towards the input pattern. As 
a result neighbors units code similar (closer) input patterns. In the case of a 2-
dimentional SOM the output of the network can be represented as a 2D grid whose 
points correspond to the neurons. The output of the network is, for a particular 
input, the unit that gets activated the most. A further nice feature of the SOM is that 
it implicitly codes the probability of the source space ( ( )p x ); in fact after the 
learning more units are attracted towards regions of higher probability. Figure 8.3 
shows an example where a SOM is used to map a set of points from a 2D source 
space. 
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a) source patterns 
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b) weights (1 epoch) 
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c) weights (10 epochs) 
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d) weights (500 epochs) 

Figure 8.3. A SOM is trained on a set of input points. The source patterns consisted in 5 sets 
whose points were generated from Gaussian distribution having different mean and same 
variance (a). The sets have also different probabilities as it can be observed in the graph. The 
weights of the network are reported during learning after 1, 10 and 500 epochs; on the same plots 
the connections between the units are also drawn (b), (c) and (d). The plots show how the SOM 
learns the topology of the input. Notice that more units are attracted towards the regions with 
higher probability (compare (a) to (d)). 
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